Supplementary Material

Tree Skeletonization from 3D Point Clouds by Denoising Diffusion

In this supplementary material, we provide in Sec. A ad-
ditional details about how we collected and processed the
dataset introduced in Sec. 3.3, in Sec. B about how the post-
processing of our approach works, and further experimental
results in Sec. C.

A. Our Dataset

We recorded our dataset using the terrestrial laser scanner
(TLS) Focus3D X 130 by FARO that we manually placed
at multiple locations along the orchard rows. The result-
ing point clouds have an average nearest-neighbor distance
of 2.7 mm on the relevant parts that are covering the trees.
We recorded data in 3 driving lanes between the trees and
for each of the lanes, we recorded 10 scans with the TLS
at a distance of around 9m from each other. This leads
to a total of 30 scans comprising 4 rows of apple trees
recorded from at least one side. As our goal is to estimate
the skeleton structure of trees when the foliage is present,
we collected data in the same orchards at different points
in time, over a span of 8 months. Specifically, we recorded
data in early spring when only the woody parts are present
(see Fig. 1 (a)), in later spring when flowers are on the trees
(see Fig. 1 (b)), in early summer when the canopies are still
developing (see Fig. 2 (a)) and in late summer when the
canopies are fully developed (see Fig. 2 (b)). The dataset
was recorded at the orchard facilities of the University of
Bonn at Campus Klein-Altendorf, Germany.

A.l. Intra-date Scan Registration

Given that we used a TLS to collect our dataset, after each
data collection campaign, we end up with 30 individual
scans. To aggregate each scan into a single point cloud we
use a multi-step registration approach. First we find scan-
to-scan transformations for neighboring scans, both in the
same row and in the neighboring rows, leading to each scan
having 4 neighbors. We compute these transformations us-
ing RANSAC [5] to obtain an initial guess and Iterative
Closest Point (ICP) to perform a refinement of the trans-
formations. Afterwards, we define a factor graph where the
nodes are the poses of the scans, and the transformations
found in the previous step represent the factors. To reject
inaccurate transformations, we perform the factor graph op-

timization multiple times, iteratively dropping the factors
with the biggest residuals and optimizing again. By do-
ing this, we drop the 4 transformations that are the least
coherent with all others, leading to a better final estima-
tion of the global pose of each individual scan. While this
could potentially lead to disconnected nodes in the graph, it
did not happen in practice. To perform further refinement
after the scan-to-scan registration, we perform multi-scan
registration, where each scan gets matched to every other
scan in one big optimization process, as proposed by Wies-
mann et al. [9]. This leads to well-aligned aggregated point
cloud, where also points far from the local origin of each
scan are aligned well to the rest of the points.

A.2. Inter-date Scan Registration

To globally align each scan over the growing season, we
also performed registration of the scans collected at differ-
ent points in time. For this purpose, we selected the date
with the best intra-date scan registration, indicating the best
global consistency, based on visual inspection, and defined
it as reference date. Then, to align the other dates, we per-
form again RANSAC and ICP, however due to the big vari-
ation in the canopy appearance caused by different amounts
of foliage, we used only the lower trunks for the initial guess
estimation. To ensure proper alignment of all parts of the
covered orchard, we then perform again multi-scan registra-
tion as proposed by Wiesmann et al. [9], using the reference
map as an additional scan in the optimization.

A.3. Instance Segmentation

After registering the aggregated point clouds from different
dates, we segment individual trees. As segmenting trees is
easiest when no leaves are present we run an ad-hoc unsu-
pervised clustering approach on the last date, where shoots
have fully developed and leaves have completely fallen. As
preprocessing step, we aim to remove all points that are not
part of the trees. To do so, we use RANSAC plane fitting
to segment out all points that lie within 10 cm from the fit-
ted ground plane. Then, we manually click the top of the
poles that are present in the rows and perform cylinder fit-
ting using RANSAC and ICP to remove all points that lay
in the 2 cm neighborhood of the found cylinders. To get the

Figure 1. An overview of the orchard without leaves in (a), and with flowers in (b). The white color on top of the trees is caused by the

sensor used during data recording.

initial clusters Tjn;;, we apply HDBSCAN clustering on the
points right above the ground, i.e., all points with a pos-
itive distance between 10cm and 30cm from the ground
plane which we found through RANSAC on the whole point
cloud. These points represent the trunks, which are struc-
tures that are stable throughout the whole season and easy
to cluster, as they are spatially non overlapping. We then
compute the KNN-neighbor-graph with K = 50, over the
whole point cloud, and assign each point to the cluster in
Tinit that is closest on the graph. By using the cube of the
euclidean distance as the graph distance metric, we ensure
that edges along the branches have low distance, while gaps
between branches are very distant, leading to very good tree
instance segmentation results.

Once the tree instances are defined on the last date, we
can obtain instances in the other dates by propagating the la-
bels through nearest neighbor search, since the point clouds
are registered in a common reference frame.

A.4. Reference Skeleton Computation

To compute the reference skeletons for our dataset we lever-
aged the good performance of AdTree on extracting tree
skeletons from tree data without foliage. We computed the
skeletons using the segmented trees on the last data collec-
tion date, where the branches are fully developed and the
foliage has fallen completely due to the cold season. As the
point clouds of all dates are in the same reference frame,
the extracted skeletons can than be used as reference for
the other dates, where the extraction presents many more

challenges due to the high level of occlusion by leaves and
fruits. To account for the growth of the branches during
the growing season, we adapt the reference skeleton to each
point cloud by removing all nodes and edges from the ref-
erence skeleton graph that are further than 20 cm from the
point cloud itself.

B. Postprocessing of Tree Skeletons

To improve the skeletons resulting from the skeletonization
process, we perform postprocessing on the predicted skele-
tons. Given that we do not want to reconstruct branches
that are further than 20 cm away from the closest point in
the input point cloud, we compute the distance of each
node in the graph to the input point cloud and discard the
nodes which have a distance to the closest point greater than
20cm. Furthermore, we noticed that while our approach
leads to skeletons that are densely covering the branching
structure with nodes, sometimes nodes are wrongly con-
nected between near branches. Given this high density of
nodes predicted on the branching structure, the few existing
long edges are mostly these wrong connections between dif-
ferent branches. Therefore, in the post processing we elim-
inate edges longer than a threshold of 4 cm which empiri-
cally gave the best result on the validation set. After these
long edges have been removed, we cluster the remaining
graph with connected component and discard components
that have fewer than 20 nodes. Then to reconnect all parts of
the graph into one tree again, we perform Minimum Span-
ning Tree search and obtain the final tree skeleton.

(a)

Figure 2. An overview of the orchard without little leaves in (a), and with many leaves in (b). The white color on top of the trees is caused

by the sensor used during data recording.

C. Architecture

Our tree skeletonization approach uses the architecture pro-
posed by Nunes et al. [7] with small modifications. To pre-
dict the noise at each step ¢, we used a MinkUnet [2] to pre-
dict the noise for each point. For the condition encoder, we
used only the encoder part of the MinkUNet with the same
architecture as the noise predictor. Instead of taking only
the closest point in the conditioning cloud C to condition
each node in G we take K nearest neighbors, with K = 8.
We then compute the conditioning feature by computing the
weighted mean over the K neighboring features, with an in-
verse distance weighting. As described in Sec. 3.1 of the
main paper, before each layer [, we compute the positional
embeddings 7 from the denoising step ¢ with an embedding
dimension d; = 96, conditioning the layer input F; to C
and ¢ with the conditioning block. Fig. 4 shows the archi-
tecture of the conditioning encoder and the noise predictor,
with each layer [features dimension d; and the conditioning
scheme. The above architectures with the specified feature
sizes result in 8.5 M parameters for the condition encoder
model and 26.8 M parameters for the noise predictor model.

D. TreeNet3D Variety-Wise Results

To avoid larger varieties dominating the metrics due to the
large-scale variance in TreeNet3D (8-126 m, from Fig. 2
in [8]), we normalized by variety before computing the val-
ues reported in Tab. 1 of the main paper. To give a more
detailed presentation of the results and show the unnormal-

ol
wn

Chamfer distance [cm]
w
wn

4.5 1

80000 70000 60000 50000 40000 30000 20000 10000 0
Number of conditioning points B

Figure 3. Evolving of Skeletonization performance measured by
chamfer distance with varying input scan densities.

ized errors we report the Chamfer distance for each variety
individually in Tab. 1.

E. Ablation on Number of Conditioning Points

To test the robustness of our approach to different amounts
of points B in the input scans S, we performed an ablation
study by reducing the input points S more and more, show-
ing how the performance decreases on the orchard dataset.
We show the results in the plot in Fig.3.

Condition encoder
& & 3 o g
K a a a a
(=] n - . . -~ —r—
O ey O e O e O = O 0o = = = = = - ©° o [}
_° = = = = 3‘25 o |2 o2 (2], Q2512 |ZE|ofl|m B/|E|= HIEIRNEIEE
a a2 g S S El2)IZ] E||€ m (8|3 ox 2 [elR]EI[2lRw 2|23 cx2/[2|2]2 2|2
- o K o o w— 0w o |s o w2 o |=|[2) o |&|2 2= || ENEIEEREE
] o o = = 5 Q |@ Q |a [BN} Q |m Q |m O = |m = |m X |m
2 2 ? a @ AHE RHE 0 E|[Z HEINEE oC £|f S HIREE
£ o o 9 g SEEREE cs|s HEIREIE o =|E =g =1
L [[T & = =1L |
N : N
Noise predictor
= - 2 g o =
& g g & 2 & o ¢ i
11
it a a a i a a a a
a v v a a N i o qls|eg
n ;_ ‘I‘f_ ‘;‘I— ‘H_ ‘H_ 6'— LIJI_ S — S ‘I‘f £
§lcd l>gcicd »gicd >dlca B»dicd BiSicd »Sicd »Flcs bFle|g
= |t € |ta—L | [t ¥ |t- X |t- S |t= S |t= 8|t~ R =
= 2. SN S o & o @ @ |[E |2
[@ 4 o]] 0 [3 4
= 4 NN o o o & 4 4
,C o \\ o o - r9 =n. :n.
., ~ =] 2
. — ks LY — — — — J

rd
Conditioning block

[}

©&Pos enc. OMLP
@Concat. OClosest points
'Weighted mean

Figure 4. Noise predictor and condition encoder models architecture. The condition encoder receives the scan S and computes the
conditioning point cloud C. From ¢, we compute the positional embedding 7 with a dimension d; = 96. At each layer [, we give C and 7
to the conditioning block together with the layer input features J; to get F;, which is then feed as input to the layer [.

Table 1. Skeletonization chamfer distance without normalization on TreeNet3D dataset by variety. Some varieties are abbreviated
for space reasons, the full names being Agarwood, Ajianglanren, FloodedGum, Lemon, Lombardy Poplar, Shanshu, Tibetan Cherry,
Xiaoyelanren, Zhangshu. Best performance is bold and the second best is underlined.

Approach Agarwood Ajiangl FloodedGum Lemon Poplar Shanshu Cherry Xiaoyel Zhangshu
AdTree [4] 10.89 49.50 15.90 3.85 4.45 18.36 5.03 2.03 7.16
LBC[!] 30.40 139.58 70.55 2334 9245 325.49 131.27 100.31 84.54
PC-Skeletor [6] 30.66 57.36 27.57 3530 7641 211.24 135.14 659.76 119.93
Smart-Tree [3] 26.55 101.85 27.45 10.65 9.83 17.11 10.27 69.30 21.41
Ours 15.99 14.03 15.50 6.42 8.30 5.06 15.18 3.37 21.64
References ral Networks. In Proc. of the IEEE/CVF Conf. on Computer

[1] Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and
Zhixun Su. Point Cloud Skeletons via Laplacian Based Con-
traction. In Proc. of the Shape Modeling International Con-
ference (SMI), pages 187-197, 2010. 4

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-

(3]

(4]

Vision and Pattern Recognition (CVPR), 2019. 3

Harry Dobbs, Oliver Batchelor, Richard Green, and James At-
las. Smart-tree: Neural medial axis approximation of point
clouds for 3d tree skeletonization. In Proc. of the Iberian
Conf. on Pattern Recognition and Image Analysis (ibPRIA),
2023. 4

Shenglan Du, Roderik Lindenbergh, Hugo Ledoux, Jantien

(3]

[6

—_

[7

—

[8

—

(9]

Stoter, and Liangliang Nan. AdTree: Accurate, detailed, and
automatic modelling of laser-scanned trees. Remote Sensing,
11(18):2074, 2019. 4

M.A. Fischler and R.C. Bolles. Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography. Communications of the
ACM, 24(6):381-395, 1981. 1

Lukas Meyer, Andreas Gilson, Oliver Scholz, and Marc Stam-
minger. CherryPicker: Semantic Skeletonization and Topo-
logical Reconstruction of Cherry Trees. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion Workshops, 2023. 4

Lucas Nunes, Rodrigo Marcuzzi, Benedikt Mersch, Jens
Behley, and Cyrill Stachniss. Scaling Diffusion Models to
Real-World 3D LiDAR Scene Completion. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2024. 3

Shengjun Tang, Zhuoyu Ao, Yaoyu Li, Hongsheng Huang,
Linfu Xie, Ruisheng Wang, Weixi Wang, and Renzhong Guo.
Treenet3d: A large scale tree benchmark for 3d tree modeling,
carbon storage estimation and tree segmentation. Intl. Jour-
nal of Applied Earth Observation and Geoinformation, 130:
103903, 2024. 3

L. Wiesmann, E. Marks, S. Gupta, T. Guadagnino, J. Behley,
and C. Stachniss. Efficient LIDAR Bundle Adjustment for
Multi-Scan Alignment Utilizing Continuous-Time Trajecto-
ries. arXiv preprint, arXiv:2412.11760, 2024. 1

