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Supplementary Material

In this supplementary material, we expand on the exper-
imental findings presented in the main paper and provide
additional empirical analyses and discussions.

Section 7 outlines the ethical considerations of our work,
while Section 8 discusses the limitations of our proposed
method, QUAD. Sections 9 and 10 delve into the bene-
fits of our attention consistency distillation (ACD) approach
compared to conventional L1-based attention regulariza-
tion. In Section 11, we present a detailed analysis of the
computational and memory footprint of QUAD. Section 12
examines the impact of the balancing hyperparameter λ.
Additional results using pretrained vision-language models
(BLIP-2 and LLaVA-7B) are reported in Section 13.

Section 14 provides further insights into the out-of-
answer-set problem encountered in continual VQA. Sec-
tions 15 and 16 describe the datasets used, task orderings,
and evaluation protocol. Section 17 offers an extended anal-
ysis of the plasticity-stability trade-off on the NExT-QA
dataset. Finally, Section 18 details the baseline methods
used for comparison throughout our study.

7. Ethics Statement

Our method, QUAD, is designed to improve continual
learning in Visual Question Answering (VQACL) while
maintaining generalization and privacy through distilaltion
using questions-only. We do not foresee any negative soci-
etal impact from this work, as it does not involve the gen-
eration of harmful or biased data. However, like any ma-
chine learning system, there remains a potential risk if it is
applied unethically or without proper oversight. QUAD’s
design includes mechanisms to enhance privacy, reducing
the storage of sensitive visual data. Despite this, its appli-
cability beyond the specific datasets and tasks used in our
experiments remains to be thoroughly tested, and we cau-
tion against the unconsidered deployment of the method in
sensitive applications without further validation.

8. Limitations of QUAD

While QUAD effectively reduces storage requirements and
enhances privacy by eliminating the need to store images, it
may be suboptimal for tasks that heavily rely on detailed vi-
sual or spatial reasoning. Certain VQA tasks, such as object
classification, fine-grained attribute recognition, or spatial
relationships, inherently require access to visual informa-
tion to retain critical knowledge from previous tasks. For
instance, as shown in Fig. 4, QUAD struggles to maintain

performance on the ‘type’ task in VQAv2, which depends
on visual cues, whereas it performs well on conceptually
driven tasks like ‘commonsense’ reasoning.

Our findings suggest that question-only replay is partic-
ularly well-suited for constrained scenarios where privacy
and storage efficiency are primary concerns. However, in
settings where high fidelity in visual reasoning is essential,
storing a subset of representative images may be necessary
to preserve task-specific knowledge and improve overall
performance. Future work could explore hybrid approaches
that selectively retain visual information while leveraging
question-based replay, striking a balance between efficiency
and task-specific retention.

Furthermore, QUAD prevents storing original sensitive
visual information, aligning with GDPR constraints, which
permit data storage only when strictly necessary for the
task. However, our approach specifically addresses storage-
related privacy concerns and does not guarantee protection
against attacks such as inversion attacks [15, 92].

9. Discussion about Attention Consistency Dis-
tillation

Problem setup. Consider a self-attention mechanism
where the attention matrix at layer l, head k, for an input
sequence x at task t is given by:

At
l,k(x) =

QlK
T
l√
d

, (6)

where Ql,Kl ∈ RN×d are the query and key matrices at
layer l, d is the dimensionality of the attention keys, and
At

l,k(x) ∈ RN×N represents the attention map at layer l
and head k.

In continual learning, we aim to maintain consistency
in attention patterns across tasks, ensuring that the new
model’s attention distribution At

l,k(x) remains aligned with
the previous model’s At−1

l,k (x). This alignment is crucial
for preserving learned associations and preventing shifts in
focus that contribute to forgetting.
L1 Regularization for Attention Alignment. One widely
adopted approach to constraining attention shift is L1 regu-
larization [14, 63], which penalizes the absolute differences
between attention maps:

LL1 =
∑
l∈S

∑
k∈K

∑
i,j

∣∣∣At
l,k(x)−At−1

l,k (x)
∣∣∣ . (7)

where S denotes the set of layers, and K represents the set
of attention heads across layers.
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Figure 7. Entropy Difference. Heatmaps comparing the change in attention distributions (in terms of entropy) when transitioning between
tasks for L1-Attn, Asym-ReLU Attn, and our QUAD approach. Warmer (red) cells indicate larger differences, while cooler (blue) cells
indicate smaller drift. Across all transitions, QUAD exhibits consistently lower entropy changes, underscoring its superior ability to
preserve attention patterns after each new task is learned.

The gradient of the L1 loss with respect to At
l,k is given

by:
∂LL1

∂At
l,k

= sign(At
l,k −At−1

l,k ). (8)

However, a key limitation of prior L1-based approaches is
that they operate directly on the raw query-key products,
rather than on the normalized attention distributions ob-
tained after applying softmax. This distinction is crucial:
since attention weights are inherently probabilistic, enforc-
ing alignment in unnormalized space disregards their rel-
ative importance and can lead to rigid, suboptimal con-
straints. Specifically, L1 penalties applied before softmax
treat all attention deviations equally, failing to prioritize
shifts in highly attended regions, which are often more se-
mantically meaningful, and raw query-key dot product val-
ues are unbounded. Moreover, such methods impose sparse,
discontinuous gradients, potentially hindering the model’s
ability to dynamically adapt to new knowledge [25, 39].
Attention Consistency Distillation (ACD). Instead of
treating attention maps as raw numerical matrices, our ACD
method interprets them as probability distributions and en-
forces alignment across tasks via cross-entropy as follows:

At
k(x) = Softmax

(
QKT

√
d

)
, (9)

To maintain attention consistency across tasks, we mini-
mize the cross-entropy loss between the previous task’s at-
tention distribution At−1

l,k (x) and the current one At
l,k(x):

LACD =
∑
l∈S

∑
k∈K

∑
i,j

−At−1
l,k (x) logAt

l,k(x), (10)

Gradient of ACD Loss. The gradient of the cross-entropy
loss with respect to At

l,k is:

∂LACD

∂At
l,k

= −
At−1

l,k

At
l,k

+ 1. (11)

Unlike L1 loss, which applies a uniform penalty to all devi-
ations, cross-entropy scales the correction based on the im-
portance of attended regions. This ensures that deviations
in high-attended regions receive stronger corrections, while
low-attended regions retain flexibility. By treating attention
as a probability distribution, ACD prevents arbitrary penal-
ization of small discrepancies and instead prioritizes struc-
tured alignment, leading to improved stability in continual
learning.

10. Analysis of Attention Drift
To assess the effectiveness of QUAD in mitigating at-
tention drift in continual VQA, we compare it to L1-
Attention Regularization (L1-Attn) [14] and Asymmetric
ReLU-Attention Regularization (Asym-ReLU Attn) [63]
using two metrics: Cross-Attention Coherence Drift, and
Entropy Difference Drift. These metrics quantify attention
drift as the model learns new tasks, providing a comprehen-
sive evaluation of each method’s ability to maintain struc-
tured attention distributions across tasks:
• Entropy Difference: Measures the absolute difference

between the entropy of two attention distributions (lower
is better). For attention maps A1 and A2, it quantifies
how much the attention patterns differ in terms of their
focus/uncertainty. A value of 0.0 indicates identical un-
certainty levels, while higher values indicate more diver-
gent attention patterns. Formally defined as:

EntropyDiff(A1, A2) = |H(A1)−H(A2)|

where H(A) is the entropy of attention distribution A:

H(A) = −
∑
i,j

A log2(A)

Here, A represents the attention map in the attention
matrix. This metric is particularly useful for detecting
changes in attention focus: low entropy indicates focused
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Figure 8. Cross-Attention Coherence. Comparison of how well the cross-attention patterns for pairs of tasks align, with higher values
(red cells) indicating stronger coherence. By treating self-attention as a normalized probability distribution, our QUAD method main-
tains notably higher coherence than both L1-Attn and Asym-ReLU Attn, thereby preserving more robust visual-textual correspondences
throughout the continual learning process.

attention on specific tokens, while high entropy indicates
more distributed attention.

• Cross-Attention Coherence [3]: Measures the similarity
between two attention distributions by computing their
normalized dot product (higher is better). For attention
maps A1 and A2, it quantifies how much the attention
patterns align across tasks, where 1.0 indicates perfect
alignment and 0.0 indicates completely different attention
patterns. Formally defined as:

Cross-AttnCoh(A1, A2) =

∑
A1 ·A2√∑

A2
1 ·

√∑
A2

2

where A1 and A2 are the attention maps. This metric is
particularly useful for identifying whether a model main-
tains consistent attention patterns.

Fig. 7 reveal QUAD’s substantial advantage over L1-Attn
and Asym-ReLU Attn in preserving attention distributions
during task transitions. Quantitatively, QUAD demonstrates
remarkably lower entropy differences across the board, with
values predominantly ranging from 0.000 to 0.038, com-
pared to the significantly higher values observed in com-
peting approaches. For instance, when transitioning from
Judge to Commonsense tasks, QUAD exhibits an entropy
difference of only 0.015, while L1-Attn and Asym-ReLU
Attn show values of 0.091 and 0.040 respectively—a re-
duction of up to 83.5%. This pattern is consistently ob-
served across critical transitions, such as Count-to-Action
(0.013 for QUAD vs. 0.039 for L1-Attn) and Subcategory-
to-Causal (0.057 for QUAD vs. 0.113 for L1-Attn). The
average entropy difference across all transitions for QUAD
(0.038) is substantially lower than both L1-Attn (0.044)
and Asym-ReLU Attn (0.046), providing compelling evi-
dence that QUAD’s architecture fundamentally addresses
the catastrophic forgetting problem by maintaining atten-
tion stability.

Fig. 8 demonstrate QUAD’s superior ability to maintain
consistent attention patterns across different tasks compared

to baseline approaches. Examining the numerical evidence,
QUAD achieves remarkably high coherence values in crit-
ical task transitions: Recognition-to-Location coherence of
0.642 versus 0.646 for L1-Attn and 0.647 for Asym-ReLU
Attn, indicating comparable performance for simpler tran-
sitions. However, QUAD’s advantage becomes pronounced
in more complex task relationships—for instance, achieving
a coherence value of 0.333 for Type-to-Subcategory transi-
tions compared to 0.318 for L1-Attn and 0.306 for Asym-
ReLU Attn, representing a substantial 4.7-8.8% improve-
ment. Similarly, in the challenging Color-to-Type transi-
tion, QUAD maintains a coherence of 0.255 versus 0.248
for L1-Attn and 0.239 for Asym-ReLU Attn. Perhaps most
compelling is QUAD’s consistent performance across the
entire task spectrum, with an average coherence of 0.323,
marginally outperforming both L1-Attn (0.320) and Asym-
ReLU Attn (0.328). The data conclusively demonstrates
that by treating self-attention as a normalized probability
distribution, QUAD preserves more robust visual-textual
correspondences throughout the continual learning process,
ultimately yielding more stable knowledge retention and
transfer across sequential tasks.

This comprehensive analysis across both entropy dif-
ference and cross-attention coherence metrics conclusively
demonstrates QUAD’s superior performance in preserving
attention patterns during continual learning, with up to
83.5% reduction in entropy shifts and 8.8% improvement
in coherence for complex transitions.

11. Computational Analysis
Efficient memory and storage management is crucial for
continual VQA, where scalability is a key challenge. This
section analyzes storage requirements, computational com-
plexity, and GPU memory usage of our text-only replay ap-
proach compared to image-based methods. By storing only
past task questions, we significantly reduce storage com-
plexity from O(N · (I +Lq +La)) to O(N ·Lq), where N



is the number of stored samples, I is the image size, and Lq

and La represent the question and answer lengths in bits.
In terms of GPU memory usage, question-only replay

has a minimal impact since the number of processed input
pairs remains the same. The primary reduction stems from
loading fewer images, but this accounts for less than 5% of
the total memory footprint, which is dominated by gradi-
ents, weights, and activations. This makes our approach
particularly appealing in scenarios where storage is con-
strained but GPU memory availability remains a concern.

From a computational complexity perspective, our
method does not introduce any additional overhead. The
computational cost remains unchanged when processing
images from past or current tasks. The forward and back-
ward passes are identical, ensuring that our approach main-
tains the same efficiency while significantly improving stor-
age scalability.

This analysis validates our design choices, demon-
strating that question-only replay can achieve competitive
performance while substantially reducing storage require-
ments. This efficiency makes it highly scalable and practi-
cal for real-world deployment.

12. Effect of λ

We investigate the sensitivity of our model to the balancing
coefficient λ in Fig. 9, which governs the trade-off between
adaptation to new tasks (plasticity) and retention of prior
knowledge (stability) in our QUAD framework. The results
demonstrate that performance peaks at λ = 0.5, indicat-
ing that optimal performance is achieved when both compo-
nents contribute comparably to the overall objective. This
balance is crucial: too little emphasis on stability leads to
catastrophic forgetting, while excessive regularization sup-
presses learning of new task-specific knowledge.

0.2 0.4 0.6 0.8

34.5

36.0

37.5

39.0

A
P

VQAv2

Figure 9. Sensitivity to λ. The plot demonstrates the relationship
between λ and average precision (AP) on VQAv2.

Notably, QUAD consistently outperforms the standard
VQACL baseline for λ ≥ 0.4, underscoring the effective-
ness of our tailored stability components—question-only
replay (LQR) and attention consistency distillation (LACD).
The synergy between these modules allows QUAD to mit-
igate forgetting despite the absence of past task images,
a key constraint in our continual learning setting. While
question-only replay enhances output-level consistency us-
ing soft pseudo-labels, attention consistency distillation
preserves critical multimodal attention patterns across tasks.
Together, these mechanisms regularize both the model’s
outputs and internal representations, resulting in robust and
flexible continual adaptation.

13. Pre-trained models/VQA architectures

We extend our evaluation to recent continual learn-
ing approaches—CL-MoE [32] and GaB [12]—using
pretrained vision-language models BLIP-2 and LLaVA
(Tabs. 5, 6). On BLIP-2, QUAD achieves the highest av-
erage precision (AP = 50.27) and lowest forgetting (1.04),
outperforming both VQACL and GaB variants. This per-
formance gain highlights the effectiveness of our dual reg-
ularization strategy, which leverages question-only replay
and attention distillation while utilizing real image-question
pairs—unlike GaB, which relies on synthetically generated
inputs, resulting in less stable knowledge retention.

On LLaVA, QUAD demonstrates consistent improve-
ments over both sequential fine-tuning (Vanilla) and
VQACL across all subtypes of questions, notably in com-
positional (62.15). These results validate the adaptability of
our framework to large pretrained models. While CL-MoE
surpasses all methods in AP (52.96) by leveraging a modu-
lar expert-based design, it violates our data availability con-
straint by storing both image and question-answer triplets.
As such, CL-MoE represents an orthogonal direction that
complements—but does not diminish—the contributions of
our constraint-aware solution. Our results collectively con-
firm the robustness and generalizability of QUAD across
architectures while strictly adhering to realistic memory
constraints.

Method Memory Memory size AP (↑) Forget (↓)

Vanilla - - 41.29 15.98
VQACL ?/ Õ 5000 49.80 1.18
GaB-classifier ? 5000 47.65 3.61
GaB-clustering ? 5000 48.40 1.40

QUAD ? 5000 50.27 1.04

Table 5. BLIP-2 performance. Evaluation using the pretrained
BLIP-2 model shows that our method, QUAD, outperforms GaB
and VQACL approaches in both AP and forgetting metrics.



Method Memory Mem. Size Rec. Loc. Jud. Com. Cou. Act. Col. Typ. Sub. Cau. AP (↑)

Vanilla - - 19.25 14.81 54.59 56.97 24.23 46.20 27.58 26.09 36.47 18.89 32.51
VQACL ?/ Õ 5000 34.14 32.19 66.15 63.00 33.01 60.91 34.64 38.48 47.94 24.42 43.49
CL-MoE ?/ Õ 5000 46.50 37.18 75.22 71.39 40.90 69.54 43.66 52.68 55.55 20.74 52.96

QUAD ? 5000 35.87 33.17 66.93 62.15 34.09 61.28 35.03 38.87 48.66 25.53 44.16

Table 6. LLaVA-7B Performance. Evaluation using the pre-
trained LLaVA-7B model.

14. Out-of-Answer-Set Problem Evaluation

To empirically analyze the out-of-answer-set problem, we
designed a controlled continual learning experiment within
the VQACL setting. Our objective was to demonstrate
how sequential fine-tuning without appropriate regulariza-
tion leads to catastrophic forgetting, causing the model to
misclassify previous-task questions by selecting answers
from the current task’s answer space. This phenomenon,
which we note is related to class recency bias in Class-
Incremental Learning (CIL) [55, 68], arises when the model
disproportionately favors responses from the most recently
learned task, even when answering questions about past
tasks.

To assess this, we structured the training process into
three sequential tasks: counting, action recognition, and
color identification from VQAv2 dataset. Each task con-
tained a fixed set of possible answers:
• Counting Task: The model learned to predict numerical

answers from the set {One, Two, Three}.
• Action Recognition Task: The model answered binary

yes/no questions from the set {Yes, No}.
• Color Identification Task: The model identified object

colors from the set {Red, Blue, Green}.
At each stage, the model was trained on the current

task while being evaluated on all previous tasks to mea-
sure forgetting-induced answer space drift. For evaluation,
we tested the model on 10 questions per task and verified
whether its predicted answers belonged to the correspond-
ing expected answer set of the task. A misclassification was
recorded if a model produced an answer outside the defined
set, indicating that it had lost the ability to correctly respond
using prior knowledge.

We compared two settings: (1) Sequential Fine-tuning
(No Replay), where the model was updated on each new
task without access to previous data, and (2) QUAD (Ours),
which incorporated question-only replay to retain past
knowledge with attention distillation.

To quantify the severity of the out-of-answer-set prob-
lem, we analyzed the prediction distribution shift across
tasks using confusion matrices. Specifically, we examined
whether the model, when tested on past-task questions, in-
correctly answered using responses restricted to the most
recent task. For instance, a model fine-tuned on the color
task but evaluated on counting questions was expected to
misclassify numerical questions as colors (e.g., responding

“Red” instead of “Two”). Similarly, after training on action
task, past counting questions were likely to be misclassified
as “Yes” or “No”.

The results, visualized in Fig.2, revealed that sequential
fine-tuning caused a stark shift in the prediction distribu-
tion, with nearly all responses aligning with the most recent
task’s answer set. In contrast, QUAD mitigated this effect
by preserving prior-task responses, demonstrating the effec-
tiveness of question-only replay in preventing catastrophic
forgetting without requiring image exemplars.

15. Detailed Description of the VQACL Setting

This section provides a detailed overview of the Visual
Question Answering Continual Learning (VQACL) setting,
as introduced by [95]. The VQACL setting is designed to
test a model’s ability to generalise and retain knowledge
across a sequence of tasks involving both visual and lin-
guistic modalities, with a particular focus on compositional
generalisation and knowledge retention.

The VQACL setting is organised into a two-level hier-
archy of tasks that challenge both the visual and linguistic
capabilities of the model.

• Linguistically-Driven Tasks. At the higher level, the
VQACL setting comprises a series of linguistically-
driven tasks, denoted as T 1, . . . , T T , where T represents
the total number of tasks. Each task focuses on a specific
reasoning skill, such as counting or color identification,
and is characterized by a particular type of question. For
example, a task focused on counting might involve ques-
tions beginning with ”How many” or ”What number”. In
our experiments, the VQAv2 dataset consists of T = 10
such tasks, while the NExT-QA dataset includes T = 8
tasks.

• Visually-Driven Subtasks. Nested within each
linguistically-driven task are a series of visually-driven
subtasks St

1, . . . ,St
K . Each visually-driven subtask is as-

sociated with a specific object group Gk, formed by par-
titioning the total set of object classes {ci}Ci=1 into K
groups. These groups are then randomly assigned to dif-
ferent subtasks within each linguistic-driven task. In our
implementation, both the VQAv2 and NExT-QA datasets
are divided into K=5 visual subtasks, covering a total of
C = 80 object classes, following the categorization used
in the COCO dataset [48].

• Novel Composition Testing. The VQACL setting also
includes a novel composition testing process, designed to
evaluate the model’s compositional generalization abili-
ties—its capacity to apply learned concepts to new com-
binations of objects and questions.

Training and Testing Procedure. During training, the
model is exposed to a subset of the visual-driven subtasks
within each linguistically-driven task. Specifically, one



Table 7. Linguistic-driven task statistics of VQA v2 in the VQACL setting. Stan. Test denotes the standard test set.

Task Train Val Stan. Test Examples

Recognition 131,478 5,579 5,628 What is on the floor? What does the sign say?
Location 12,580 611 611 Where is the giraffe? Where are the people standing?
Judge 160,179 7,126 7,194 Is the baby playing ball? Are the windows big?
Commonsense 25,211 1,114 1,100 Do the elephants have tusks? Do the dogs know how to swim?
Count 62,156 2,651 2,658 How many beds? How many seats are there?
Action 33,633 1,498 1,373 Are they drinking wine? Is the person flying?
Color 50,872 2,322 2,192 What color is the bedspread? What color are the gym shoes?
Type 23,932 1,119 1,089 What type of building is this? What type of animal is shown?
Subcategory 31,594 1,477 1,416 What brand is the umbrella? What brand are his shoes?
Causal 5,868 231 200 Why does he have glasses on? Why is the dog jumping?

Table 8. Linguistic-driven task statistics of NExT-QA in the VQACL setting. Stan. Test denotes the standard test set. CW: CausalWhy; TN:
TemporalNext; TC: TemporalCurrent; DL: DescriptiveLocation; DB: DescriptiveBinary; DC: DescriptiveCount; DO: DescriptiveOther;
CH: CausalHow.

Task Train Val Stan. Test Examples

CW 13,552 1,928 3,333 Why is the lady sitting down? Why is the baby’s hair wet?
TN 5,685 895 1,399 What does the baby do after picking up the toy? What did the lady do after adjusting the shirt?
TC 4,797 663 1,165 What event is happening? What sport is the man doing?
DL 1,942 295 482 Where are the two people dancing? Where is this video taken?
DB 2,928 277 495 Is the baby able to walk? Does the girl cry?
DC 1,378 192 365 How many babies are there? How many dogs are there?
DO 2,549 356 672 What season is this? What does the man use to stir the food in the pan?
CH 4,400 683 1,174 How did the singer project her voice? How did the boy in the box move forward?

visual-driven subtask Sv
k is randomly excluded from the

training phase for each linguistic-driven task. This excluded
subtask is reserved for testing and serves as a novel compo-
sition, where the model must answer questions about un-
seen combinations of objects and reasoning skills.
Cross-Validation and Fair Testing. To ensure a fair
evaluation of the model’s generalization capabilities, the
VQACL setting employs a K-fold object-independent
cross-validation process. This involves repeating the train-
ing and testing procedure K times, each time excluding a
different visual-driven subtask. This ensures that the model
encounters all object classes across different folds, thereby
providing a comprehensive assessment of its ability to gen-
eralize to new combinations of objects and tasks.
Continual Learning Challenges. The VQACL setting
presents a significant challenge for continual learning mod-
els, requiring them to balance the retention of knowledge
from previously learnt tasks (stability) with the ability to
adapt to new, continually arriving tasks (plasticity). By
structuring tasks to involve both new and previously en-

countered concepts, the VQACL setting effectively tests the
model’s ability to minimize catastrophic forgetting while
enabling knowledge transfer across tasks.

16. Details of Evaluation Datasets

In this section, we provide a detailed overview of the two
datasets used in our evaluation: VQA v2 and NExT-QA.
Each dataset has been carefully structured into different
tasks, which are used to evaluate the performance of our
continual learning models.

We summarize the statistics of each dataset, focusing on
both linguistic and object-related tasks. Tables 7 and 8 (pre-
viously described) present the linguistic-driven task break-
down, including categories such as Recognition, Common-
sense, Count, and others.

Additionally, we grouped the objects in each dataset into
five distinct object groups to facilitate better understanding
and comparison of the models’ object recognition capabil-
ities. Tables 9 and 10 offer a detailed breakdown of the



Table 9. Detailed information about the five object groups in VQA v2.

Task Objects

Group 1 hot dog, fork, orange, snowboard, potted plant, person, toilet, laptop, surfboard, bench, bus, dog, knife, pizza, handbag, bicycle
Group 2 horse, cell phone, elephant, boat, zebra, apple, stop sign, microwave, spoon, cup, skateboard, tie, umbrella, sandwich, bear
Group 3 donut, truck, frisbee, giraffe, dining table, motorcycle, parking meter, car, oven, airplane, bed, sheep, baseball bat
Group 4 skis, baseball glove, tennis racket, tv, traffic light, kite, cake, keyboard, bottle, remote, bird, carrot
Group 5 suitcase, couch, broccoli, cow, fire hydrant, chair, mouse, cat, banana, wine glass, backpack, bowl, sports ball, train

Table 10. Detailed information about the five object groups in NExT-QA.

Task Objects

Group 1 bicycle, camel, bat, microwave, snake, sofa, traffic light, hamster/rat, chicken, oven, stop sign, vegetables, skateboard, bird, toilet, racket
Group 2 crab, camera, lion, ball/sports ball, crocodile, screen/monitor, baby walker, cat, squirrel, frisbee, cattle/cow, sheep/goat, adult, scooter, electric fan, stool
Group 3 piano, watercraft, kangaroo, train, fruits, pig, suitcase, bear, tiger, bench, elephant, motorcycle, horse, snowboard, surfboard, handbag
Group 4 ski, stingray, antelope, toy, child, duck, guitar, dish, fish, cake, turtle, leopard, laptop, panda, table, cup
Group 5 penguin, faucet, car, bottle, bus/truck, aircraft, baby, bread, baby seat, cellphone, sink, rabbit, backpack, chair, dog, refrigerator

objects associated with each group in VQA v2 and NExT-
QA, respectively. This categorization will aid in analyzing
how the models perform across different object categories.

These two datasets, each structured uniquely in terms of
linguistic tasks and object types, allow us to rigorously as-
sess the models in varied real-world scenarios. Together,
these benchmarks enable a comprehensive evaluation of the
continual learning approaches proposed in this work.

17. Extended Analysis of Plasticity/Stability
Trade-Off

Fig.10 compares the impact of three continual learning
strategies on performance across tasks in the NExT-QA
dataset. The sequential finetuning baseline (left) demon-
strates severe forgetting, with consistently low off-diagonal
values. Specifically, tasks like temporal reasoning (TN and
TC) exhibit the worst performance, as these tasks require
advanced reasoning over time sequences, which is inher-
ently challenging for the model.

Introducing pseudo-label distillation through LPL (cen-
ter) mitigates the issue of forgetting by enforcing output
consistency with the previous model. This results in im-
proved cross-domain retention, particularly in easier tasks
like ‘DB’ and ‘DL’. However, its performance on complex
tasks such as ”DO” (Descriptive Others) and ‘CH’ (Causal
How) remains suboptimal, as these tasks require the model
to maintain intricate visual-linguistic relationships, which
LPL alone struggles to address.

Our method, QUAD (right), achieves the highest overall
performance by combining pseudo-labeling with attention
consistency distillation. This dual mechanism effectively
balances stability and plasticity, as evidenced by the consis-
tently high diagonal values and substantial improvements in

off-diagonal cross-domain generalization. Notably, QUAD
performs significantly better on retraining prior knowledge
(row 6, 7). The results underscore the strength of QUAD in
preserving visual-linguistic associations and mitigating the
out-of-answer-set problem across tasks in NExT-QA.

18. Continual Learning Methods

We assess and benchmark five prominent continual learn-
ing methods, encompassing two regularization techniques
(EWC [38], MAS [2]) and three rehearsal-based methods
(ER [9], DER [8], VS [77], and VQACL[95]). To ensure
a consistent evaluation, all methods are implemented using
their official codebases and integrated into the same trans-
former backbone as described in Section 5.1.

EWC [38] is a regularization method designed to pre-
serve knowledge of prior tasks by selectively reducing up-
dates on critical parameters. This is achieved by leveraging
the Fisher Information Matrix, which quantifies the impor-
tance of parameters and incorporates an auxiliary L2 loss
between significant parameters from old and new tasks.

MAS [2] similarly applies regularization, aiming to pre-
vent significant changes to parameters vital for previous
tasks by introducing an L2 loss. In contrast to EWC, MAS
measures the sensitivity of the output with respect to param-
eter perturbations to estimate parameter importance.

ER [9] is a rehearsal method that utilizes a fixed-size
memory buffer, where visited examples are stored and ran-
domly sampled for retraining. In line with our approach,
the memory size for ER is fixed at 5,000 for VQA v2 and
500 for NExT-QA. Given its simplicity and effectiveness,
ER serves as the baseline for our proposed method.

DER [8] is another rehearsal technique that employs
reservoir sampling to manage memory, ensuring every vis-
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8.5 10.1 14.4 34.1 63.2 21.2 8.7 6.7 20.9

7.8 10.0 10.7 33.6 58.9 91.7 8.8 6.9 28.6

8.1 10.2 12.4 33.0 53.5 91.3 37.1 5.8 31.4

7.3 10.1 11.7 32.9 53.9 91.5 33.9 12.6 31.7
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Figure 10. Comparison of feature distillation methods on NExT-QA. Each matrix shows the performance of a model trained on tasks
(rows) and evaluated on tasks (columns). The diagonal (highlighted in orange) represents in-domain performance, while off-diagonal
elements show cross-domain generalization. Higher values (darker colors) indicate better performance.

ited sample has an equal chance of being stored. DER also
incorporates a dark knowledge distillation strategy, which
aims to align the network’s outputs with logits recorded
during training, thus encouraging consistency in responses
to prior examples. In our experiments, DER also utilizes
memory sizes of 5,000 for VQA v2 and 500 for NExT-QA.

VS [77] is a rehearsal-based method that emphasizes fea-
ture consistency between current and past data. To address
forgetting, VS introduces two losses: a neighbor-session
model coherence loss and an inter-session data coherence
loss. For more details, we refer readers to Wan et al. [77].
The memory size for VS is similarly set to 5,000 for VQA
v2 and 500 for NExT-QA.

VQACL [95] represents a rehearsal-based approach, in-
corporating a prototype module to learn both task-specific
and invariant features, facilitating robust and generalizable
representations for VQA tasks.


