
CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers

Supplementary Material

This supplementary material includes various details
that were not reported in the main paper due to space
constraints. To demonstrate the benefit of the proposed
CAD-Assistant, we also expand our qualitative evalu-
ation.

7. CAD-specific Tool-set

This section provides a detailed discussion of the CAD-
specific tool set utilised by the proposed framework.
CAD-ASSISTANT is equiped with the following tools:

Hand-drawn Image Parameterizer: To enable visual
sketching, we employ a task-specific model for hand-drawn
image parameterization [21]. This module extracts parame-
ters and constraints as text, allowing CAD-Assistant to
reuse primitive parameters for CAD code generation.

CAD Sketch Recognizer: We equip CAD-Assistant
with a CAD sketch recognition utility. This routine re-
turns both a summary of geometries and parametric con-
straints in .json format, along with a visual rendering of
the CAD sketch. The rendered sketch image includes nu-
meric markers of the primitive ID overlayed on the rendered
geometries. Motivated by [64], this approach enhances vi-
sual grounding for GPT-4o, i.e. its ability to associate visual
content with the textual description of primitives.

3D Solid Recognizer: For CAD model recognition, we also
incorporate a 3D solid recognizer that generates a .json
summary of model parameters (for both sketch and extru-
sion operations) along with visual renderings of the 3D solid
from four different angles, providing a multimodal repre-
sentation of structure and geometry.

Constraint Checker: We include a dedicated function that
evaluates the parameters of a parametric constraint to de-
termine its validity and whether it causes movement in ge-
ometric elements. The constraint analyzer facilitates effec-
tive interaction with the CAD solver by assessing the impact
of commands like parametric constraints on geometry.

Cross-section Extract: Cross-sections are critical com-
ponents of CAD reverse engineering workflows [6].
CAD-Assistant includes a specialized routine for 2D
cross-section images from 3D scans across 2D planes.

FreeCAD API: CAD-Assistant is integrated with the
open-source FreeCAD software [11] via the FreeCAD
Python API. This API enables programmatic control over
the majority of commands available to designers and ac-
cess to the current state of the CAD design. In this work,
we consider a range of components from the Sketcher

and Part modules of the FreeCAD API, focusing on CAD
sketching, the addition and manipulation of primitives, ge-
ometric constraints, and extrusion operations for construct-
ing 3D solids. A summary of the exact classes, methods
and class attributes of the FreeCAD API integrated with
CAD-Assistant is provided in the supplementary.

Python: Beyond facilitating actions at, the planner can uti-
lize Python as a tool to conduct essential logical and math-
ematical operations, such as calculating segment lengths,
determining angles, and deriving parameter values.

8. System Details
CAD-Assistant’s implementation is based
on the Autogen [57] programming framework
for Agentic AI. We report CAD-Assistant’s
performance with gpt-4o-mini-2024-07-18,
gpt-4-turbo-2024-04-09 and gpt-4o-2024-08-06
as VLLM planners, accessed via API calls.

9. CAD Representations
In this section, we provide a formally introduction of 2D CAD
sketches and 3D CAD models.

9.1. Constrained CAD Sketches
A constraint CAD sketch is commonly represented by a
graph G = (Pn, Cm) comprising a set of n primitive
nodes {p1,p2, ...,pn} ∈ Pn and m edges between nodes
{c1, c2, ..., cm} ∈ Cm denoting geometric constraints. Primitives
pi are of type line li, arc ai, circle ci or points di. VLLM and
LLM planners can be sensitive to the parameterization strategy
followed for representing pi. This work conducts an investigation
on the impact of sketch parameterization on visual program under-
standing in black-box VLLMs presented in section 4.1 where we
compare the following parameterization strategies:

Implicit: This is the parameterization strategy utilized for repre-
sentation of 2D CAD sketches by the SGPBench [45]. Primitives
pi are represented as follows:

ai = (xc, yc, vx, vy, bwc, θs, θe) ∈ R4 × {0, 1} × [0, 2π)2

ci = (xc, yc, r) ∈ R3

li = (xp, yp, vx, vy, ds, de) ∈ R6

di = (xp, yp) ∈ R2

Table 7. Implicit parameterization strategy for arcs ai, circles ci,
lines li and points pi.

where and (xc, yc) denotes center point coordinates, (ds, de)
are signed start/end point distances to a point (xp, yp), the unit
direction vector is denoted as (vx, vy), radius is denoted with r,

(θs, θe) are the start/end angles to the unit direction vector in radi-
ans and bwc is a binary flag indicating if the arc is clockwise.

Point-based: We contrast the implicit parameterization to the
point-based approach from [21, 22, 49] as described on the fol-
lowing table.

ai = (xs, ys, xm, ym, xe, ye) ∈ R6

ci = (xc, yc, r) ∈ R3

li = (xs, ys, xe, ye) ∈ R4

di = (xp, yp) ∈ R2

Table 8. Point-based parameterization strategy for arcs ai, circles
ci, lines li and points pi.

where (xs, ys), (xm, ym), (xe, ye) are start, middle and end
point coordinates and r is the radius.

Overparameterized: This strategy is a simple combination of the
implicit and point-based parameterization.

ai = (xc, yc, vx, vy, xs, ys, xm, ym, xe, ye, bwc, θs, θe) ∈ R10 × {0, 1} × [0, 2π)2

ci = (xc, yc, r) ∈ R3

li = (xp, yp, vx, vy, ds, de, xs, ys, xe, ye) ∈ R10

di = (xp, yp) ∈ R2

Table 9. Overparameterized parameterization strategy for arcs ai,
circles ci, lines li and points pi.

We identify the overparameterized strategy as the safest ap-
proach, as it enables the VLLM planner to leverage a broader and
more diverse set of parameters, better accommodating the varying
requirements of different input queries. In addition to paramet-
ric primitives pi, a CAD sketch incorporates constraints defined
by CAD designers, ensuring that future modifications propagate
coherently throughout the design. A constraint is defined as an
undirected between primitives pi and pj . They might also include
subreferences (si, sj) ∈ J1..4K2, to specify whether the constraint
is applied on start, end, middle point, or entire primitive for both
pi and pj . Note that some constraints may involve only a single
primitive pi (e.g. a vertical line); in such cases, the constraint is
defined as the edge between the primitive and itself. In this work
we consider the following types of constraints: coincident, paral-
lel, equal, vertical, horizontal, perpendicular, tangent.

9.2. CAD Models

Following the feature-based CAD modeling paradigm [37, 61],
a CAD model C ∈ C is constructed as a sequence of design
steps. In this work, evaluation is performed on CAD models
from the 3D partition of SGPBench [45] sourced from the Deep-
CAD dataset [61]. These models are constructed exclusively via a
sketch-extrude strategy, where 2D CAD sketches Gi are followed
by extrusion operations that turns the sketch into a 3D volume.
Extrusions include the following parameters:

Parameter Description Parameter Notation

Sketch plane orientation (θ, ϕ, γ) ∈ [0, π]× [0, 2π)2

Sketch plane translation (τx, τy, τz) ∈ R3

sketch scale σ ∈ R
Extrusion distance (d−, d+) ∈ R2

Extrusion type β ∈ {1, 2, 3, 4}

Table 10. Extrusion Parameters description.

where extrusion type β can be among new, cut, join and intersect.

9.3. Parameter Quantization
Unlike prior task-specific models for CAD-related tasks such
as hand-drawn sketch parameterization [21, 22, 49], CAD
sketch generation [49], or 3D CAD model generation [61], the
CAD-Assistant does not rely on the common practice of pa-
rameter quantization. Typically, these methods use a 6-bit uni-
form quantization scheme to convert continuous sketch and extru-
sion parameters into discrete tokens, enabling prediction through
transformer-based sequence architectures trained with cross-
entropy loss [21, 22, 49, 61]. In contrast, the CAD-Assistant
employs a VLLM planner that directly regresses primitive and ex-
trusion parameters as continuous numerical values. We apply the
6-bit uniform quantization to the outputs of CAD-Assistant, to
facilitate direct comparisons with task-specific methods for auto-
constraining and hand-drawn sketch parameterization reported on
section 4.2 of the main paper.

QUERY: How many vertices does the CAD object have? A) 4 B) 5 C) 6 D) 7

 PLAN 1: I will count the distinct start and end points of these line segments.

 ACTION 1

 ENVIRONMENT: Execution Success. Number of unique vertices: 11

 PLAN 2: The calculation of unique vertices seems incorrect as 11 is not one of
the possible answers. I need to carefully examine the coordinates and ensure
that similar points are not counted multiple times due to minor differences.

 ACTION 2

 ENVIRONMENT: Execution Success. Number of unique vertices: 7

Figure 6. Correction of an inaccurate answer for a CQA example.

10. Verification of Responses
The proposed workflow allows for verifying incorrect responses.
The generated plan can be updated based on intermediate code ex-
ecution results, including error logs (see ft in Eq. 4). Figure 6
shows that when an error occurs (i.e., answer 11 is not among
the possible choices of the question), the planner detects this mis-
take and updates the plan accordingly. Exploring the potential of

combining tool-augmentation with more advanced planning and
verification algorithms (e.g. [2]) is left as interesting future work.

11. Costs
The proposed CAD-Assistant utilizes a GPT-4o planner ac-
cessed through API calls. Table 11 provides a summary of the
costs associated with each user query across CAD benchmarks.

12. CAD-Assistant Prompts
In this work, we use a unified prompt template, similar to [19]
for all CAD-specific problems. The prompt consists of three key
components: (1) a general context, (2) a list of tools provided to
the VLLM planner via docstrings, and (3) a multimodal user re-
quest. A summary of the FreeCAD API commands is provided
in Table 12, and the full set of docstrings supplied to the plan-
ner is presented in Section 15. Note that as the set of considered
API commands increases, the input context of the VLLM plan-
ner could increase. To address this, a preprocessing step could
be implemented to dynamically select relevant docstrings before
execution. The general context available to the VLLM planner is
shown in Figure 8.

13. Beyond Simplified CAD Commands
Extending the discussion of Sec. 4.4, we provide an additional
qualitative example of the proposed CAD-Assistant. Figure 7
shows the utilization of the CAD operation Fillet by our method. It
can be observed that CAD-Assistant computes the intersection
of the lines to be able to perform the Fillet operation on the corners
by analyzing its docstring. Moreover, we find that VLLM planner
performance might vary across CAD commands. This highlights
the necessity of developing CAD-specific benchmarks tailored to
CAD agents. Such benchmarks are crucial for gaining deeper in-
sights into the capabilities and limitations of VLLM planners on
generic CAD task solving.

14. Qualitative Evaluation
This supplementary material presents examples of complete agent
trajectories for the CAD benchmarks used in this study. Detailed
examples from the 2D and 3D subsets of SGPBench are provided
in subsections 14.1 and 14.2. Trajectories for the autoconstraining
task are illustrated in subsection 14.3, while examples of hand-
drawn parameterization are presented in subsection 14.4.

ACTION:

PLAN: To smooth the 4 corners of the rectangle, I need to first identify the indices of the lines
forming the rectangle in the sketch. Then, I can use the `fillet` method at each corner.

 ENVIRONMENT: {{ Returns primitives in JSON format }}

ACTION:

 PLAN: The rectangle is formed by four line segments. I will apply a fillet to each corner. I
need to calculate the start points for the fillet on each pair of lines at the corners.

 ENVIRONMENT: Execution Success.

FreeCAD Sketch

USER QUERY: Smooth out the 4 corners of this
CAD sketch

Fillet Docstring

Figure 7. Example of the proposed CAD-Assistant utilizing
the Fillet CAD command.

Task Avg Input Tokens Avg Output Tokens Avg Cost per User Request

CAD Question Answering 11280 178 $0.0299
Autoconstraining 28422 852 $0.0795
Handdrawn sketch parameterization 31170 1081 $0.0887

Table 11. Cost per user request for the CAD-Assistant utilizing GPT-4o as VLLM planner.

FreeCAD Class Class Methods Class Attributes

Sketcher.Sketch init () , recompute() , delGeometries(indx) ,

addConstraint(const) , addGeometry(geometry)

Name , Geometry , Constraints , State ,

ConstraintCount , GeometryCount ,

Placement

Sketcher.Constraints init (constraintType, *args) Name

Part.Circle init (center, normal, radius) Center , Radius

Part.Point init (point) X , Y , Z

Part.ArcOfCircle init (circle, startParam, endParam) ,

init (startPoint, endPoint, midPoint)

Center , Radius , StartPoint , EndPoint ,

FirstParameter , LastParameter

Part.LineSegment init (startPoint, endPoint) StartPoint , EndPoint

Part.Extrude init () Base , DirMode , LengthFwd , LengthRev ,

Solid , Reversed , Symmetric ,

TaperAngle , TaperAngleRev

Part.Solid fuse(shape) , cut(shape) , common(shape) TypeId , Volume , BoundBox

Table 12. Summary of FreeCAD API classes, methods, and attributes utilized by the CAD-Assistant framework. The VLLM planner
is supplied with docstrings that clarify their use, including detailed descriptions, function signatures and usage examples.

Prompt Template:
You are a helpful multimodal Computer Aided Design (CAD) AI assistant.
Solve tasks using your vision, coding, and language skills.
The task can be free-form or multiple-choice questions.
You can answer the user's question. If you are not sure, you can code.
You are coding in a Python jupyter notebook environment. The environment has also access to the PYTHON FREECAD API.
You can suggest python code (in a python coding block) for the user to execute. In a dialogue, all your codes are executed with the same jupyter
kernel, so you can use the variables, working states in your earlier code blocks.
Solve the task step by step if you need to.
The task may require several steps. Give your code to the user to execute. The user may reply with the text and image outputs of the code
execution. You can use the outputs to proceed to the next step, with reasoning, planning, or further coding.
When using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action
beyond executing the code you suggest. The user can't modify your code. So do not suggest incomplete code which requires users to modify. Don't
use a code block if it's not intended to be executed by the user.
Don't include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use 'print' function for the output when
relevant. Check the execution result returned by the user.
For each turn, you should first do a "PLAN", based on the images and text you see.

Here are the commands that you can use. Call them as described by the following docstrings
<DOCSTRINGS>

The jupyter notebook has already executed the following code to import the necessary packages:

REQUIREMENTS #:
1. The generated actions can resolve the given user request # USER REQUEST # perfectly. The user request is reasonable and can be solved. Try
your best to solve the request.
2. The arguments of a tool must be the same number, modality, and format specified in # DOCSTRINGS #;
3. If you think you got the answer, use ANSWER: <your answer> to provide the answer, and ends with TERMINATE.
4. All images should be stored in PIL Image objects. The user will send generated image outputs to you.
5. Only the FreeCAD commands that are provided to you. Do not used different commands or import new modules, as they will not be accessible.
6. Use as few tools as possible. Only use the tools for the use cases written in the tool description. You can use multiple tools in a single action.
7. You must return an answer with the choice letter if the user request is a multiple-choice question.

USER REQUEST # <REQUEST HERE>

Now please generate only PLAN and ACTION in RESULT. If no action needed, also reply with you answer and ends with TERMINATE in the RESULT:#

Figure 8. Prompt template for the CAD-Assistant. A detailed docstring disambiguating the use of the FreeCAD API and CAD-specific
tools is provided as part of the prompt. The docstring is shown in section 15. On this example, the VLLM planner has a handdrawn sketch
image preloaded. For different usecases, loading can be 3D scans or FreeCAD project files.

14.1. More qualitative results on CAD question answering for the 2D Subset of SGPBench.

USER QUERY: You are given a FreeCAD project file that inludes a 2D CAD sketch. The
FreeCAD project is already loaded for you.
Question: What is the position of the smallest rectangle relative to the largets rectangle?
A) Above B) Below
C) left D) right

PLAN: To determine the position of the smallest rectangle relative to the largest rectangle in
the sketch, I need to analyze the sketch. I will use the `sketch_recognizer` function to get a
JSON representation of the sketch's geometries and constraints, as well as a rendered
image of the sketch. This will help me identify the rectangles and their relative positions.

ACTION:

PLAN: The JSON data and the rendered image show two rectangles. The largest rectangle is
defined by the lines with IDs 0, 1, 2, and 7. The smallest rectangle is defined by the lines with
IDs 3, 4, 5, and 6. The smallest rectangle is positioned to the right of the largest rectangle.

ANSWER: D, TERMINATE.

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON format here.

Rendered Sketch Image

USER QUERY: You are given a FreeCAD project file that inludes a 2D CAD sketch. The
FreeCAD project is already loaded for you.
Question: What type of triangle is shown in the image based on its side lengths?
A) Equilateral B) Isosceles
C) Scalene D) Right

PLAN: To determine the type of triangle based on its side lengths, I need to examine the
sketch and identify the lengths of its sides. I will use the `sketch_recognizer` function to
analyze the sketch and obtain a JSON representation of its geometric elements, which will
help me understand the side lengths of the triangle.

ACTION:

PLAN: The sketch shows a triangle with three main line segments: 0, 1, and 2. I need to
calculate the lengths of these segments to determine the type of triangle.

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON format here.

ACTION:

 ENVIRONMENT: Execution Success

 Output:

 (0.7906, 0.957590056, 0.9576313656)

PLAN: The lengths of the triangle's sides are approximately 0.7906, 0.9576, and 0.9576.
Since two sides are equal, the triangle is isosceles.

ANSWER: B) Isosceles, TERMINATE

USER QUERY: You are given a FreeCAD project file that inludes a 2D CAD sketch. The
FreeCAD project is already loaded for you.
Question: How many right angles are present in the CAD object?
A) Two B) Four
C) Six D) Eight

PLAN: To determine the number of right angles in the CAD object, I need to analyze the
sketch. I will use the `sketch_recognizer` function to obtain a JSON representation of the
sketch's geometries and constraints, as well as a rendered image of the sketch. This will help
me identify the number of right angles present in the object

ACTION:

PLAN: The sketch consists of a series of connected line segments forming a shape. To
determine the number of right angles, I need to examine the connections between these line
segments. Each connection between two perpendicular lines forms a right angle.
From the JSON data and the rendered image, I can identify the following right angles:
1. Between line segments 0 and 1
2. Between line segments 1 and 2
3. Between line segments 2 and 3
4. Between line segments 3 and 4
5. Between line segments 4 and 5
6. Between line segments 5 and 6
7. Between line segments 6 and 7
8. Between line segments 7 and 0
There are eight right angles in total.

ANSWER: D, TERMINATE.

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

Rendered Sketch Image

Rendered Sketch Image

Figure 9. Complete agent trajectories of the CAD-Assistant for CAD Question Answering on the 2D subset of SGPBench.

14.2. More qualitative results on CAD question answering for the 3D Subset of SGPBench.

USER QUERY: You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: What is the shape of the main body of the CAD object?
A) Cylinder B) Sphere
C) L-shape D) Cube

PLAN: To determine the shape of the main body of the CAD object, I need to analyze the 3D
model in the FreeCAD project. I will use the `solid_recognizer` function to get a visual
representation and JSON serialization of the model's attributes. This will help me understand
the shape of the object.

ACTION:

PLAN: The rendered image of the 3D model shows an L-shaped object. This matches the
description of an L-shape, which is one of the options provided in the multiple-choice
question.

ANSWER: C, TERMINATE.

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

USER QUERY: You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: How many holes are visible on the flange of the CAD object?
A) Two B) Three
C) Four D) Five

PLAN: To determine the number of holes visible on the flange of the CAD object, I need to
analyze the 3D model. I will use the `solid_recognizer` function to get a visual rendering and
JSON serialization of the CAD model, which will help me identify the number of holes

ACTION:

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

PLAN: The JSON data and the rendered image show that there are four circles in the
sketches, which likely correspond to holes on the flange. The image confirms the presence of
four holes.

ANSWER: C, TERMINATE.

USER QUERY: You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: What basic geometric shape forms the primary body of the CAD object?
A) Cylinder B) Cube
C) Sphere D) Pyramid

PLAN: To determine the primary geometric shape of the CAD object, I need to analyze the
3D model. I will use the `solid_recognizer` function to obtain a rendered image and JSON
representation of the CAD model. This will help me identify the basic geometric shape.

ACTION:

PLAN: The rendered image shows a cylindrical shape as the primary body of the CAD object.
The JSON data also indicates the presence of arcs and line segments that form circular
profiles, which are extruded to create a cylindrical shape.

ANSWER: A, TERMINATE.

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

USER QUERY: You are given a FreeCAD project file that inludes a 3D CAD model. The
FreeCAD project is already loaded for you.
Question: What is the primary shape of the top part of the CAD object?
A) Square B) Triangle
C) Circle D) Arch

PLAN: To answer the question about the primary shape of the top part of the CAD object, I
need to examine the 3D CAD model. I will use the `solid_recognizer` function to analyze the
model and obtain a rendered image of the object. This will help me identify the primary
shape of the top part.

ACTION:

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

PLAN: The rendered image of the 3D model shows that the top part of the CAD object has a
curved shape, resembling an arch. The JSON data also indicates the presence of an arc in
the sketch geometry, which supports this observation.

ANSWER: D) Arch TERMINATE.

Rendered 3D Solid

Rendered 3D Solid

Rendered 3D Solid

Rendered 3D Solid

Figure 10. Complete agent trajectories of the CAD-Assistant for CAD Question Answering on the 3D subset of SGPBench.

14.3. More qualitative results on CAD sketch autoconstraining.

USER QUERY: Analyze the provided sketch to identify geometric relationships and apply the appropriate parametric
constraints, ensuring that all elements are properly constrained according to design principles. The `sketch` object is
already loaded for you. Use the Coincident, Parallel, Equal, Vertical, Tangent, Perpendicular and Horizontal constraints.

PLAN: To analyze the sketch and apply the appropriate constraints, I will first use the `sketch_recognizer` function to
understand the current geometries and constraints in the sketch. This will help me identify the geometric relationships
and determine which constraints to apply

ACTION:

PLAN: The sketch contains multiple line segments, arcs, and points. To ensure the sketch is fully constrained, I will apply
the following constraints: 1. Coincident constraints to connect endpoints of line segments and arcs. 2. Horizontal and
vertical constraints for line segments that are aligned with the axes. 3. Parallel constraints for line segments that should
remain parallel. 4. Perpendicular constraints for line segments that should be perpendicular. 5. Tangent constraints for
arcs and line segments that should be tangent. I will analyze each constraint before applying it to ensure it is valid and
does not move the geometries.

ACTION:

 ENVIRONMENT: Execution Success

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

PLAN: The constraints have been successfully analyzed and applied without moving
the geometries. The sketch should now be fully constrained according to the design
principles. The sketch has been analyzed and the appropriate constraints have been
applied. The sketch is now fully constrained with coincident, horizontal, vertical,
parallel, perpendicular, and tangent constraints. TERMINATE.

USER QUERY: Analyze the provided sketch to identify geometric relationships and apply the appropriate parametric
constraints, ensuring that all elements are properly constrained according to design principles. The `sketch` object is already
loaded for you. Use the Coincident, Parallel, Equal, Vertical, Tangent, Perpendicular and Horizontal constraints.

PLAN: To analyze the sketch and apply parametric constraints, I will first use the `sketch_recognizer` function to understand
the current geometries and constraints in the sketch. This will provide a JSON representation and an image rendering of the
sketch, which will help in identifying the geometric relationships and determining the necessary constraints.

PLAN: The sketch contains multiple circles and line segments. To ensure proper constraints, I will: 1. Apply Coincident
constraints to ensure circles share centers where needed.2. Apply Parallel constraints to line segments that should be
parallel. 3. Apply Equal constraints to circles with the same radius. 4. Apply Vertical and Horizontal constraints to line
segments that should be aligned accordingly. 5. Ensure loops are closed with Coincident constraints. I'll start by analyzing
and applying Coincident constraints for shared centers and endpoints.

ACTION:

 ENVIRONMENT: Execution Success

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON format here.

PLAN: The Coincident constraints have been successfully applied. Next, I will apply Parallel, Equal, Vertical, and Horizontal
constraints. 1. Apply Parallel constraints to line segments that should be parallel. 2. Apply Equal constraints to circles with
the same radius. 3. Apply Vertical and Horizontal constraints to line segments that should be aligned accordingly.

ACTION:

 ENVIRONMENT: Execution Success

PLAN: The constraints have been successfully applied, and the
sketch is now fully constrained according to design principles. The
sketch should now have proper geometric relationships and be
robust against modifications. TERMINATE.

ACTION:

Rendered Sketch Image

Constrained FreeCAD Sketch

Rendered Sketch Image

Constrained FreeCAD Sketch

Figure 11. Complete agent trajectories of the CAD-Assistant for CAD sketch autoconstraining

14.4. More qualitative results on handdrawn CAD sketch parameterization.

USER QUERY: Transform the provided hand-drawn image into a constrained
CAD sketch on FreeCAD and add appropriate parametric constraints.

PLAN: I need to extract the geometric elements and constraints from the hand-drawn image using the
`sketch_from_image` function. Then, I'll analyze each constraint to ensure they are valid and do not move the geometries
before applying them to the FreeCAD sketch.

ACTION:

PLAN: I need to create a FreeCAD sketch and add the detected geometries. Then, I'll analyze each constraint to ensure
they are valid and do not move the geometries before applying them.

ACTION:

 ENVIRONMENT: Execution Success

 ENVIRONMENT: Execution Success
 Returns primitive and constraint parameters in JSON format here.

PLAN: Now that the geometries are added to the sketch, I need to analyze each constraint to ensure they are valid and
do not move the geometries before applying them.

ACTION:

 ENVIRONMENT: Execution Success
 Constraint [1] rejected: It causes unintended geometry movement.

PLAN: The constraint that was rejected caused unintended
geometry movement. I will proceed with the valid constraints
and finalize the sketch. The hand-drawn image has been
successfully transformed into a constrained CAD sketch in
FreeCAD. The valid constraints were applied without causing
unintended geometry movement TERMINATE.

USER QUERY: Transform the provided hand-drawn image into a constrained
CAD sketch on FreeCAD and add appropriate parametric constraints.

PLAN: To transform the hand-drawn image into a constrained CAD sketch, I'll first use the `sketch_from_image` function
to extract geometric elements and constraints from the image. Then, I'll analyze each constraint using
`analyse_constraint` to ensure they are valid and do not move the geometries before applying them.

ACTION:

PLAN: I have the detected geometries and constraints. Next, I'll create a FreeCAD sketch and add these geometries.
Then, I'll analyze each constraint to ensure they are valid and do not move the geometries before applying them.

ACTION:

 ENVIRONMENT: Execution Success
 Returns primitive and constraint parameters in JSON format here.

 ENVIRONMENT: Execution Success

 Returs primitive parameters in JSON
 format here.

PLAN: The sketch has been successfully transformed with the
geometries and constraints applied. The constraints were
analyzed to ensure they are valid and do not move the
geometries. The rendered image confirms the transformation.
The hand-drawn image has been successfully transformed into
a constrained CAD sketch in FreeCAD. All constraints were
validated and applied without moving the geometries
TERMINATE.

Constrained FreeCAD Sketch

Rendered Sketch Image

Constrained FreeCAD Sketch

Figure 12. Complete agent trajectories of the CAD-Assistant for handdrawn CAD sketch parameterization.

15. Docstrings
This section provides the complete docstring of the toolset available to the VLLM planner.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72

 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102

def sketch_recognizer(sketch: Sketch) -> None:
 """Analyzes a 2D CAD sketch, providing both a JSON serialization of the Attributes for the geometry
 and constraints and an image rendering of the sketch. Use this function to understand the current FreeCAD sketch.

 This function processes the given sketch and returns a JSON representation describing its geometric
 elements (e.g., lines, arcs, points, circles) and constraints from the `sketch.Geometry`
 and `sketch.Constraints` lists. Attributes for Geometries and constraints are extracted directly from these lists,
 serialized into a structured JSON format for easy interpretation.

 Additionally, this function generates an image rendering of the sketch for visual examination. The sketch
 is rendered as a black and white image. Primitives of the CAD sketch are labeled with a unique numerical ID,
 shown by a marker that is positioned over the primitive.

 Parameters:

 sketch (Sketch):
 The input sketch object to be analyzed, containing the geometries and constraints.

 Prints:

 Displays the sketch's parameters and constraints for quick review. It also returns a
 sketch_image (PIL.Image.Image or np.ndarray) rendering of the sketch.

 Usage Example:

 >>> sketch_recognizer(sketch)
 The sketch contains the following geometries and constraints, serialized in JSON format:
 {
 "Geometry": [
 {
 "Index": 1,
 "Type": "Line segment",
 "StartPoint": {
 "x": ...,
 "y": ...
 },
 "EndPoint": {
 "x": ...,
 "y": ...
 },
 "isConstruction": ...
],
 "Constraints": [
 { ... }
]
 }
 Rendered image of the sketch:
 [Image displays here]
 """

def solid_recognizer(doc: App.Document) -> None:
 """Analyzes a 3D CAD Model, providing both a JSON serialization of the Attributes for the geometry
 and constraints and an image rendering of the sketch and extrude opeartions. Use this function to understand the current FreeCAD sketch.

 This function processes the given sketch and returns a JSON representation describing its sketches and extrusions.
 Attributes for Geometries and constraints are extracted directly from these lists,
 serialized into a structured JSON format for easy interpretation.

 Additionally, this function generates an image rendering of the 3D CAD model for visual examination. The sketch
 is with multiple views.

 Parameters:

 doc (App.Document):
 The FreeCAD document including a list of Objects that can be sketch and extusion operations

 Prints:

 Displays the sketch and extrusion parameters for quick review. It also returns a
 cad_image (PIL.Image.Image or np.ndarray) rendering of the sketch.

 Usage Example:

 >>> solid_recognizer(sketch)
 The 3D CAD model contains the following sketch and extrusion operations, serialized in JSON format:
 {
 "Sketch0": {
 "Geometry": [
 {
 "Index": 1,
 "Type": "Line segment",
 "StartPoint": {
 "x": ...,
 "y": ...
 },
 "EndPoint": {
 "x": ...,
 "y": ...
 },
 "isConstruction": ...
],
 "Constraints": [
 { ... }
]
 },
 "Extrusion1": { ... }
 }
 Rendered image of the 3D Model:
 [Image displays here]
 """

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

def sketch_from_image(img: PIL.Image.Image) -> None:
 """Extracts a Sketch object from a given sketch image.

 This function processes an input imag and detects
 parametric geometric primitives within the sketch (e.g., lines, circles, arcs, points) and the corresponding constraints. The function handle
 input images as a PIL image. Detected geometric entities are printed and can be used for further analysis or manipulation.

 Usage:

 This function is called a deep learning network that is imperfect and makes mistakes. Note that predicted constraints might be inaccurate and
 applying them without analysing them might drastically change the sketch geometry. Use the provided `analyse_constraint` function to make sure
 that predicted constraints are valid and do not move geometric entities of the sketch.

 Parameters:

 img (PIL.Image.Image or np.ndarray):
 The input image of a handdrawn 2D CAD sketch.

 Prints:

 A dictionary in JSON format containing the detected geometies and constraints.

 Usage Example:

 >>> sketch_from_image(img)
 The handdrawn parametarization tool detected the following sketch geometries and constraints, serialized in JSON format:
 {
 "Geometry": [
 {
 "Id": 1,
 "Type": "Line segment",
 "start_vector": {
 "x": ...,
 "y": ...
 },
 "end_vector": {
 "x": ...,
 "y": ...
 },
],
 "Constraints": [
 { ... }

]
 }
 """

def get_crosssection_image(mesh: o3d.geometry.TriangleMesh, normal: np.ndarray, origin: np.ndarray) -> PIL.Image.Image
 """
 Generates a 2D cross-sectional image from a 3D mesh.

 This function takes a 3D mesh and extracts a cross-section based on a specified plane, defined by a normal vector
 and an origin point. The extracted cross-section is then projected onto a 2D plane and normalized to a fixed size
 suitable for visualization. The resulting image is centered, cropped, and rescaled to 128x128 pixels, capturing the
 silhouette of the cross-section.

 Parameters:

 mesh : o3d.geometry.TriangleMesh
 The 3D mesh from which the cross-section will be extracted. It should contain vertices and faces attributes.
 normal : np.ndarray, shape (3,)
 The normal vector defining the orientation of the cross-sectional plane.
 origin : np.ndarray, shape (3,)
 A point on the plane to define its position in 3D space.

 Returns:

 img : PIL.Image.Image
 A grayscale PIL Image object of size 128x128 representing the 2D cross-section of the mesh.
 """

def analyse_constraint(sketch: Sketch, constraint: Constraint) -> (bool, bool):
 """Evaluate the impact of a given constraint on a sketch without applying it,
 and determine if it causes significant changes to the geometry.

 This function returns two binary flags: one indicating whether the constraint is valid,
 and another indicating if it would cause geometries to move. Use this function to analyze
 the effect of constraints on CAD geometries and ensure they behave as intended before
 adding them to the sketch.

 Parameters:

 sketch (Sketch):
 The original FreeCAD sketch object containing geometric elements and constraints.

 constraint (Constraint):
 The constraint to be evaluated.

 Returns:

 (is_valid, moves_geometries): (bool, bool)
 - `is_valid`: `True` if the constraint does not introduce conflicts or invalid states;
 `False` if the constraint is invalid.
 - `moves_geometries`: `True` if the constraint causes movement of one or more geometries;
 `False` if no significant movement occurs.

 Prints:

 Displays a summary of the effect of the constraint on the geometric entities of the Sketch.Geometry list.
 It also displays the is_valid and moves_geometries binary flags.

 Usage:

205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

 Usage:

 Use this function to test constraints before committing them to the sketch.
 This allows you to detect unintended movements or conflicts early in the design process.

 Example:

 >>> # Add a coincident constraint to align the start of geometry 1 with the end point of geometry 2.
 >>> coincident_constraint = Sketcher.Constraint('Coincident', *(1, SubRef.START.value, 2, SubRef.END.value))

 # You can analyse the effect the constraint would have on the sketch geometry
 >>> is_valid, moves_geometries = analyse_constraint(sketch, coincident_constraint) # the function automatically prints an analysis of the constraint.
 Analysis of Constraint[0] (without applying it to the sketch):
 Type: Coincident

 Elements:
 - First: 1
 - FirstPos: START
 - Second: 2
 - SecondPos: END
 Movement:
 Sketch.Geometry[5]:
 - START moved from: (-0.500, -0.407) to (-0.297, 0.407)
 Moves Geometries: True
 IsValid: True
 >>> is_valid
 True
 >>> moves_geometries
 True

 Note:

 This function does not modify the original sketch. It only provides a preview of the
 potential impact of the given constraint.
 """

class Sketch:
 """Represents a 2D sketch object in FreeCAD, used for creating and defining geometric shapes,
 constraints, and profiles that can later be referenced in 3D operations (e.g., extrusion, revolution).

 The Sketch class provides methods to add, modify, and constrain geometric elements such as
 lines, arcs, circles, and points. Sketches serve as essential building blocks in parametric
 modeling, allowing users to control the relationships between elements through constraints.

 Attributes:

 Name (str):
 The name of the sketch object.
 Geometry (List[Union[LineSegment, ArcOfCircle, Circle, Point]]):
 A list of geometric elements in the sketch (e.g., lines, arcs, circles, points).
 Constraints (List[Sketcher.Constraint]):
 A list of constraints applied to the sketch elements (e.g., coincidence, equality, tangency).
 ConstraintCount (int):
 The total number of constraints applied to the sketch.
 GeometryCount (int):
 The total number of geometric elements present in the sketch.
 Placement (Placement):
 Defines the position and orientation of the sketch in 3D space. This attribute allows
 the sketch to be moved or rotated within the document, affecting how it will be aligned
 with other objects in FreeCAD.
 State (List[str]):
 A list representing the current status of the sketch. Possible values include:
 - 'Touched': The sketch has been modified since the last update.
 - 'Untouched': The sketch has not been modified since its last valid state.
 - 'Invalid': The sketch contains errors or unsatisfied constraints.

 Usage Example:

 >>> import FreeCAD
 >>> from FreeCAD import Part, Sketcher
 >>> doc = FreeCAD.newDocument("ExampleDoc")
 >>> sketch = doc.addObject('Sketcher::SketchObject', 'sketch')

 Methods:

 addGeometry(self, geometry: Union[LineSegment, ArcOfCircle, Circle, Point]) -> int:
 This method is used to adds a geometric element to the sketch.

 Parameters:

 geometry:
 a geometric element to be added on the sketch (e.g., lines, arcs, circles, points).

 Returns:

 index (int):
 The index of the added geometry on the sketch.Geometry list.

 Usage Example:

 >>> line = Part.LineSegment(App.Vector(0.2, 0.3, 0), App.Vector(0.3, 0.2, 0))
 >>> line_index = sketch.addGeometry(line) # A line is added.
 >>> sketch.recompute()
 >>> line = sketch.Geometry[line_index]

 delGeometries(self, identifiers: List[int]) -> None:
 Deletes one or more geometries from the sketch, based on their indices on the sketch.Geometry list.

 Parameters:

 identifiers (List[int]):
 A list of zero-based identifiers specifying which geometries to delete from the sketch.

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

 Usage Example:

 >>> sketch.delGeometries([1]) # This will delete the geometry at index 1
 >>> sketch.recompute()

 addConstraint(self, constraint: Sketcher.Constraint) -> int:
 Adds a constraint to the sketch.
 Returns the index of the added constraint.

 Parameters:

 constraint (Sketcher.Constraint):
 a geometric constraint to be added on the sketch.

 Returns:

 index (int):
 The index of the added constraint on the sketch.Constraints list.

 Usage Example:

 >>> parallel_constraint = Sketcher.Constraint('Parallel', 4, 6)
 >>> sketch.addConstraint(parallel_constraint)
 >>> sketch.recompute()

 recompute(self) -> None:
 Forces a recompute of the sketch to apply and update any pending changes.
 This ensures that all modifications (such as added or deleted geometries and constraints)
 are reflected in the document.

 Parameters:

 None

 Returns:

 None
 """

class LineSegment:
 """Represents a line defined by two endpoints in 3D space.
 This class is part of the FreeCAD Part module and should be instantiated using `Part.LineSegment`.

 Constructor:

 __init__(self, start_vector: App.Vector, end_vector: App.Vector)
 Initializes a LineSegment with specified start and end points in 3D space.

 Parameters:

 start_vector (App.Vector):
 A 3D vector representing the coordinates of the line's start point.
 end_vector (App.Vector):
 A 3D vector representing the coordinates of the line's end point.

 Attributes:

 StartPoint (App.Vector):
 The start point of the line segment.
 EndPoint (App.Vector):
 The end point of the line segment.

 Usage Example:

 >>> # Create a LineSegment from start and end points.
 >>> start_point = App.Vector(0, 0, 0)
 >>> end_point = App.Vector(1, 1, 1)
 >>> line = Part.LineSegment(start_point, end_point)
 >>> line.StartPoint.x
 0 # access the x coordinate of the start point
 """

class Circle:
 """Represents a circle in 3D space defined by a center point, a normal vector and a radius using FreeCAD's Vector objects.
 This class is part of the FreeCAD Part module and should be instantiated using `Part.Circle`.

 Constructor:

 __init__(self, center_vector: App.Vector, normal_vector: App.Vector, radius: float):
 Initializes a Circle with a specified center, normal vector, and radius.

 Parameters:

 center_vector (App.Vector):
 A 3D vector with the coordinates of the center point of the circle.
 normal_vector (App.Vector):
 A 3D vector representing the direction normal to the circle's plane.
 radius (float):
 The radius of the circle.

 Attributes:

 Center : (App.Vector)
 The center point of the circle.
 Radius : (float)
 The radius of the circle.

 Usage Example:

 >>> center = App.Vector(6.0, 3.0, 0)
 >>> normal = App.Vector(0, 0, 1)
 >>> radius = 1.1

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

511
512

 >>> radius = 1.1
 >>> circle = Part.Circle(center, normal, radius)
 >>> circle.Center
 Vector (6.0, 3.0, 0.0)
 """

class Point:
 """Represents a point in 3D space.
 This class is part of the FreeCAD Part module and should be instantiated using `Part.Point`.

 Constructor:

 __init__(self, point_vector: App.Vector):
 Constructor of the Point class

 Parameters:

 point_vector (App.Vector):
 A 3D vector with the coordinates of the point.

 Attributes:

 X (float):
 The x-coordinate of the point.
 Y (float):
 The y-coordinate of the point.
 Z (float):
 The z-coordinate of the point.

 Usage Example:

 >>> point = Part.Point(App.Vector(1.0, 2.0, 3.0))
 >>> point.X
 1.0
 """

class ArcOfCircle:
 """Represents a circular arc derived from a given circle, defined by start and end angles in radians.
 The arc is drawn counterclockwise from the start angle to the end angle. Angles are expressed in radians
 where 0 radians correspond to the positive x-axis and increase counterclockwise.

 This class is part of the FreeCAD Part module and should be instantiated using `Part.ArcOfCircle`.

 Constructor:

 __init__(self, circle: Circle, start_param: float, end_param: float)
 Initializes an ArcOfCircle instance from a circle and specified start and end parameters.

 Parameters:

 circle (Circle):
 The Circle object from which the arc is derived.
 start_param (float):
 The starting parameter (angle in radians) on the circle's circumference that defines the beginning of the arc.
 end_param (float):
 The ending parameter (angle in radians) on the circle's circumference that defines the end of the arc.

 Attributes:

 Radius : (float)
 The radius of the circle from which the arc is derived.
 StartPoint : (App.Vector)
 The start point of the arc.
 EndPoint : (App.Vector)
 The end point of the arc.
 Center : (App.Vector)
 The center point of the circle from which the arc is derived.
 FirstParameter : (float)
 The start angle of the arc in radians.
 LastParameter : (float)
 The end angle of the arc in radians.

 Usage Example:

 >>> #Create counterclockwise ArcOfCircle with center, radius, and start and end angles in radians.
 >>> arc_center = App.Vector(0.0670, -0.0000, 0.0) # Center of the arc
 >>> arc_radius = 0.0130 # Radius of the arc
 >>> start_param = -1.6008 # Start parameter in radians
 >>> end_param = -0.0000 # End parameter in radians
 >>> arc_direction = App.Vector(0, 0, 1)
 >>> # Create the arc using Part.ArcOfCircle
 >>> arc = Part.ArcOfCircle(Part.Circle(arc_center, arc_direction, arc_radius), start_param, end_param)
 """

class Arc:
 """Represents an arc defined by a start point, an end point, and an intermediate point on the arc.

 This class is part of the FreeCAD `Part` module and should be instantiated using `Part.Arc`.
 The arc is uniquely determined by three points: the start, the end, and a point somewhere
 on the arc (referred to as the midpoint, though it need not be the geometric middle). The
 arc lies on the circle that passes through these three points.

 After calling `recompute()` on a FreeCAD sketch, an `Arc` object is automatically
 transformed into an `ArcOfCircle` object. This is because FreeCAD optimizes the
 geometry representation for arcs, converting them to arcs of circles after
 the geometry is fully processed.

 Constructor:

 __init__(self, start_vector: App.Vector, end_vector: App.Vector, mid_vector: App.Vector)
 Initializes a Arc with specified start, end and mid points in 3D space.

 Parameters:

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

 Parameters:

 start_vector (App.Vector):
 A 3D vector representing the coordinates of the arc's start point.
 end_vector (App.Vector):
 A 3D vector representing the coordinates of the arc's end point.
 mid_vector (App.Vector):
 A 3D vector representing a point on the curcomference of the arc.

 Usage:

 Use this function to create ArcOfCircle objects from start, end and mid points.

 Usage Example:

 >>> start_point = App.Vector(5.0, 0, 0)
 >>> end_point = App.Vector(0, 5.0, 0)
 >>> mid_point = App.Vector(3.54, 3.54, 0)
 >>> arc = Part.Arc(start_point, mid_point, end_point)
 <Arc object>
 >>> sketch.addGeometry(arc)
 >>> sketch.recompute()
 >>> arc
 <ArcOfCircle object>
 """

class SubRef(Enum):
 START = 1
 END = 2
 CENTER = 3

class Constraint:
 """Represents a geometric constraint in a FreeCAD sketch.
 Constraints define relationships between geometric elements (lines, arcs, circles, points), ensuring specific properties or behaviors.
 Constraints can be created using the `Sketch.addConstraint()` method.

 Constructor:

 __init__(self, constraint_type: str, *args)
 Initializes a Sketcher.Constraint instance with a specified type and parameters.

 Parameters:

 constraint_type (str):
 The type of constraint to apply. Supported types include:
 - 'Coincident'
 - 'Parallel'
 - 'Equal'
 - 'Vertical'
 - 'Horizontal'
 - 'Perpendicular'
 - 'Tangent'

 *args (varies):
 Additional parameters specific to the constraint type. These define the geometries or points
 to which the constraint applies and any additional constraint-specific requirements.

 Usage:

 Supported Constraint Types and Their Arguments:
 1. Coincident: Enforces that two points or vertices coincide (i.e., share the same location in space).
 - args: ('Coincident', First, FirstPos, Second, SecondPos)
 - First (int):
 The index of the first geometry.
 - FirstPos (int):
 The vertex (1 for start, 2 for end, 3 for center) of `Geometry_index1` to fulfill the constraint.
 - Second (int):
 The index of the second geometry.
 - SecondPos (int):
 The vertex (1 for start, 2 for end, 3 for center) of `Geometry_index2` to fulfill the constraint.

 2. Parallel: Ensures two lines remain parallel.
 - args: ('Parallel', First, Second)
 - First (int):
 The index of the first Line segment to be made parallel.
 - Second (int):
 The index of the second Line segment to be made parallel.

 3. Equal: Makes two lines or circles equal in length or radius.
 - args: ('Equal', First, Second)
 - First (int):
 The index of the first line segment or circle.
 - Second (int):
 The index of the first line segment or circle.

 4. Vertical: Forces a line segment to be vertical.
 - args: ('Vertical', First)
 - First (int): The index of the Line segment.

 5. Horizontal: Forces a line segment to be horizontal.
 - args: ('Horizontal', First)
 - First : (int)
 The index of the line segment.

 6. Perpendicular: Ensures that two line segments are perpendicular.
 - `args`: ('Perpendicular', Geometry_index1, Geometry_index2)
 - Geometry_index1 : (int)
 The index of the first line segment.
 - Geometry_index2 : (int)
 The index of the second line segment.

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

 7. Tangent: Makes a line tangent to a curve.
 - args: ('Tangent', Geometry_index1, Geometry_index2)
 - Geometry_index1 : (int)
 The index of the first geometry.
 - Geometry_index2 : (int)
 The index of the first geometry.

 Usage Example:

 >>> coincident_constraint = Sketcher.Constraint('Coincident', *(1, SubRef.START.value, 2, SubRef.END.value))
 >>> sketch.addConstraint(coincident_constraint)
 >>> sketch.recompute()
 >>> sketch.State
 ['Touched']
 # Check the total number of constraints applied to the sketch.
 >>> print(f"Number of constraints: {len(sketch.Constraints)}")
 Number of constraints: 2
 # Remove the most recently added constraint.
 >>> sketch.delConstraint(len(sketch.Constraints) - 1)
 # Remove the constraint on specific index.
 >>> sketch.delConstraint(coincident_constraint_index)
 >>> sketch.addConstraint(Sketcher.Constraint('Horizontal', 0))
 >>> sketch.recompute()
 >>> sketch.State # Use the State Variable to ensure that all added constraints are valid.
 ['Touched', 'Invalid']
 """

class Extrusion:
 """Represents an extrusion of a sketch in FreeCAD.
 This class is part of the FreeCAD Part module and should be instantiated using a sketch object and the desired extrusion parameters.

 Attributes:

 Base (Sketch):
 The sketch object that is extruded into a 3D solid.
 DirMode (str):
 Direction mode of the extrusion (default: "Normal").
 LengthFwd (float):
 Forward extrusion length.
 LengthRev (float):
 Reverse extrusion length.
 Solid (bool):

 Whether the extrusion is a solid (default: True).
 Reversed (bool):
 Whether the extrusion direction is reversed.
 Symmetric (bool):
 Whether the extrusion is symmetric along the sketch plane.
 TaperAngle (float):
 Taper angle for the extrusion.
 TaperAngleRev (float):
 Reverse taper angle for the extrusion.

 Usage Example:

 >>> extrude = doc.addObject('Part::Extrusion', 'Extrude')
 >>> extrude.Base = sketch # extrude an existing sketch object
 >>> extrude.DirMode = "Normal"
 >>> extrude.DirLink = None
 >>> extrude.LengthFwd = 10.00
 >>> extrude.LengthRev = 0.0
 >>> extrude.Solid = True
 >>> extrude.Reversed = False
 >>> extrude.Symmetric = False
 >>> extrude.TaperAngle = 0.0
 >>> extrude.TaperAngleRev = 0.0
 >>> doc.recompute()
 """

class Solid:
 """Represents a 3D solid in FreeCAD, created as part of an `Extrusion` operation.
 This shape object holds the geometry of the extruded solid and provides access to various
 geometric properties, as well as methods for performing transformations and boolean operations
 with other shapes.

 Attributes:

 TypeId (str):
 The type of shape, typically "Part::TopoShape".
 Volume (float):
 The volume of the extruded solid.
 Area (float):
 The total surface area of the extruded solid.
 BoundBox (BoundBox):
 The bounding box of the shape, describing the spatial limits of the extrusion.

 Methods:

 fuse(shape: Shape) -> Shape:
 Performs a union operation, merging this shape with another solid to create a combined shape.

 Parameters:

 shape (Shape):
 The other solid shape with which to perform the union operation.

 Returns:

 Shape:
 A new solid object representing the union of this shape and the specified shape.

 Usage Example:

 >>> shape1 = extrude1.Shape # Access the extruded shape

717
718
719
720
721
722
723
724
725
726
727
728
729

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

 >>> shape1 = extrude1.Shape # Access the extruded shape
 >>> shape2 = extrude2.Shape # Access the extruded shape
 >>> result_shape = shape2.fuse(shape1) # Union with another shape

 cut(shape: Shape) -> Shape:
 Performs a cut operation, subtracting the specified shape from this shape.

 Parameters:

 shape (Shape):
 The solid shape to subtract from this shape.

 Returns:

 Shape:
 A new solid object representing the result of subtracting the specified shape from this shape.

 Usage Example:

 >>> result_shape = shape1.cut(shape2) # Subtract shape2 from shape1

 common(shape: Shape) -> Shape:
 Performs an intersection operation, keeping only the volume that is common between this shape and another.

 Parameters:

 shape (Shape):
 The solid shape to intersect with this shape.

 Returns:

 Shape:
 A new solid object representing the intersected volume of the two shapes.

 Usage Example:

 >>> result_shape = shape1.common(shape2) # Intersect shape1 with shape2
 """

