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6. Insights on Framework Design

6.1. Transport Loss for Keypoint Localization

Background: Prototypical domain adaptation [115] is

particularly curated for classification that differs from key-

point detection [67] significantly at the task level. Thus, to

adapt the same for the sketch-photo domain gap, we needed

to analyze every piece of the mechanics it is principled on.

The bi-directional transport loss [115] precisely employs

two transport objectives: one to pull the samples in the tar-

get domain towards the source domain prototype, and the

other to pull the prototype towards respective targets. Tak-

ing the unsupervised setting into account, the source pro-

totype is considered to be an overall class prototype that

encompasses both the source and target domains.

It is worth noting that the prototype formulation in pro-

totypical domain adaptation [115] is particularly dependent

on the weights of the last linear layer responsible for per-

forming classification, while the conventional prototype for-

mulation [108] uses an mean of the vector representations

in the latent space. Although in both cases, prototypes are

essentially built in the same latent embedding, the metric

relation between the prototype and the source embedding

is completely disparate. Likewise, the original prototypical

network [108] can be used with any distance metric, while

the former [115] is restricted to element-wise multiplication

between source embeddings and prototypes or weights.

Dissecting Bidirectional Transport Loss: Considering

ϑj(αj) =
(αj)∑
(αj)

as a normalized weighing function, the

bidirectional transport loss [115] is given as:

Lt→µ+Lµ→t =

E[
∑

n

C(µn, Φ̂m,n) · ϑn(p(µn) exp(µnΦ̂
T

m,n))]+

E[
∑

n

p(µn)
∑

m

C(µn, Φ̂m,n)ϑm(exp(µnΦ̂
T

m,n))]

(12)
Here, the terms Lt→µ and Lµ→t signify two directions, tar-

get domain to prototypes and prototypes to target domain,

respectively, of the bi-directional aspect of the loss function

in Eq. (12). The term C(µn, Φ̂m,n) refers to a direct point-

to-point cost between a prototype and the corresponding tar-

get embeddings and implements a cosine distance between

prototype µn and respective mth target embedding Φ̂m,n for

any class n. Also, the expansion of Lµ→t term uses the nor-

malized weighing function ϑ to mimic softmax operation

implicitly, and the expansion of Lt→µ uses the softmax

function and directly provides a discriminative entropy min-

imization linking to the classification task regime. More-

over, this is especially aligned with the corresponding pro-

totype formulation with weights of the last layer.

As the keypoint detection does not need to predict dis-
criminative probabilities between different classes or key-
points, we remove the weighing function ϑ and Eq. (12)
reduces to:

Lt→µ + Lµ→t =E[
∑

n

C(µn, Φ̂m,n)p(µ̂n) exp(µnΦ̂
T

m,n)]+

E[
∑

n

p(µ̂n)
∑

m

C(µn, Φ̂m,n) exp(µnΦ̂
T

m,n)]

(13)
In Eq. (13), the term exp(µnΦ̂

T

m,n) is essentially a simi-
larity measure that closely resembles the cosine similarity.
Taking Sim as a similarity function, Eq. (13) can be further
expressed as Eq. (14), identifying the key factors responsi-
ble for the domain adaptation in the transport loss.

Lt→µ + Lµ→t =E[
∑

n

C(µn, Φ̂m,n)p(µ̂n)Sim(µn, Φ̂m,n)]

+E[
∑

n

p(µ̂n)
∑

m

C(µn, Φ̂m,n)Sim(µn, Φ̂m,n)]

(14)

Adaptation to Keypoints Learning Paradigm: From

Eq. (14), it is clear that both the loss terms, Lt→µ and Lµ→t

are reduced to the similar form consisting of target proto-

type p(µ̂n), a point-to-point cost C(µn, Φ̂m,n) and a sim-

ilarity score Sim(µn, Φ̂m,n). Thus, having a similar form

of both transport losses [115], the domain adaptation loss

LDA in Eq. (10) takes a unified form of the transport losses.

Considering the aforementioned inherent differences at the

task level, C(µn, Φ̂m,n) and Sim(µn, Φ̂m,n) are realized

by l2 distances and a derived similarity score for the key-

point learning task as mentioned in details in Sec. 3.2.

It is also to be noticed that µ̂n is used in Eqs. (13)

and (14) to represent the target prototype. Due to the

absence of class information of the target domain, Tan-

wisuth et al. [115] uses a single prototype system for source

and target domains. We consider the gradual movement of

prototypes from the source to the target domain, and thus we

replace the same with a prototype calculation for our target

domain, i.e. query keypoints using Eq. (9). The term p(µn)
essentially represents the probability of the prototypes given

all the target samples. Given the task-level setting of unsu-

pervised classification, p(µn) is interpreted as class propor-

tion in the original bi-directional transport loss [115] and

is iteratively updated starting from a uniform class distri-

bution. On the contrary, keypoints learning replaces it by

an equivalent term p(µ̂n) which refers to l2 distance-based

probability for the prototypes (Eq. (9)) and it could be cal-

culated dynamically using the keypoint-level class informa-

tion of the query photos, turning the problem setup to a su-

pervised one and dismissing the necessity of iterative up-

dates of the prototype likelihood.



6.2. Design Specifications of Descriptor Network

The descriptor network [67] D is particularly employed to

refine and encode the features at the local scale from the

correlated query feature maps Am,n having dense encoded

features pertaining to both the query feature map fm and the

support prototype µn, to a descriptor Ψm,n so that it con-

tains necessary positional information to localize the rele-

vant keypoint n in query photo xm.

The architecture of the descriptor network D is taken

from FSKD [67], and the design specification is kept the

same as well. The network D consists of three consecu-

tive convolution layers with kernel size 3× 3, a stride of 2,

a padding of 1, and ReLU as activation. The input chan-

nels for the first convolution layer are c = 2048, the output

channels of the last layer are 1024, and all the intermedi-

ate input or output channels are 512. Considering the in-

put size of xi being 384 × 384 we have correlated query

features fm of size R
2048×12×12 as input of descriptor net-

work D which results in tensors of R
512×6×6, R512×3×3

and R
1024×2×2 as the consecutive outputs of convolution

layers. Thus, the final output descriptor Ψ̂m,n of dimension

d = 4096 is formed by flattening the last output from D.

6.3. Architecture Choice for De­stylization Network

Background: The de-stylization network Z as per the

architecture given in Fig. 3 is designed after the multi-scale

channel attention module [25] to fuse the keypoint level lo-

cal information with the global context of sparsity and style

present in a sketch or edgemap. While multi-scale channel

attention [25] is specifically curated for convolutional fea-

ture maps, our design needs to deal with keypoint embed-

dings of Rc, keeping a similar notion of context fusion [25].

The original design [25] uses two parallel branches on con-

volutional feature maps, one with the input feature map as it

is, and the other using a globally pooled vector from the in-

put convolutional feature map, encoded with separate learn-

able convolution layers and both the branches are aggre-

gated using an element-wise addition for fusing the global

context into feature maps. The resulting convolutional map

is then passed through sigmoid activation to adjust the

weight to which the fused context should affect the original

input map while it is multiplied with the fused feature map.

Proposed Design: Designing our de-stylization network

Z (see Fig. 3), we need it to cater to the keypoint embed-

dings of R
c with dense local features, and thus they are

fused with globally pooled vectors from the corresponding

feature map fk. The context fusion for any keypoint n in xk

is achieved by the concatenation of the extracted keypoint

embedding Φk,n and the corresponding global pooled fea-

tures from fk, followed by two linear layers with a ReLU

activation in between. This, in particular, is used as a con-

text at both local and global scales and is added element-

Architecture of Z Local Context Global Context PCK@0.1

B-DA (No Lstyle) ✓ ✗ 31.76

None (Identity) ✓ ✗ 36.84

MLP ✓ ✗ 37.78

MLP (Concatenated) ✓ ✓ 38.11

Proposed ✓ ✓ 39.00

Table 3. A comparison of performance for different architecture

designs of de-stylization network Z along with the usage of local

and global contexts. The PCK@0.1 is measured on the Animal

Pose dataset [15] for novel keypoints on unknown classes.

wise to Φk,n and a sigmoid activation, along with two

more linear layers with a ReLU activations in between help

in learning keypoint embeddings δk,n from the dense fused

features at local and global scales.

7. Design Analysis of De-stylization Network

The de-stylization network Z disentangles style and spar-

sity from the keypoint embeddings using attentional global

and local context fusion [25]. However, to understand the

role of global context realized by the global pooled vector

from the support feature fk and also to justify our choice of

architecture, we designed a few different architectures of Z

and rigorously experimented and evaluated for novel key-

points on unseen classes (Tab. 3).

(a) The baseline B-DA is used as a control measure as

there is no Z or Lstyle involved. (b) Using an identity func-

tion as Z, we essentially ensure Φk,n = δk,n. However, the

framework still tries to learn style-agnostic keypoint embed-

dings using the style loss Lstyle with additional edgemaps,

which have a significant performance upgradation (↑ 5.08)

over B-DA. This proves that the loss Lstyle contributes sig-

nificantly and thus, the assumption regarding existing style

diversity in the synthetic sketches or edgemaps is validated.

(c) Using a multi-layer perceptron (MLP) as an alterna-

tive architecture of Z is taken into consideration. While

the MLP takes only extracted keypoint embedding Φk,n as

input, it has an improvement of 0.94 over the case where

Φk,n = δk,n. This signifies the learning of better key-

points with Z while preserving alignment between the sup-

port keypoint and the query. (d) Using the MLP designed

to take the dense features, formulated by concatenation of

global pooled features and the extracted keypoint embed-

dings, the performance gets a further boost of 0.33, which

proves that global context has a significant role in disen-

tanglement and can encode the style and sparsity informa-

tion. (e) The proposed design architecture has the best per-

formance with an improvement of 0.89 over MLP with a

global context aggregation. (f) Apart from the architectures

presented in the Tab. 3, we also experimented with several

other attention modules. However, all such models had in-

tractable training with exploding gradients and loss values

greater than 108 times the usual.



Edge Detector Animal Pose [15] Animal Kingdom [79]

[60] + [109] + [129] 36.87 12.46

[129] + [56] + [14] 37.33 12.98

[14] + [60] + [109] 38.38 13.45

[110] + [60] + [56] 38.61 13.87

Ours ([110] + [129] + [14]) 39.00 14.42

Table 4. Performance of the proposed framework with various

edge detection algorithms used for generating synthetic sketch

data for training. Performances (PCK@0.1) are measured on both

datasets [15, 79] for novel keypoints on unseen species.

8. Choosing Edge Detection Algorithms

The choice of edge detection algorithm is particularly

crucial for our problem, as it directly connects with the

training data for the proposed framework. As we treat

edgemaps as synthetic sketch data, we performed in-depth

experimentation with the different edge detection algo-

rithms as mentioned in Sec. 4.4. Precisely, we include

modern and popular edge detector algorithms, includ-

ing Im2pencil [60], DeXiNed [109], Photo-Sketch [56],

HED [129], Canny [14], PiDiNet [110] in multiple com-

binations. The top 5 performing combinations on both

datasets [15, 79] for the most challenging evaluation set-

ting (novel keypoints on unseen classes) are given in Tab. 4.

While the proposed combination performs the best, the pre-

sented data shows that the performance does not vary by

more than 3 PCK@0.1 for both datasets [15, 79], essentially

indicating that the proposed framework is robust enough to

accommodate different levels of style and sparsity in sketch

data. Moreover, we have experimented with real photos in

the support set instead of sketches or edgemaps, achieving

a similar accuracy of 43.72% (only a gain of ↑ 4.72 over

sketches) on the Animal Pose dataset [15] for novel key-

points on query photos of unseen classes. See Secs. 4.3

and 10 for detailed results and analysis. Thus, it could be ar-

gued that the proposed method is robust and capable enough

to encode keypoint-level information across diverse styles of

sketches as well as photos. While we understand the capa-

bility of encoding synthetic sketches, the following section

(Sec. 9) illustrates the practicality aspect of using synthetic

sketch data or edgemaps.

9. Empirical Study with Free-Hand Sketches

The proposed framework is entirely trained with edgemaps

or synthetic sketches as given in Secs. 3 and 4, and a few

sample visualizations of support edgemap [110] and detec-

tion with ground-truth on query photos [15] are given in

Fig. 10. Thus, we perform extended experimentations with

pre-trained models as described in Sec. 4.2 along with a

sample depiction of base and novel keypoints on support

sketches [104] and query photos [15] in Fig. 6. From the

data presented in Tab. 5, it is evident that our framework has

adequate few-shot capability for generalizing across real

Class Keypoints Support
PCK@0.1

Cat Cow Dog Horse Sheep Mean

Seen

Base
Edgemap 67.34 49.89 56.28 56.35 45.65 55.10

Sketch 66.69 45.79 55.43 56.13 43.40 53.29

Novel
Edgemap 55.69 43.09 46.58 43.94 36.39 45.14

Sketch 55.45 42.96 46.35 43.88 36.31 44.99

Unseen

Base
Edgemap 47.36 42.97 38.30 46.17 41.03 43.17

Sketch 45.90 42.47 37.82 45.36 40.45 42.40

Novel
Edgemap 44.42 40.13 36.91 37.77 35.77 39.00

Sketch 43.79 39.91 36.17 37.56 35.02 38.49

Table 5. A quantitative comparison of the proposed method

on query photos [15] using edgemaps and real free-hand

sketches [104] with K = 1 for all evaluation settings.

support sketches, as PCK with τ = 0.1 for real sketches

is within a range of 5 from the extensive evaluation results

on edgemaps. More visualizations for base and novel key-

points are in Fig. 11.

10. Experiments with Support Photos

Apart from using sketches or edgemaps as support, we also

experiment with photos as support, solving the simple few-

shot keypoint detection problem Lu et al. [67] solves. This

experimentation was conducted to prove the robustness of

the proposed work. While photos do not have any style

or abstraction diversity, we first experiment with only pho-

tos in a setting similar to the original work of FSKD [67].

In this setting, we completely turn off the de-stylization

loss Lstyle (Sec. 3.3) due to lack of additional support in-

puts. However, the de-stylization network Z being an in-

tegral part of the architecture keeps aiding the learning of

deeper features. Empirically, although our method goes

close to the state-of-the-art FSKD [67], it fails to outper-

form. Next, we carefully devise the experimentation strat-

egy using edgemaps [110, 129] as additional sketches turn-

Class Keypoints Method
PCK@0.1

Cat Cow Dog Horse Sheep Mean

Seen

Base

FSKD [67] 68.66 52.70 59.24 58.53 45.04 56.83

Ours 66.97 51.38 57.72 57.31 43.81 55.44

Ours (MM) 80.16 61.34 73.70 67.44 57.85 68.10

Novel

FSKD [67] 60.84 47.78 53.44 49.21 38.47 49.95

Ours 59.17 46.49 51.89 47.93 37.65 48.63

Ours (MM) 67.51 49.92 59.05 53.06 43.45 54.60

Unseen

Base

FSKD [67] 56.38 48.24 51.29 49.77 43.95 49.93

Ours 55.67 46.94 50.47 48.21 42.88 48.83

Ours (MM) 57.68 52.06 51.75 52.27 47.74 52.30

Novel

FSKD [67] 52.36 44.07 47.94 42.77 36.60 44.75

Ours 50.88 43.34 46.67 42.52 35.19 43.72

Ours (MM) 54.61 45.92 48.02 43.86 40.31 46.54

Table 6. A quantitative comparison of the proposed method on

query photos [15] using photo only and both edgemap and photos

(MM) with the FSKD [67] in K = 1 for all evaluation settings.



Figure 10. Visualizations of sample detection (✖) along with ground-truth (●) for base (left) and novel (right) keypoints on query pho-

tos [15] using support edgemaps [110].

ing on the de-stylization loss Lstyle (with reduced weight of

λstyle = 10−8) to learn the keypoint representation with mu-

tual information from both photos and edgemaps. In this

scenario, our method seems to outperform FSKD [67] by

a significant margin (≈ 2 − 11) in all evaluation settings,

proving the superiority of the multi-modal paradigm [70].

11. Style Diversity in Real Sketches

We simulate user sketch styles [100] with different

edgemaps as the de-stylization network (Sec. 3.3) disen-

tangles the style-invariant features. In order to under-

stand its style-invariance and generalization capability to

real sketches, we perform a human study, where each of the

20 participants was asked to draw 10 sketches, totalling 200
sketches. The participants were asked to rate every keypoint

predicted on the query photos by the models in question,

on a scale of 1→5 (bad→excellent) based on their opin-

ion of how closely it matched their expectation. The pro-

posed method achieves an average score of 4.42, compared

to 2.91 of the B-Vanilla and 3.38 of the FSKD [67], under-

pinning the generalizability and user-style independence of

our work. While we have used a limited number of real

sketches from the Sketchy Extended [104] database, this

study further proves the practicality of our framework.

12. Challenges with Additional Modalities

Our few-shot framework is particularly curated for sketch-

photo cross-modal learning, and is vastly different from

traditional sketch research [7, 8, 20], as careful address-

ing of the domain shift is well-observed in sketch-photo

cross-modal literature [55, 71, 97], depending on tasks.

The major sketch applications like sketch-based image re-

trieval [102, 103, 142] conventionally use a joint represen-

tation space due to the availability of instance-level sketch-

photo pairs. However, without overlap of support and

query sets by definition, the unavailability of such instance-

level sketch-photo pairs necessitates the need for explicit

keypoint-level domain adaptation (see Sec. 3.2) using a

transport loss [115] on the de-stylized keypoint represen-

tation, accounting for the unique sparse nature of sketches.

This sketch-photo cross-modal domain adaptation be-

comes challenging when extended to other modalities.

OpenKD [70] utilizes text as an additional guidance, along

with annotated support photos, resulting in a multi-modal

setup. In the context of sketch, we have experimented

with a similar multi-modal setting with sketch and photo in

Secs. 4.3 and 10. Taking the inspiration from OpenKD [70],

we attempted text-to-photo cross-modal keypoint learning

in our framework using an off-the-shelf frozen CLIP tex-



Figure 11. Visualizations of sample detection (✖) along with ground-truth (●) for base (left) and novel (right) keypoints on query pho-

tos [15] using real support sketches [104] with manual annotation prompt.

tual encoder [89] to obtain textual keypoint embeddings

that replace support prototypes. The rest of the framework

follows B-Vanilla (Sec. 3.1), using the feature modulation

M to correlate the textual support prototypes with query

features from the image encoder F , followed by the de-

scriptor network D, and a GBL module for localization.

This particular experiment achieves 20.13% (↑ 2.74 over

B-Vanilla, ↓ 18.87 below proposed) for the novel keypoints

on unseen classes in the Animal Pose [15] dataset. This

poor performance is expected due to certain factors. Firstly,

OpenKD [70] uses the annotated RGB photos as support

along with text in a multi-modal setup. Incorporating it

into a source-free paradigm is challenging, as the text-photo

joint keypoint representation becomes unavailable due to

the absence of such pairs in the support set. Secondly, our

framework is designed to handle image-like data, e.g. sketch

and photo, but it is not equipped to handle textual data, and

needs explicit text-photo cross-modal design.

13. Additional Comparisons

Although few-shot keypoint learning [33, 69, 112] has been

around for some time, only a few state-of-the-art methods

are suitable for comparison to the proposed method. Our

framework follows FSKD [67] closely, and we compare

Class Keypoints Methods
PCK@0.1

Cat Cow Dog Horse Sheep Mean

Seen

Base

GeometryKP [41] 33.47 22.57 26.96 27.08 19.84 25.98

ProbIntr [81] 47.93 36.77 41.11 42.47 32.92 40.24

OpenKD [70] 60.44 46.28 50.98 51.85 42.03 50.32

Proposed 67.34 49.89 56.28 56.35 45.65 55.10

Novel

GeometryKP [41] 22.07 14.18 19.65 12.71 17.39 17.20

ProbIntr [81] 31.29 24.53 28.37 22.83 26.33 26.67

OpenKD [70] 49.92 38.27 42.74 38.46 34.17 40.71

Proposed 55.69 43.09 46.58 43.94 36.39 45.14

Unseen

Base

GeometryKP [41] 27.39 23.76 19.51 26.93 20.58 23.63

ProbIntr [81] 40.76 36.13 30.15 42.84 34.52 36.88

OpenKD [70] 44.96 41.54 36.49 43.18 39.06 41.05

Proposed 47.36 42.97 38.30 46.17 41.03 43.17

Novel

GeometryKP [41] 14.25 8.69 11.81 13.44 9.37 11.51

ProbIntr [81] 23.91 17.59 18.37 13.85 21.63 19.07

OpenKD [70] 40.38 39.72 36.07 35.91 34.67 37.35

Proposed 44.42 40.13 36.91 37.77 35.77 39.00

Table 7. Additional quantitative comparison of the state-of-the-

art strategies with the proposed framework in K = 1 shot setting

delineating the superiority of the proposed method in overall per-

formance on Animal Pose [15] dataset.

them in Tab. 1. Additionally, we adapt ProbIntr [81] to a

few-shot framework. We also consider GeometryKP [41]

and OpenKD [70] for comparison. Due to the unavailability

of open-source code bases for these works, we implement

them to the best of our ability and compare them in Tab. 7.


