
Appendices for: Unsupervised Imaging Inverse Problems with
Diffusion Distribution Matching

A. Proof of Proposition 1.

We restate the statement of the proposition for completeness.

Proposition A.1: For any set of forward model parameters ω, let pω(y) =
∫
pω(y | x)p(x)dx where pω(y | x) = N (y |

Aωx, σ
2I). Let ω∗ be a specific set of parameters which we consider to be the optimal set. Then, assuming the data

covariance Σ = Ex[xx⊤] is invertible, there exists an orthogonal matrix P such that

pω(y) = pω∗(y) =⇒ Aω = Σ−1/2PΣ1/2Aω∗ (7)

That is, if the probability distributions pω and pω∗ are equal, it is possible to identify ω∗ up to rotations P .

Proof. Let f be a quadratic function of the form f(x) = x⊤Cx. Consider the form of the conditional, and perform a
change of variables from y to Ax+ ϵ with ϵ ∼ N (0, σ2I) independent of x to write:

0 = Ey∼pω [f(y)]− Ey∼pω∗ [f(y)]

=

∫
f(y)pω(y | x)p(x)dxdy −

∫
f(y)pω∗(y | x)p(x)dxdy

=

∫
f(Aωx+ ϵ)p(ϵ)p(x)dxdϵ−

∫
f(Aω∗x+ ϵ)p(ϵ)p(x)dxdϵ

= Ex∼p(x),ϵ[f(Aωx+ ϵ)− f(Aω∗x+ ϵ)].

Now

Ex∼p(x),ϵ[f(Aωx+ ϵ)− f(Aω∗x+ ϵ)] = Ex∼p(x),ϵ[(Aωx+ ϵ)⊤C(Aωx+ ϵ)− (Aω∗x+ ϵ)⊤C(Aω∗x+ ϵ)]

= Ex,ϵ[x⊤A⊤
ωCAωx− x⊤A⊤

ω∗CAω∗x+ 2x⊤A⊤
ωCϵ− 2x⊤A⊤

ω∗Cϵ]

= Ex[x⊤A⊤
ωCAωx− x⊤A⊤

ω∗CAω∗x]

= Ex[tr(x⊤A⊤
ωCAωx)− tr(x⊤A⊤

ω∗CAω∗x)]

= Ex[tr(Aωxx
⊤A⊤

ωC)− tr(Aω∗xx
⊤A⊤

ω∗C)]

= ⟨(AωΣA⊤
ω −Aω∗ΣA⊤

ω∗), C⟩F = 0

=⇒ AωΣA⊤
ω −Aω∗ΣA⊤

ω∗ = 0 (8)

where Σ = Ex[xx⊤] is the data covariance. Eq. (8) holds since C can be any matrix. Now since Σ is invertible, we

can take Ãω = AωΣ
1/2 and Ãω∗ = Aω∗Σ

1/2 and we have that ÃωÃω
⊤

= Ãω∗Ãω∗
⊤

. Now looking at the SVD of
Ãω = UωSωV

⊤
ω and Ãω∗ = Uω∗Sω∗V

⊤
ω∗ it holds that

UωS
2
ωU

⊤
ω = Uω∗S

2
ω∗U

⊤
ω∗ (9)

which implies that both Uω = Uω∗ and Sω = Sω∗ . Take P the orthonormal change of basis from Vω to Vω∗ , then

Ãω =
∑

i

σ(i)
ω u(i)

ω v(i)
∗

ω P =
∑

i

σ(i)
ω∗u

(i)
ω∗v

(i)∗
ω P =

∑

i

σ(i)
ω∗u

(i)
ω∗v

(i)∗
ω∗ = Ãω∗ (10)

and going back to the original operators, Aω = Aω∗Σ
1/2PΣ−1/2 with P an orthogonal matrix.

B. Experiment Details

For all experiments we started from the diffusion model implementation EDM2 [20], and adapted it to train flow-matching
models. The EMA for model weights based on a power-function instead of an exponential and is parameterized in an
unconventional way through the relative standard deviation (see Karras et al. [20] for a precised description).



(a) Measurement (b) FastEM-ΠGDM [23] (c) KernelDiff [44] (d) BlindDPS [12] (e) Ours (f) Ground truth

Figure 7. Sample reconstructions on FFHQ (motion-blur kernel). All methods single-image apart from ours.

(a) Measurement (b) BlindDPS [12] (c) Ours (d) Ground truth

Figure 8. Sample reconstructions on FFHQ (gaussian-blur kernel). All methods single-image apart from ours.

B.1. FFHQ experiment
We used a very small CFM model with 4M parameters to train on the first 1000 samples from the FFHQ dataset, downscaled
to 256x256, degraded using a fixed motion-blur kernel generated with the code from Borodenko [7] with intensity 0.5 and
Gaussian noise with standard deviation 0.02. We trained the model from scratch for 4000 epochs, at the end of which it
could generate samples like those in Fig. 2. We then proceeded to the second step of our algorithm by learning a 28x28 blur
kernel from 100 different clean samples from FFHQ. We enforced the kernel to sum to 1, and used a sparsity promoting
regularizer (simply average of the absolute values of the kernel) with weight 1. We trained the second step for 5000 epochs
with a low learning rate (10−5 for the blur kernel and 4× 10−5 for the auxiliary CFM model). Finally we used DiffPIR [62]
in the implementation of DeepInv (https://github.com/deepinv/deepinv) for reconstructing the full FFHQ
test set (1000 images). The baselines were all run from their respective repositories. The only difficulty encountered was
with KernelDiff [44] which cannot handle noisy measurements. We thus ran KernelDiff without noise. Figures 7 and 8
compare the image and kernel reconstructions of the different methods for both motion-blur and isotropic Gaussian kernels.
Note that the same regularization and other hyperparameters were used to train our method in both experiments.

B.1.1. FFHQ with varying noise levels
The experiments described above and in the main text all used the same random Gaussian noise with standard deviation of
0.02. To determine whether our method is robust to different levels of noise we ran the same experiment with noise-levels
0, 0.04 and 0.08. To compare the models fairly, we then ran DiffPIR using the learned kernels (learned with different
noise levels) on data which has been corrupted with the original noise level of 0.02. The training hyper-parameters for all
three stages were kept fixed from the previous section. The results of this experiment show a small decrease in accuracy
as the noise-level increases, in Sec. B.1.1 support a small deterioration in both kernel estimates and consequently in the
reconstruction quality, while remaining fairly robust. Note that the noise is applied to 0-1 normalized images such that a
noise level of 0.08 corresponds to 8%, which is very clearly noticeable in the corrupted images.

B.2. Space-varying blur on DPDD
Here we used a larger CFM model with 52M parameters, pretrained on the DIV2K clean training set. This then helps speed
up the first step of our algorithm which consists in fine-tuning the model on the same dataset, degraded using the per-pixel
blur kernels, as linearly interpolated from the 8x8 PSFs shown in Fig. 10 and Gaussian noise with standard deviation
0.01. The model was trained on patches of size 128x128 from the degraded DIV2K dataset with learning rate 10−4 and
exponential moving average over the weights. For the second step, we once again directly optimized the parameters of
an 8x8 grid of kernels (the same as the ground-truth). A learning rate scheduler is used for the auxiliary flow matching
model (square root scheduling with warmup). A batch size of 20 was used, and we found the batch size to significantly
affect convergence speed (i.e. convergence depended on how many times each of the two models was updated, so higher
batch sizes did not speed up much). For this step, we use a regularization composed of three different terms, the first one
is a center term which avoid the kernels to have centering offset, the second one is a sparsity one which is basically a l1



Noise std: 0.00 Noise std: 0.02

Noise std: 0.04 Noise std: 0.08

σtrain PSNR LPIPS kernel NCC

0 28.93 0.068 0.98
0.02 28.76 0.069 0.94
0.04 28.84 0.070 0.96
0.08 28.01 0.079 0.91

Figure 9. Qualitative and quantitative results for motion-deblurring with increasing amounts of noise. The figure on the left shows the
learned kernel and a sample reconstruction with the different noise levels. On the right, the table provides reconstruction metrics and
kernel-accuracy metrics for the FFHQ test-set (1000 random images). Note that kernel NCC is the normalized cross-correlation of the
learned kernel with the ground-truth kernel.

ground truth predicted

Figure 10. Comparing ground-truth (left) and predicted blur kernels (right), as well as the respective reconstructed images.

regularization which limit the number of non zero pixels in the kernels and the last one is a Gaussian prior which help with
the overall shape of kernels. Each term has the same weight of 0.003. For the third step we used the DPDD dataset and
perform the forward model inversion in two ways:
• ESRGAN, used by generating a paired dataset on the “train c” split of DPDD. We used the implementation at https:
//github.com/XPixelGroup/BasicSR, changed the upscaling factor to 1 since we were not interested in
super-resolution and reduced the number of iterations to 60000 since convergence was fast.

• DPIR, again using the implementation from DeepInv, we only need to process the DPDD test-set.
To train the Deflow [51] we use the official repository which is available on github at https://github.com/

volflow/DeFlow. Deflow requires a bit of preprocessing to create the training datasets. Indeed, we use both DIV2K
and DPDD to train this model. So we use DPDD as a clean dataset with the low quality dataset being the DPDD training set
downsampled by 4 using BICUBIC interpolation. And we use DIV2K for the noisy dataset applying a per pixel kernel
interpolated from the 8x8 grid on which we add a gaussian noise of standard deviation 0.01. We also downsample the noisy
DIV2K to have noisy low quality dataset. Concerning the parameters of the training we only change the batch size in order
to make it fit our GPUs and we change the scale to 4 because we only found a pretrained model for this downsampling scale.



(a) DPIR true kernels (b) ESRGAN true kernels (c) INIKNet

(d) Restormer (e) Deflow (f) Ours + DPIR

Figure 11. Full restored DPDD image for each method analyzed

Figure 12. Samples from our parking-lot dataset. All 6 images are at f-stop 5.6

In Fig. 11, we show the full reconstructed images used for Fig. 4. The first 2 images are methods which use the real
degradation which are our baselines. The 3 following images come from the other methods we compare ours to and the last
image is our method.

B.3. Parking-lot experiment

Dataset We used a Panasonic DC-GX9 camera in aperture priority mode with a Leica DG Summilux 25mm f/1.4 II lens
to take 22 distinct photographs in a parking lot at apertures f/16 and f/5.6. We used a tripod for stabilisation but the two
images are still not perfectly aligned (for this reason we do not provide any quantitative metric on experiments using this
dataset). We process the raw images using dcraw [13] to fix white balance, image highlights, demosaicking, and a small
amount of noise reduction. We then converted images to png format. A low-resolution sample of the images in the dataset
is shown in Fig. 12. The high-resolution counterparts have 5200x3904 pixels.



Training We started from a scratch CFM model as the size of the one for DDPD experiment, we train it on 64-sized
patches from the 18 parking lot images at f-stop 16. For the distribution-matching step we used the the central 768x768
pixels of f/5.6 images as the clean distribution and learn a 8x8 grid of 13x13 RGB kernels. We compare predicted kernels
with Eboli et al. [16] in Figs. 13 and 14. Our PSFs are consistent across images by design, while the competing method
adapts between different images. The PSFs predicted by our method more accurately recover the true blur, as seen in Figs. 6
and 15.

Hyperparameters The first step consists in learning a diffusion model on a single, low-resolution image. We used a
flow-matching model with about 4M parameters, trained on patches of size 64x64. We used a batch-size of 1024 patches,
without any added noise, learning rate of 0.01 and 0.05 as an EMA value. We trained for 16M patches. To learn a different
blur filter for different locations in the image plane, we condition the diffusion model on the original patch’s location in
the full image. We do this by concatenating the input image with two positioning-channels (for the x and y axes). Since
the dataset is small, to avoid completely overfitting the diffusion model to the location-specific conditioning, we replace
the conditioning for 20% of the patches with a randomly chosen location. For the second step we used a smaller batch
size of 128, learning rate of 0.00001 for the auxiliary diffusion model and 0.00004 for the kernel network (described in the
next paragraph). We added sparsity regularization (l1) with strength 0.01 and gaussian prior regularization with strength
0.1. The second step was trained for 6M patches. Here we wished to learn a location-conditioned degradation which,
when applied to any part of the central portion of a clean image, it would replicate the degradations of a specific location
of the corrupted images. To achieve this, we conditioned the step-2 model (whose inputs are patches from the central
portion of clean images) on random patch locations (spanning the full image size). Like for DPDD we parameterized the
degradations by a 8x8 grid of kernels, which unlike DPDD are different for the three RGB channels (to represent chromatic
aberrations accurately). Final filters for reconstruction (which is patch-wise) are linearly interpolated from this 8x8 grid.
The learned PSF grid is shown in Fig. 13. We additionally added a trainable parameter to learn the noise standard deviation
of the images, which was assumed to be fixed throughout the image. The noise estimate was low (around 0.003) because
similar amounts of noise were present in the clean and corrupted images. For the third step, we used plug-and-play method
DPIR [57] which uses a deep natural image prior. We found the results were very similar to classical Wiener deconvolution,
apart for some extra noise removal with DPIR. Additional qualitative reconstructions are shown in Fig. 15.

B.4. Super Resolution

Hyperparameters The first step consists in learning a diffusion model on a single, low-resolution image. We used a
small flow-matching model with about 4M parameters, trained on patches of size 32x32. We used a batch-size of 512
patches, without any added noise, learning rate of 0.01 and a small EMA value. We trained for 1M images (or approximately
2000 steps). For the second step we used a smaller batch size of 64, learning rate of 0.00001 for the auxiliary diffusion
model and 0.00008 for the kernel network (described in the next paragraph). We added center-regularization with strength
0.01, sparsity regularization (l1) with strength 0.1 and sum-to-one regularization with strength 0.1. Note that the kernel
network was not forced to output normalized kernels (unlike all previous experiments), so the sum-to-one regularization
was important. The second step was trained for 512k images (or approximately 8000 steps).

Kernel parameterization Similarly to KernelGAN [6] and DCLS [33] we use a linear convolutional network to model
the blur kernel. This network can be used directly as forward model Aω, and can be collapsed into an explicit kernel by
convolving a dirac function (i.e. an image with a single non-zero pixel in the center). We could confirm the findings of
Bell-Kligler et al. [6] that this parameterization is easier to train than an equivalent CNN with a single layer. We used 4
layers with kernel-sizes 7, 5, 5 and 1, (for an overall receptive field of 15) no bias and 64 channels.

Additional results In Fig. 16 we show zoom-ins on four different images (35, 36, 37 and 39) from the DIV2KRK dataset
as reconstructed with different methods, as well as the blur kernels predicted by the respective methods. We can see that
while DANv2 [35] has better reconstruction, the predicted kernels do not show significant differences to the ones predicted
with our method. The better reconstruction is due to the relatively lower accuracy of ZSSR compared to the integrated
super-resolver in DANv2. FKP has decent reconstruction because it always predicts blur kernels which are close to being
isotropic Gaussians with a small standard deviation, while DKP predicts kernels with a higher variance which are not very
close to the true ones.

In Fig. 17 we plot the distribution of the difference in PSNR between blind SR methods and their non-blind counterpart.
Note that this can be greater than zero when due to random stochasticity of the non-blind method, the estimated kernel
results in a better reconstruction than the true one.



Figure 13. Lens PSF predicted by our model brightened x2. Note how the chromatic aberration (different position of red and blue
channels) varies smoothly between the top, bottom and left, right parts of the lens.

Figure 14. Lens PSF by Eboli [15] for two different images. Note that this method corrects for color aberration in a separate successive
step. The PSFs here are not brightened, and hence much smaller than those in Fig. 13.

Metrics We specify here the parameters used to calculate metrics in Tab. 4. Firstly, we found USRNet to produce very
strong border artifacts which – if included – would have completely skewed the results. For this reason we crop 60 pixels
off each edge for every image before computing metrics. For the PSNR, in order to maintain consistency with results
reported in the literature, we used the Y-PSNR (i.e. computed on just the luminance channel, after converting RGB images
to YCbCr). For the LPIPS metric we used the ”alex-net“ network. The PSNR on kernels was computed after padding the
kernels with zeros up to size 25x25 and after shifting them so they were appropriately centered. The NCC metric is the 2d
normalized cross-correlation, which can better account for small centering errors in the kernels.



f/16.0 (original) Eboli Ours (DPIR) Ours (Wiener)

Figure 15. Additional reconstructions on parking lot data (best viewed zoomed-in).



Figure 16. Super-resolution: qualitative results. Note that DCLS kernels are not comparable as they live in a different space.
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Figure 17. Super-resolution: Performance gap of two-step methods compared to their natural upper-bound. The metric considered is the
Y-PSNR (PSNR on the luminance only).


