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1. Overview

In the following document, we provide supplemental ma-
terial containing extended results for the experiments pre-
sented in the main manuscript. We begin by providing re-
call@1 results using the AnyLoc [9] and BoQ [2] Visual
Place Recognition (VPR) descriptors in Sections 2 and 3,
followed in Section 4 by runtime evaluation to experimen-
tally show the computational benefits of HOPS and prove
it’s equivalency to using a single reference set. Next, we
provide experiments investigating the reduced benefits of
HOPS for lower-dimensional descriptors in Section 5, and
additional figures showing dimensionality reduction perfor-
mance on more query sets in Section 6. Sections 7 and 8
provide results and discussion for the performance of HOPS
on unstructured datasets (Google Landmarks and Pittsburgh
250k), with Section 9 expanding on results for the dataset
identification experiment discussed in the main manuscript.
We finish with additional experiments and discussion on
other feature aggregation methods, the use of synthetic im-
age augmentations with HOPS, and some qualitative VPR
results in Sections 10, 11, and 12.

2. AnyLoc Recall@1

Core results in the main manuscript (Sections 4.3 and
4.4) demonstrate how our HOPS fused descriptors can im-
prove the recall@1 performance of multiple state-of-the-art
(SOTA) VPR descriptors across a range of adverse condi-
tions. Here, we present the recall@1 results for another
recent SOTA VPR descriptor, AnyLoc [9]. We again use
the implementation provided in the VPR method evaluation
repository released with EigenPlaces1, based on the origi-
nal implementation and using the author-released weights.
We note that this implementation does not include the PCA
component for dimensionality reduction presented by the
authors, and we could not find released weights for PCA.

Table 1 shows VPR performance for AnyLoc using sin-
gle reference sets, multi-reference set approaches, and our

1https://github.com/gmberton/VPR-methods-evaluation

Table 1. Recall@1 performance across all datasets for the AnyLoc
VPR descriptor (49152D)
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Sunny 63.1 60.6 75.3 82.9 80.6
Dusk - 68.7 48.5 52.3 57.4
Night 69.7 - 49.4 49.4 51.7
Overcast 67.5 64.9 - 83.0 81.1
Overcast2 65.6 61.7 79.2 - 80.9
Rain 66.9 58.7 74.0 78.0 -
dMat Avg [7] 81.0 77.1 80.6 86.3 85.8
Pooling 73.9 68.7 83.1 87.5 87.1
HOPS (Ours) 84.0 79.0 86.9 90.7 91.4
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Fall - 62.0 70.5 37.1
Spring 59.9 - 56.8 32.7
Summer 70.9 57.1 - 33.0
Winter 24.7 36.2 22.4 -
dMat Avg [7] 73.5 71.1 71.4 47.9
Pooling 73.4 66.9 71.2 35.5
HOPS (Ours) 78.0 76.5 75.1 48.1
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Dry - 77.7 57.4 66.0 62.1 68.1
Dusk 84.7 - 72.5 73.5 66.8 89.4
Jan 56.1 69.6 - 60.0 52.7 70.1
Nov 68.3 62.9 62.3 - 71.7 65.7
Sept 61.3 59.7 56.6 71.7 - 62.6
Wet 77.7 91.2 70.9 77.4 63.9 -
dMat Avg [7] 91.4 95.8 92.5 92.2 87.3 93.5
Pooling 88.1 93.2 82.6 82.9 79.2 91.2
HOPS (Ours) 97.4 98.4 93.5 97.1 92.5 97.1

HOPS fused descriptor approach across all datasets used
in the main manuscript. The tables demonstrate that the



improvements to results observed for other SOTA VPR de-
scriptors hold for AnyLoc as well, improving the recall@1
over the best single reference set recalls by at least absolute
7.7%, 4.6%, and 7.2%, and up to 14.3%, 14.6%, and 21%,
respectively for the Oxford RobotCar [10], Nordland [12],
and SFU Mountain datasets [6].

For these AnyLoc results, our HOPS fused descriptors
achieve higher recall@1 than both the best single refer-
ence set and the other multi-reference set approaches in all
cases. AnyLoc could be particularly suited to the use of
hyperdimensional computing frameworks due to the large
dimensionality of its feature vectors (49152D) prior to any
dimensionality reduction.

3. BoQ Recall@1
Following on from the above AnyLoc results, we also pro-
vide results for HOPS with BoQ [2] VPR descriptors (using
the DinoV2 model).

Table 2 shows a near unanimous improvement in Re-
call@1 over both the best single reference set results and
the alternative multi-reference set approaches. The SFU
Mountain ‘Wet’ query set is the only condition where HOPS
is not the best performing method. Similarly to SALAD,
CricaVPR, and AnyLoc, the high dimensionality of BoQ
features appears to be well suited to our HOPS fused descrip-
tors.

4. Runtime Evaluation
Using the theoretical computational complexity, it can be
asserted that our HOPS descriptors do not increase the com-
putational overhead of performing VPR. Accordingly, HOPS
provides significant advantage over other multi-reference
VPR approaches such as distance matrix averaging [7] or
reference set pooling, which both increase computational
overheads with a complexity of O(K · M). We empiri-
cally verified this claim using the SALAD VPR descrip-
tor on the RobotCar datasets. All fusion methods shared
a query feature extraction time of 11.1ms. The distance
matrix averaging and reference set pooling approaches had
image matching times of 53.7ms and 52.3ms respectively,
whereas, the baseline (single reference) approach and our
HOPS descriptors both had a image matching time of 10.6ms.
These results are intended to provide evidence of the relative
runtime difference between approaches, however for com-
pleteness, they were evaluated on an Ubuntu desktop using
an Intel i7-12700K CPU, 32GB of RAM, and an NVIDIA
GeForce RTX 3080 Ti GPU.

5. Lower Dimensional Descriptors
In the main manuscript, it can be observed that our HOPS
fused descriptors do not provide an advantage as consis-
tently for lower dimensional descriptors (512D), such as

Table 2. Recall@1 performance across all datasets for the BoQ
VPR descriptor (12288D)

References ↓ Oxford RobotCar
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Sunny 80.2 77.9 87.9 90.5 89.1
Dusk - 76.8 77.0 76.6 78.7
Night 76.0 - 73.9 71.8 71.7
Overcast 81.6 79.6 - 90.4 90.2
Overcast2 82.1 75.7 90.0 - 89.7
Rain 81.8 76.2 89.0 89.1 -
dMat Avg 89.6 86.7 92.6 93.5 93.1
Pooling 85.8 80.5 92.2 93.1 92.8
HOPS (Ours) 90.7 87.4 93.9 94.4 94.1

Nordland
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Fall - 80.8 79.8 76.2
Spring 79.5 - 78.2 79.1
Summer 80.0 78.7 - 73.7
Winter 73.4 79.5 72.5 -
dMat Avg 81.8 82.3 80.7 80.9
Pooling 81.7 82.3 80.8 80.0
HOPS (Ours) 82.4 82.6 81.0 81.2

SFU-Mountain
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Dry - 100.0 96.4 97.1 96.1 97.9
Dusk 99.5 - 97.4 96.6 96.4 99.2
Jan 96.6 98.2 - 96.6 95.3 96.1
Nov 98.4 97.1 96.6 - 97.4 95.6
Sept 94.3 92.7 93.5 96.9 - 92.7
Wet 98.7 99.5 97.1 96.9 96.9 -
dMat Avg 99.5 100.0 98.2 98.7 97.7 99.0
Pooling 99.5 100.0 98.2 98.7 97.7 99.5
HOPS (Ours) 99.7 100.0 98.7 99.5 98.2 99.0

Table 3. Recall@1 on RobotCar using CosPlace

Queries → Dusk Night Ovr Ovr2 Rain
Best Single Ref (64D) 33.2 10.9 71.5 78.0 73.3
HOPS (Ours) (64D) 40.2 7.3 72.3 78.3 76.3
Best Single Ref (512D) 48.6 21.2 84.2 86.5 84.6
HOPS (Ours) (512D) 57.0 19.4 85.9 89.8 90.2
Best Single Ref (2048D) 50.7 19.8 83.0 87.2 85.0
HOPS (Ours) (2048D) 57.7 16.3 86.6 90.2 89.9

CosPlace [4] and EigenPlaces [5], compared to higher di-
mensional ones. To investigate these results further, we eval-
uate the performance of CosPlace on the RobotCar dataset
using the extended range of descriptor sizes available2.

2https://github.com/gmberton/VPR-methods-evaluation



Table 3 shows that CosPlace achieves a consistent im-
provement for all RobotCar query sets across all dimen-
sionalities except night-time, where a consistent decrease in
performance is seen. This indicates that the classification-
style training used for CosPlace or the night-time conditions
may be the cause of reduced performance noted in the main
manuscript, rather than lower dimensionality.

6. Dimensionality Reduction

In the main manuscript, we investigated how recall@1 per-
formance is affected by reducing the dimensionality of de-
scriptors using a Gaussian Random Projection and presented
results for the Oxford RobotCar Dusk query set. Here, we
extend these results and provide the corresponding figures
for all six VPR descriptors across two additional query sets

Query: RobotCar Night
CosPlace (512D) MixVPR (4096D)
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Figure 1. Recall@1 performance for different VPR descriptors
across the Oxford RobotCar Night set as dimensionality is reduced
using Gaussian Random Projection.

from each dataset (Figures 1–6). The additional results con-
firm the finding of the main manuscript and demonstrate that
our HOPS fused descriptors can achieve the same or better
performance compared to using the best single reference
set, with up to a 97% reduction in descriptor dimension-
ality. Despite the low dimensionality of the CosPlace [4]
and EigenPlaces [5] descriptors (512D), our HOPS fused
descriptors still match or exceed the best single reference
recall with reduced dimensionality for 9/12 cases shown.

Query: RobotCar Rain
CosPlace (512D) MixVPR (4096D)
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Figure 2. Recall@1 performance for different VPR descriptors
across the Oxford RobotCar Rain set as dimensionality is reduced
using Gaussian Random Projection.



Query: Nordland Fall
CosPlace (512D) MixVPR (4096D)
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Figure 3. Recall@1 performance for different VPR descriptors
across the Nordland Fall set as dimensionality is reduced using
Gaussian Random Projection.

Query: Nordland Winter
CosPlace (512D) MixVPR (4096D)
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Figure 4. Recall@1 performance for different VPR descriptors
across the Nordland Winter set as dimensionality is reduced using
Gaussian Random Projection.



Query: SFU Mountain Wet
CosPlace (512D) MixVPR (4096D)
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Figure 5. Recall@1 performance for different VPR descriptors
across the SFU Mountain Wet set as dimensionality is reduced
using Gaussian Random Projection.

Query: SFU-Mountain January
CosPlace (512D) MixVPR (4096D)
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Figure 6. Recall@1 performance for different VPR descriptors
across the SFU Mountain January set as dimensionality is reduced
using Gaussian Random Projection.



7. Unstructured Datasets: Google Landmarks

One of the major challenges in robotics, and VPR, is main-
taining performance in dynamic and unstructured environ-
ments. Datasets and results included in the main manuscript
already contain extensive instances of dynamic environ-
ments, with environmental condition changes evident in all
datasets (i.e. Nordland, Oxford RobotCar, SFU Mountain).
For example, the Oxford RobotCar [10] dataset contains
weather/time of day changes, dynamic objects (i.e. cars and
pedestrians), and temporal changes such as construction and
infrastructure changes. All of these datasets contain images
captured from the same route throughout an environment
which could be considered independently as either query or
reference sets. However, some datasets are unstructured and
contain a collection of non-sequential images, with a varied
number of images per ‘place’, which can be localized using
meta data such as latitude, longitude, and heading.

In this section, we present and discuss results for using
our HOPS fused descriptors to compress the more unstruc-
tured reference dataset for the Google Landmarks v2 micro
dataset. This version of the Google Landmarks v2 dataset
contains 23, 294 reference images and 3, 103 query images,
each labeled with a ‘Landmark ID’. Using our HOPS ap-
proach, we were able to fuse 7-9 reference images with the
same ‘Landmark ID’ from each place and reduce the refer-
ence set to just 3, 103 images; 13.3% of the original size.
Using the SALAD VPR descriptor [8], Table 4 shows that
HOPS fused descriptors are able to substantially reduce the
reference set size while only incurring a small decrease in
Recall@1 performance (3.9%), therefore significantly re-
ducing compute and storage requirements. These results
were reflected in further evaluation using BoQ, CricaVPR,
and MixVPR descriptors, where the same dataset compres-
sion could be achieved with similarly small reductions in
Recall@1 (2.3%, 4.9%, and 5.1% respectively).

For comparison, we also provide results for an alternative
strategy where dimensionality reduction is used to reduce
the reference set size rather than our HOPS descriptors. We
reduce feature vectors to 1024 dimensional to provide equiv-
alent memory requirements compared to our HOPS reduced
reference set. Table 4 shows that our HOPS fused descriptors
are able to maintain a much higher Recall@1 at this mem-
ory footprint compared to using dimensionality reduction
methods.

Table 4. Recall@1 performance using SALAD [8] on the Google
Landmarks v2 micro dataset for different reference set reduction
strategies. Our HOPS fused descriptors significantly reduce refer-
ence set size while only incurring a small decrease in Recall@1.

Reference Set Original HOPS Reduced Dim-Reduced Feats.
Num. of Refs. 23,294 3,103 23,294
Feat. Dim. 8488 8448 1024
Recall@1 69.7 65.8 59.7

8. Unstructured Datasets: Pittsburgh 250k

In addition to results for the compression of the Google Land-
marks dataset, we also evaluate the performance of HOPS
descriptors in a similar experiment using the Pittsburgh 250k
dataset [13]. The Pittsburgh dataset consists of ≈ 250, 000
images which provide dense, large-scale coverage of the
city and capture multiple different viewpoints at each sin-
gular location. In this section, we evaluate the performance
of our HOPS descriptors for fusing reference images that
are spatially close to each other, do not vary in appearance
condition, but may slightly vary in viewpoint. This differs
from the previous experiment using the Google Landmarks
dataset, where fused images captured the same ‘landmark’
or features but from differing viewpoints.

For this experiment, we use the test subset of the Pitts-
burgh dataset with 83,952 reference images and 24,000
queries from 1,000 unique locations, each captured from
24 different viewpoints. To generate our HOPS descriptors,
we fuse descriptors from reference images that are within a
25m distance radius and have a cosine similarity higher than
0.5. We use cosine similarity as a proxy to filter images that
are spatially close but not captured from a similar viewpoint
(e.g. viewing the opposite direction down a street). This
fusion replaces the reference descriptors that have highly
visually similar neighbors nearby with their HOPS descrip-
tors. Each HOPS descriptor is obtained by fusing a reference
descriptor with neighboring descriptors that meet the out-
lined criteria. As a result, the total number of reference
descriptors remains the same, and neighboring descriptors
are potentially fused into multiple different HOPS descrip-
tors. A total of 21,831 reference descriptors are replaced,
while the remaining 62,121 reference descriptors remain
unchanged.

Using MixVPR, HOPS descriptors only incur an ab-
solute decrease of 0.38% in Recall@1 (from 94.28% to
93.9%). This suggests that small viewpoint differences be-
tween neighboring images can introduce slight noise into the
fused HOPS descriptor. This also indicates that increases
in Recall@1 using HOPS may only be experienced when
using multi-condition reference sets to improve robustness in
adverse conditions (as demonstrated in the main manuscript).
There is a significant opportunity for further exploration of
how and when HOPS can be used to improve VPR perfor-
mance. However, the lack of datasets that are dense, contain
repeated locations captured under varied environmental con-
ditions, and contain repeated locations from different view
points, currently make a thorough investigation difficult.

9. Dataset Identification

Beyond fusing descriptors from the same place, there are
many other possible applications for the HDC framework
in VPR, such as dataset/environment identification. This



RobotCar

Sun Dusk Rain Overcast Overcast2

Aggregation
via

Bundling

RobotCar Dataset Descriptor

Nordland

Spring Summer Fall

Nordland Dataset Descriptor

SFU-Mountain

Dry Dusk Jan Nov Sept

SFU-Mountain Dataset Descriptor

A query descriptor

RobotCar Dataset Descriptor

Nordland Dataset Descriptor

SFU-Mountain Dataset Descriptor

Cosine
similarity

Most similar dataset = Nordland

output

Dataset Identification

Matching A Query Feature Descriptor 

Storage of a Singular Dataset-Specific Reference Feature Descriptor

Aggregation
via

Bundling

Aggregation
via

Bundling

Figure 7. The visualisation of our dataset identification investigation, as discussed earlier in Section 4.7. Top: Our HOPS fused descriptors
aggregate the reference descriptors from each resepective dataset into a single descriptor to represent the entire dataset, essentially
summarizing each dataset via a single representation. Bottom: To classify a query descriptor, the cosine similarity to each (fused) reference
dataset descriptor is computed, with the highest cosine similarity indicating the predicted datasetfor the query.

section provides additional details on using our HOPS fused
descriptors to identify which dataset a given query descrip-
tor belongs to, as discussed in Section 4.7 of the main
manuscript. Figure 7 provides a visualization of the overall
process we used to perform this experiment.

First, for each dataset, we pool all respective available
reference sets together. Then, we use the HDC bundling
operation to aggregate all descriptors into a single overall
dataset descriptor. After separately performing the bundling
for the three datasets, RobotCar, Nordland, and SFU Moun-
tain, this provides three ‘dataset’ reference descriptors.

To evaluate the performance of our dataset-specific fused
descriptor, we identified the source dataset of each query

descriptor by calculating its cosine similarity against each
of the single overall dataset descriptors. We emphasize that
when evaluating the accuracy of dataset identification for
each query set, the respective set was removed from the
bundling operation and therefore was not included in the
overall dataset descriptors.

To provide context for these results, we compare against
alternate dataset identification approaches. The first method
we compare to is one where a single descriptor is randomly
chosen to represent each dataset from the respective refer-
ence sets. We also evaluate dataset identification accuracy
when 10 descriptors are randomly chosen per dataset, cov-
ering multiple reference sets. For this approach, the query



Table 5. Dataset identification accuracy across all datasets using the SALAD VPR descriptor.

Oxford RobotCar Nordland SFU-Mountain
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Single Image 95.54 62.41 63.67 84.49 76.37 79.40 94.89 8.91 64.30 85.97 97.92 98.96 100 96.10 97.14
Pooled (10 Images) 94.61 96.88 93.19 95.82 97.65 95.19 96.96 94.72 94.84 100 100 100 100 100 100
HOPS (Ours) 100 100 99.85 99.79 99.79 99.97 99.82 99.87 99.8 100 100 99.74 100 100 100

descriptor is compared to all 10 reference descriptors from
each dataset and the predicted dataset becomes the one which
contains the reference descriptor most similar to the query
according to cosine similarity.

Table 5 provides the accuracy of our HOPS fused de-
scriptors and all comparisons for the dataset identification
task using the SALAD VPR descriptor. It demonstrates that
our approach can correctly predict the source dataset of a
query image, with an accuracy of above 99.7% across all
datasets, which is significantly better than a random single
image and 10 random images per dataset (20.5% and 2.6%
improvement on average respectively).

This experiment shows that our HOPS fused descriptor
is able to distinguish between different environments based
on their overall feature descriptor characteristics. However,
these three datasets could be considered to be relatively dis-
tinct from each other and therefore easily identifiable. To fur-
ther test the capability of HOPS descriptors for dataset identi-
fication, we evaluate accuracy using the Pittsburgh 30k [13]
and Tokyo Time Machine [3] datasets. Both datasets are
subsets of Google StreetView and therefore captured from a
much more similar distribution. When used to determine if
queries belong to either the Pittsburgh or Tokyo datasets, our
HOPS fused descriptors achieve an accuracy of 98.2%. This
is further evidence of HOPS’ utility for dataset identification.

10. Other Feature Aggregation Methods
In the main manuscript, we compare our HOPS fused de-
scriptors to the distance matrix averaging feature aggre-
gation approach because it was the highest performing
method from [7]. In this section, we provide a compar-
ison to the other feature aggregation methods explored
in [7]. These include taking the minimum values, max-
imum values, or median values from the distance matrix
rather than the mean/average. We present results obtained
using MixVPR [1] VPR descriptors on the Oxford RobotCar
datasets [10].

Similarly to results seen in [7], Table 6 shows that the
distance matrix averaging generally achieves equivalent or
higher Recall@1 compared to the other feature aggregation
methods from [7]. Notably, the ‘Minimum’ method achieves
similar results on the ‘Overcast’ and ‘Rain’ datasets but con-

Table 6. Recall@1 on the RobotCar datasets using MixVPR and
different feature aggregation methods. In addition to methods
compared in the main manuscript, we present other approaches also
explored in [7]. The results show the dMat averaging aggregation
generally achieves higher Recall@1 across the different datasets
compared to other methods from [7]; with HOPS nearly always
achieving the highest Recall@1 of all methods.
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Qry ↓ MixVPR (4096D)
Dusk 69.0 - 64.6 71.7 67.4 68.3 82.9 77.1 83.1 77.1 65.2 76.7
Night 50.9 59.2 - 57.2 52.0 46.0 70.0 60.1 68.8 60.1 53.8 60.3
O/C 86.3 60.1 52.2 - 89.1 87.1 91.5 92.0 93.3 92.0 52.6 85.9
O/C2 91.2 61.4 50.3 90.6 - 88.8 93.6 93.7 94.7 93.7 51.6 88.8
Rain 88.7 63.6 48.3 89.6 89.5 - 92.7 93.4 94.7 93.4 50.8 88.1

siderably lower Recall@1 for more challenging conditions
such as ‘Dusk’ and ‘Rain’. Importantly, our HOPS fused
descriptors generally maintain the highest Recall@1 out of
all methods.

We would also like to reiterate the key advantages of
HOPS compared to these other feature aggregation methods.
HOPS fuses place descriptors while all methods from [7]
fuse difference matrices obtained by running VPR on K
reference-query image pairs per place; requiring to store K
descriptors per place. [7]’s vanilla version and [11] need
to compute K query image descriptors at inference, giving
HOPS both significant computation (single query descriptor)
and memory (single reference vector) advantages, and higher
performance.

11. Synthetic Image Augmentations

In the main manuscript, we presented results for a proof-
of-concept study where differing conditions can be substi-
tuted for synthetic augmentations of a reference set to create
HOPS descriptors. This would enable more robust perfor-
mance across environmental conditions without the need to
collect multiple real reference sets. Results using SALAD
VPR descriptors on the RobotCar datasets showed that this
generally resulted in minor improvements to Recall@1, with
the exception of a slight decrease being seen for the Over-
cast query set. In this section, we provide results for the



Table 7. Recall@1 on RobotCar datasets Using Synthetic Changes

Queries → Dusk Night Overcast Overcast2 Rain
References ↓

CosPlace (512D)
Sun 44.1 14.0 78.3 86.5 84.6

Synthetic Dark 40.5 15.1 57.3 66.0 64.7
Poisson Noise 37.3 16.8 54.1 61.6 60.0

Downsample-Upsample 18.9 7.6 41.8 51.3 47.3
dMat Avg 41.8 16.6 68.3 78.0 74.8
Pooling 43.6 17.1 78.3 86.5 84.6

HOPS (Ours) 40.0 17.0 63.2 74.3 71.0
MixVPR (4096D)

Sun 70.1 52.4 86.5 91.0 88.5
Synthetic Dark 64.3 42.8 69.0 75.5 75.9
Poisson Noise 68.4 52.5 84.7 90.4 87.2

Downsample-Upsample 67.4 50.0 83.4 89.7 87.3
dMat Avg 71.3 53.5 84.0 89.5 86.9
Pooling 63.1 45.9 82.6 87.4 78.7

HOPS (Ours) 69.7 51.2 84.0 90.1 88.0
CricaVPR (10752D)

Sun 81.4 77.9 90.6 93.9 92.4
Synthetic Dark 67.0 60.1 68.9 76.1 73.4
Poisson Noise 70.1 66.2 82.1 88.5 85.1

Downsample-Upsample 69.5 66.4 81.5 88.4 84.7
dMat Avg 76.2 71.4 84.3 90.1 87.3
Pooling 68.9 64.1 80.7 88.4 80.2

HOPS (Ours) 71.9 67.1 81.8 88.6 84.2

CosPlace, MixVPR, and CricaVPR descriptors to further
investigate the capability of synthetic augmentations with
HOPS.

Table 7 shows that, in contrast to the minor improvements
observed for SALAD descriptors, synthetic augmentations
result in performance decreases for CosPlace, MixVPR, and
CricaVPR. When performance was particularly poor, such
as CosPlace on the night-time query set, HOPS using syn-
thetic augmentations still made improvements, however, per-
formance generally decreased. This may indicate that the
synthetic augmentations are not generalizable across VPR
descriptors. Future work could investigate the use of more
‘realistic’ augmentations produced by methods such as dif-
fusion to determine if improvements could be made across
a larger range of VPR descriptors and environmental condi-
tions.

12. Qualitative Results

In this section, we provide qualitative results to show sce-
narios where our method excels and instances where it fails,
evaluated across a range of diverse and challenging condi-
tions. Figures 8, 9, and 10 show qualitative results on the
RobotCar, Nordland and SFU Mountain datasets, respec-
tively. We use green borders to indicate correct matches, and
red borders to indicate false matches. In these figures, we
show cases where our HOPS fused descriptors are able to
retrieve correct matches even in cases where all other meth-
ods fail. We also include cases where HOPS fails to retrieve

a correct match, while other methods either retrieve correct
matches or also fail.

For comparability, we visualize VPR matches for all ap-
proaches using corresponding images from the single refer-
ence set which achieves the best recall@1; noting that for
multi-reference methods such as the distance matrix aver-
aging and our HOPS fused descriptors, the matches rely on
multiple reference sets.

We reiterate that we use a tight ground truth tolerance
of ± 2 frames for the RobotCar dataset, 0 frames for the
Nordland dataset, and ± 1 frames for the SFU Mountain
dataset. Therefore, while VPR methods are generally good at
finding matches close to the ground truth location, our HOPS
fused descriptors are able to further reduce the match errors,
even those near the true match, disambiguating spatially
close places. For example, this improvement is evident in
the RobotCar dataset in Figure 8 rows 2 and 5, the Nordland
dataset in Figure 9 rows 4 and 6, and the SFU Mountain
dataset in Figure 10 rows 3 and 6.

We have also included example visualizations where all
or the majority of methods fail to match to the correct places,
which are mostly due to high visual similarity between ge-
ographically distant places. These instances are shown for
RobotCar, Nordland and SFU Mountain datasets in rows 7
and 8 of Figures 8, 9, and 10, respectively.
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Figure 8. Qualitative results of our method (HOPS) on the RobotCar dataset with Night set as the query. For each row, the displayed
reference set corresponds to the ‘Best Single’ reference set for the specific method, shown to the right of the query image. We show three
different scenarios: i. Cases where fusing reference sets via HOPS (ours) produces correct matches, similar to other techniques (rows 1 and
2). ii. Cases where HOPS produces correct matches while at least one other method fails (rows 3, 4, 5, and 6). iii. Cases where HOPS
retrieves false matches and other methods either succeed or fail (rows 7 and 8). Note that we use a tight ground truth tolerance of ± 2 meters
for the RobotCar dataset. HOPS fused descriptors further reduce the error of matches already made in close proximity to the true match,
effectively disambiguating spatially close places.
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Figure 9. Qualitative results of our method (HOPS) on the Nordland dataset with Winter set as the query. For each row, the displayed
reference set corresponds to the ‘Best Single’ reference set for the specific method, shown to the right of the query image. We show three
different scenarios: i. Cases where fusing reference sets via HOPS (ours) produces correct matches, similar to other techniques (rows 1 and
2). ii. Cases where HOPS produces correct matches while at least one other method fails (rows 3, 4, 5, and 6). iii. Cases where HOPS
retrieves false matches and other methods either succeed or fail (rows 7 and 8). Note that we use a tight ground truth tolerance of 0 images
for the Nordland dataset.
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Figure 10. Qualitative results of our method (HOPS) on the SFU-Mountain dataset with January set as the query. For each row, the displayed
reference set corresponds to the ‘Best Single’ reference set for the specific method, shown to the right of the query image. We show three
different scenarios: i. Cases where fusing reference sets via HOPS (ours) produces correct matches, similar to other techniques (rows 1 and
2). ii. Cases where HOPS produces correct matches while at least one other method fails (rows 3, 4, 5, and 6). iii. Cases where HOPS
retrieves false matches and other methods either succeed or fail (rows 7 and 8). Note that we use a tight ground truth tolerance of ± 1 image
for the SFU-Mountain dataset.
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