A. Explanation Methods are Low-pass Filters

This section builds on key insights from studies focused on
the spectral analysis of gradient-based explanation methods,
which provides a foundation for understanding how these
methods interact with different frequency components.

Gradient-based explanation methods often [1, 24] incor-
porate a perturbation mechanism to reduce noise in raw gra-
dients, as seen in VanillaGrad. This perturbation can be rep-
resented as a probability distribution p(z) in the input space
of the neural network. For mathematical clarity, we focus
on raw gradients, though the spectral properties of squared
gradients are also covered in [41].

The process of sampling and averaging can be formu-
lated as an expectation over the perturbation distribution:

Epnr(2) [V f(2)] )

Using this formulation, we can derive a spectral repre-
sentation of explanation methods:

En @) [V f(z)] o /wA(w)J\A/(w)dw (10)
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where f(w) denotes the Fourier transform of the neural net-
work, A/ (w) the Fourier transform of the perturbation dis-
tribution, and w arises as a scaling factor due to the Fourier
transform of the gradient.

This equation highlights the inherent filtering behavior
of gradient-based explanation methods. The gradient oper-
ator acts as a high-pass filter, emphasizing high-frequency
components of the model function, while the perturbation
mechanism (e.g., Gaussian noise in SmoothGrad) serves as
a low-pass filter, attenuating high-frequency components.
The combined effect forms a band-pass filter, which selec-
tively attributes importance to features within specific fre-
quency ranges. This interplay between gradient computa-
tion and input perturbation fundamentally shapes the behav-
ior of gradient-based explanations.

Given this behavior, we focus solely on the VanillaGrad
in this work and disregard the variations in the neighbor-
hoods, i.e. assuming NV (z) = (), in our theoretical anal-
ysis.

B. An Empirical Study of Sharpness via Tail

In this work, we have primarily examined the impact of
ReLU on the tail of the network’s power spectrum in the
main text, as it is a prevalent choice in many architectures
used in contemporary computer vision. However, on the
empirical side, our approach is not limited to this activa-
tion function, and similar analyses can be extended to other
architectural choices. In this section, we empirically inves-
tigate the effects of other design decisions on the tail of the
power spectrum.

To isolate the effect of the smooth parameterization of
ReLU, we applied a validation accuracy cap to minimize the
influence of initialization on our results. Since ReLU net-
works leverage well-established initialization schemes and
generally achieve better convergence than our smooth pa-
rameterization, setting a high accuracy cap could introduce
initialization as a confounding variable in our analysis. This
approach allows for a meaningful comparison by ensuring
networks are evaluated under similar training budgets.

To investigate the impact of this validation accuracy cap,
we conduct an ablation study where we remove the cap
and train various networks with smooth ReLU parameteri-
zations for approximately 200 epochs, continuing until their
learning curves plateau.

The spatial power spectra for runs with different learning
rates are shown in Fig. 6. Under these conditions, we can
analyze the effect of the smoothness parameter 8 on both
training and test accuracy—see Fig. 5.

Continuing our ablation study with learning rate and
depth, Fig. 7 shows that the tail of the spatial power spec-
trum in a network with lower smoothness parameter 5 con-
tains less high-frequency content compared to a network
with standard ReLU activations. This aligns well with ear-
lier findings on NTK [7], regarding the invariance of NTK
with respect to depth.

As previously discussed, input size plays a crucial role in
our experiments and has been examined in prior studies by
varying the dataset. To isolate the effect of input size alone,
we trained models on different versions of the Imagenette
dataset with input sizes of 224 x 224, 122 x 122, 64 x 64,
and 46 x 46. The results are presented in Fig. 8.

We have also examined the impact of skip connections
and batch normalization on the tail of the spatial power
spectrum, results shown in Fig. 9. To be able to include skip
connections, we have used slightly deeper networks. While
skip connections slightly affect the tail, batch normalization
generally amplifies it significantly. Interestingly, this agrees
with [12] on the effect of batch normalization on learn-
ing high frequency information, yet suggesting a potential
research direction to reconcile this observation with prior
findings on skip connections mitigating gradient noise [4]
In all cases, ReLU contributes to a heavier tail, whereas
smoother versions reduce the expected frequency as defined
in Eq. (1).

We investigated the impact of input noise during training
on the tail of the spatial power spectrum. Our observations
indicate that Gaussian isotropic noise has a negligible ef-
fect, so we omitted the results to avoid redundancy.

C. A Short Introduction to Kernel Methods

A distinct line of research in machine learning aims to con-
nect neural networks with the classical framework of ker-
nel methods. This work introduced Neural Tangent Ker-
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Figure 5. Ablation Study: Impact of Smoothness Parameter
on Validation Accuracy. This figure presents an ablation study of
our decision to impose an accuracy cap as an early stopping mech-
anism on Imagenette (224 x 224). By relaxing this constraint, we
train smooth parameterizations of ReLU networks with varying
parameters (shown on the x-axis), where 5 — oo corresponds
to a standard ReLU network. As expected from the complexity-
explainability tradeoff, restricting the network’s ability to learn
high-frequency information results in a lower validation accuracy.

nels (NTK) [28], which help explain certain behaviors ob-
served during neural network training. To ensure clarity,
we briefly revisit the definition of kernels: a kernel is a
symmetric function k : X x X — R such that the matrix

Dataset \ Input Size \ LR \ Depth \ Cap
Imagenette 224x224 | le — 4 5 60%
Imagenette 112x112 | le—4 5 60%
Imagenette 64x64 | 3e —4 5 60%
Imagenette 46x46 | be—4 5 60%
CIFARI10 32x32 3e—3 4 70%
Fashion MNIST 2828 le—4 3 80%

Table 3. Table of hyperparameters. This table outlines the gen-
eral hyperparameters used in our experiments analyzing the tail
behavior of the power spectrum (TSPS) of gradient and its rela-
tion to that of the tail of the power spectrum (TPS) of the network.
LR represents the learning rate, and Cap refers to an early stop-
ping criterion based on validation accuracy. To isolate the effect
of smooth parameterization of ReLU, we implemented the vali-
dation accuracy cap to reduce the impact of initialization on our
findings. Since ReLU networks benefit from well-established ini-
tialization strategies and tend to exhibit better convergence proper-
ties compared to its smooth parameterization, a high accuracy cap
could introduce initialization as a confounding factor to our anal-
ysis, see Appendix B for an ablation study of this decision. This
strategy ensures a meaningful comparison by comparing networks
at similar training budgets.

K;; = k(z;,x;) is positive semidefinite for an arbitrary set
X ={z1,...,2z,}. Akernel generally serves as a measure
of similarity between two entities, such as inputs x; and x;.
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Figure 6. Ablation Study: Impact of Validation Accuracy Cap and Learning Rate on the Spatial Power Spectrum. This figure
presents an ablation study on our decision to impose a validation accuracy cap as an early stopping mechanism on Imagenette (224 x 224)
across different learning rates. To assess the impact of this choice, we train the networks for extended sessions of approximately 200
epochs without the accuracy cap. Important to note that, in this setting, the spatial power spectra of the functions do not correspond to
networks with comparable functional behavior, as their performance levels differ—see Fig. 5. This discrepancy was the primary motivation
for enforcing the accuracy cap. Nevertheless, we observe that networks with higher smoothness parameter 3, exhibit heavier tails in their
spatial power spectra, indicating a greater tendency to learn higher-frequency information. However, this trend is less clear compared to

the observations in Fig. 2.

L EF + | AEF

Method ReLU-ViT | GELU-ViT

VanillaGrad [53] | .239 + A.000 | .248 + A.000
o | SmoothGrad [54] | .239 + A.000 | .248 + A.000
$ | IntGrad [58] 2444+ A.005 | .253 + A.005
S | GuidedBp [55] | .253+ A.000 | .247 + A.014
£ | DeepLift [51] 245+ A.007 | .254 + A.006
= | GradCAM [50] | .205+ A.051 | .197 + A.033

LRP [9] Undefined Undefined

Table 4. ReLU vs GELU in ViT-B16 [63]. This table reports
the expected frequency (EF) from Eq. (1) and the explanation gap
(AEF) from Eq. (7) across various post-hoc explanation methods
for a ViT-B16 model trained from scratch on Imagenette, using
different activation functions. All values are scaled by 10*. The
results indicate that the ViT architecture has a greater influence
on lowering EF than the choice of activation function. Interest-
ingly, the relative ordering of EF complexity between ReLU and
GELU is inverted compared to theoretical expectations, which pre-
dict higher EF for ReLU. This discrepancy may stem from the fact
that ViT induces a different kernel geometry [62] than the Laplace
kernel assumed in our analysis [20]. Nonetheless, the activation
function may still influence the smoothness (EF) and complexity
(AEF) of explanations.

NTK provides a kernel-based perspective on neural net-
works, where similarity is defined in terms of weight gradi-
ents. Since our work in explainability relies on input gra-
dients, we are particularly interested in the properties that
NTK can reveal in this context. However, it is important
to acknowledge that NTK was not originally designed for
explainability, and purely theoretical predictions may be in-
accurate. Therefore, experimental validation is crucial.

While a specialized version of NTK exists for con-
volutional networks—namely, the Convolutional Neural
Tangent Kernel (CNTK)—we opted for a more general
case, i.e. NTK framework to support our observations.
This choice is motivated by the fact that the reasoning
in Lemma 1 relies on a core component of NTK, the 7-
transform. As demonstrated in our experiments, NTK pro-
vides a sufficiently accurate approximation for predicting
the tail behavior of the power spectrum.

The discovery of NTKs represents a significant advance-
ment in understanding neural networks. However, in this
work, we primarily leverage results related to the sharpness
of the kernel. Prior studies [20] have identified a striking
similarity between NTKs and the Laplace kernel, under cer-
tain technical conditions, see [20]. Given that we are only
interested in the tail behavior of the power spectrum, with-
out loss of generality, we replace NTK with the Laplace
kernel to simplify our analysis.

Our focus on the spectral decay properties of kernels in-
duced by ReLU networks connects our work to studies on
Reproducing Kernel Hilbert Spaces (RKHS), particularly
NTK, the pre-activation tangent kernel (PTK), and related
research [5, 8, 17, 20, 52] (see Appendices B and D in [5]).
These connections suggest that insights in one domain may
inform advancements in the other.

Additionally, our work is related to feature selection us-
ing kernels [2, 15, 21, 27], highlighting the nuanced rela-
tionship between feature selection and explainability.

This section is based on key results from the kernel meth-
ods literature, particularly [30], which serves as a valuable
resource for a deeper exploration. Kernel methods provide
a powerful framework for non-parametric learning by im-
plicitly mapping data into a high-dimensional feature space
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Figure 7. Ablation Study: Impact of Depth and Learning Rate on the Spatial Power Spectrum. This figure illustrates an ablation study
on network depth (varied across rows) and learning rate (varied across columns) to assess their influence on the spatial power spectrum of
the explanations. Empirically, the spatial power spectra remain largely unchanged with depth, aligning with earlier theoretical findings on
NTK [7]. Additionally, the results support our theoretical framework, which predicts that increasing the smoothness parameter 3, leads to
heavier tails and, consequently, more complex explanations. We should note that the ReL U activation function is recovered whith 5 — oo,
and all experiments were conducted on Imagenette 224 x 224.

through a kernel function k(z, z'). called a positive semidefinite kernel, if the matrix K;; =
k(x;, x;) is positive semidefinite for an arbitrary non-empty
Definition 1. A symmetric function k : X x X — R, is set X ={z1,... ,2n}
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Figure 8. Ablation Study: Impact of Input Size on the Spatial Power Spectrum. This figure presents an ablation study, isolating
the effect of input size by training multiple models on different versions of the Imagenette dataset with varying input resolutions. The
input sizes range from (a) 46x46, (b) 64x64, (c¢) 112x112, and (d) 224x224. As can be observed, the overall trend remains consistent
with previous findings in Fig. 2, though the peak in mid-range frequencies becomes less pronounced as the input size decreases. This
corroborates our conjecture about the correspondence of mid-frequency and very high frequency peaks to the reliance of the model on

edges.

Common examples of such kernels include exponential
functions of the form: k(z,2') = exp(—|x — 2’|7), where
the function is referred to as the Laplace kernel for v = 1
and the Gaussian kernel for v = 2.

A kernel, together with an associated inner product
between functions, defines a Reproducing Kernel Hilbert
Space (RKHS) Hj, where functions inherit smoothness
properties dictated by the choice of k. Notably, different
kernels define RKHSs with varying smoothness constraints,
and a key relationship between them is

(1)

This inclusion indicates that Gaussian RKHSs consist of
smoother functions compared to those in the Laplace
RKHS.

A fundamental result in kernel methods is the Represen-
ter theorem, which ensures that solutions to many learning
problems can be expressed as kernel expansions:

x) = Z a;k(z, x;),

€T

7'lGalussian C 7'lLalplace-

(12)

where z; are training examples from the training set X" in-
dexed by Z, and «; are learned coefficients.

A particularly important class of kernels, known as shift-
invariant kernels, depends only on the absolute distance be-
tween inputs, i.e., A = ||z — z’||. With a slight abuse of
notation, such kernels can be written as k(A). This prop-
erty allows one to take the Fourier transform of the kernel
with respect to A, leading to a simplified yet insightful char-
acterization of the RKHS:

/ |FLE

F{k} '
This expression relates the power spectrum of a function f
to the Fourier transform of the reproducing kernel k. Intu-

13)

itively, a function f belongs to the RKHS of k if the de-
cay rate of its power spectrum is at least as fast as that of
F{k}, thereby constraining the sharpness of functions rep-
resentable by the kernel.

Recent developments in the kernel-based understanding
of deep networks have led to the discovery of the Neural
Tangent Kernel (NTK) [8], which characterizes network be-
havior during training.

The (empirical) NTK for a network f with parameters
W at layer ¢ and two points x( and zy defined as follows,

7 _/of (zo) Of (20)
kl (ZOaZO) - <8VV(Z)7 aW(@)
which is connected to pre-activation tangent kernel (PTK)

K® by noting that 2L&0) = 82(,:"0) o - Therefore, we can
write,

(14)

ke (20, 20) = K\ (20, 20) - ] 2. (15)
see Appendix B and D of [5] for details. Finally, since
gradient-based explanation methods rely heavily on the net-
work’s input gradient, it is unsurprising that advancements
in one domain can inform the other.

Notably, empirical and theoretical findings suggest that
the NTK closely resembles the Laplace kernel [20], imply-
ing that the function space of neural networks is constrained
similarly. This insight provides a theoretical foundation for
understanding the sharpness and expressivity of neural net-
works through a kernel lens.

Interestingly, despite being developed for different pur-
poses, both NTK and gradient-based explanations rely on
input gradients, suggesting that insights from one field can
contribute to advancements in the other.

D. CDF based Normalization

Our work is tangentially related to research on explainabil-
ity, influenced by game-theoretic approaches to explana-
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Figure 9. Ablation Study: Effect of Skip Connections and
Batch Normalization on the Spatial Power Spectrum Tail. This
figure illustrates the impact of skip connections and batch normal-
ization on the tail of the spatial power spectrum on Imagenette
(224 x 224). In (a) the power spectrum’s tail exhibits a slight
increase in networks with skip connections. In contrast, batch nor-
malization generally contributes to a heavier tail. Nonetheless, in
all cases, ReLU tends to amplify the tail, whereas replacing it with
a smoothed function with parameter 5 = 1, reduces the expected
frequency shown in (b), as defined in Eq. (1).

tion [37, 39, 61]. We adopt the assumption that explanations
can be represented as a ranking of input features.

While the explainability community generally agrees
that explanations can be expressed as rankings, the pro-
cess of obtaining these rankings remains unclear. To derive
rankings, existing pipelines incorporate various normaliza-
tion strategies, ranging from simple techniques such as min-
max normalization to more complex, heavily engineered
approaches that are harder to reproduce.

Inspired by literature on spectral analysis of signals [22,
56], we assume that an explanation method gives rise to
a distribution per image across pixels. More formally, if
x(4) denotes the random variable observed in each pixel
of explanation, which is distributed according to 7w (z(7)),
with II(z (7)) being its corresponding cumulative distri-
bution function. To normalize the explanations, we use
II(x(7)) instead of the actual observed values, i.e. ().

To normalize this distribution within a comparable

framework, we apply the inverse transformation method.
This normalization technique aligns different distributions
while preserving their spectral properties and remaining in-
sensitive to magnitude, see Fig. 13.

Compared to alternative normalization methods, such as
norm or max normalization, our approach reveals clearer
spectral-domain trends and is easier to reproduce, as it does
not rely on extensive engineering.

While the inverse transformation method is useful in our
setting, it is highly sensitive to small variations in the gradi-
ent. To mitigate this effect, we average the spectral densities
over 1K samples, although meaningful results often emerge
from a single image.

E. Proofs and Technical Considerations

In this section, we emphasize that the tail behavior is a rel-
atively stable property, meaning it does not change easily.
While the proof involves a tedious case analysis to rule out
various edge cases, it remains conceptually straightforward.

Let k be a kernel equivalent to the Neural Tangent Kernel

(NTK) of a network, and Z is an index for our training set
X. We express our function in terms of its features as

fla) =Y aik(z, ;)

i€l

where, same as Eq. (12), X represents the training set.
Since, in explainability, we are interested in the spectral de-
cay of the function’s input-gradient, we consider

Vof(2) =Y aiVak(x,z:), (16)

i€l

however, we may drop the subscript  from V,, as we only
take the input-gradient.

Lemma 2. Let X = {z;}7, C RY be a dataset of size
n, and let k : RE x RY — R be a shift-invariant kernel
with Fourier transform Igr(w) Define the input-gradient of
the kernel as ¥V k(x,x'). Then, the spectral decay of the
input-gradient of k satisfies the bound:

I F{Vak}? = O(nw?|k(w)[?),

where F denotes the Fourier transform, aligned with the
direction of the gradient, and w is the frequency variable in
the spectral domain.

Proof. To establish an upper bound on the tail behavior of
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Figure 10. Illustration of Kernel Sharpness on the Spatial Power Spectrum Tail. A cartoon illustration depicts the theory regarding the
effect of sharpness of the learned features on the tail of the power spectrum. (a) and (b): The x-axis represents a simplified version of spatial
dimensions (e.g., width or height), while the y-axis shows pixel values, consequently, each sample is visualized as a line. Two samples are
used for simplicity: the red line represents the sample to be explained, and the gray line represents a learned feature from the training data.
In (a), the features arise from the Laplace kernel (sharp), while in column (b), they arise from the Gaussian kernel (smooth). (c): By taking
the gradient of the classifier with respect to the input (along the y-axis in (a)) for the red line (the sample being explained), we get a function
in the spatial dimension, which is visualized in (c). (d): Applying the Fourier transform to the gradient values along the spatial dimension
(x-axis of (c)) reveals different decay rates for the gradient functions, which are visualized in (d). This visualization highlights that the
spectral properties of the gradient values for the sample being explained depend on the spectral properties of the kernel, as formalized
in Theorem 1. This visualization assumes high spatial autocorrelation between the learned features and the input, a characteristic typical of
image data. For discussions on outcomes when this assumption is relaxed, refer to Appendix G. While it is well established that the NTK’s
spectral properties closely resemble those of the Laplace kernel, here we use the Gaussian kernel purely as an illustrative example and do
not explicitly characterize the kernel corresponding to a smoother variant of ReLU.

the gradient of the kernel, we write We denote the spatial dimension by 7, along which we
9 are to use a Fourier basis. Hence, assuming the training
le is a continuous function along the spatial dimension
F{V = |F Vk(z, z; 17) ~ Samp gthesp .
FAV I @)} ‘ {IZ:GIQ (z,@ )} a7 we denote it by x4(7).
’ 5 Let x. denote the sample for which we seek a gradient-
based explanation. Let 2 (7) denote the gradient of the ker-
2 . . e
xw Z; o {k(w, i)} (18) nel w.r.t. the spatial dimension 7:
1€
<w?> a? |Flk(x,z:)} (19) 2, (1) = Vik(ze(7), 24(7)) (22)
ieT
) f ) ) Remark 6. We assume the input data exhibits a high de-
< wlk(w)] Z @; (20) gree of spatial input feature correlation both for x(7) and
i€l Ze(T). This can be simply expressed by a high concentra-
cO (n w2|%(w)|2) (1) tion of spatial power spectrum of the input |2(7)|* around
zero. Therefore, we assume there is a Ty such that the fol-
O lowing condition holds for all T and 7':
Remark 4. As can be seen, the bound O (nw2|k‘(w)|2) for 7| < 0 and |7'] > 10 — [F(1)[2 > [F() 2 23)

input-gradient of the kernel scales with the dataset size. Yet,
we are not interested in the effect of dataset size on the prob-
lem and compare models trained on fixed datasets. Hence,

L L This assumption is common for image data, where
For simplicity of exposition, hereafter we assume n = 1.

neighboring pixels tend to be highly correlated, see Ap-

According to Remark 4, we expect the spectral decay pendix G for further discussion.
of the kernel gradient to depend primarily on the Fourier Furthermore, a condition about z; and x., is the exis-
transform of the kernel itself, specifically the |@(w) |2 term tence of an intersection at a certain point in spatial domain.
in Eq. (21). Let A(7) := z(7) — z(7), then we can express this con-

.. . . dition compactly as:
Remark 5. Writing the function with Representer theorem, pactly

after Remark 4, we have f(x) = a1k(xz,x1), where x; is Ir* suchthat A(7*) =0, (24)
a training sample. For clarity without loss of generality,
hereafter, we let ay = 1 and denote our single training As we will show in the next lemma, this intersection influ-

sample with x;. ences the behavior of the kernel’s spectral decay.



Lemma 3. Let k : R x R? — R be a shift-invariant ker-
nel with spatial Fourier transform k(w), and let V . k(x, x")
denote its input-gradient. Suppose there exist trajectories
x+(T) and x(7), with high autocorrelation, as stated in Re-
mark 6. The asymptotic decay rate of the spatial power
spectrum of the gradient kernel is primarily determined by
the intersection condition stated in Eq. (24).

Proof. We want to take the Fourier transform (with respect
to the spatial variable 7) of the derivative

#(r) = {e(r), 2(r),

where, by the shift-invariance of k£, we may express
d d
ﬁk(:ﬂe(TL 24(1)) = %k(xe(ﬂ —z(7)).
To make the Fourier analysis tractable, we approximate
A(T) by a linear function in the spatial domain. Two cases
arise:
1. No Intersection: If there is no 7 for which A(7) =
0, then a linear approximation yields A(7) = «a with
a # 0. In this degenerate case, no root is present.
2. Intersection(s) Exist: There exists at least one 7* satis-
fying
A(T*) =0.
In a neighborhood of such a point, by a first-order Taylor
expansion,
A1) = a(r = 17),
for some @ # 0 and 7 close to 7*. This approximation
ensures that the linearized A has a root at 7 = 7%, cap-
turing the sharp transition in the kernel.
In the typical setting with many training samples, it is rea-

sonable to assume that such intersections exits, therefore we
focus on case 2. According to the definition of A, we have

d — (7)) = %k‘(A(T))

—k(xe
dz (a: (7)

Under the linearization of A, we can use a local change of

variables * = a7 (which, is only valid locally due to the

linear approximation), we can write

d 1d

—k(—A =——kK — 7).

dx ( (T)) adr (a(T T )>

Taking the Fourier transform with respect to 7 then

yields
Fo(atn) = 17 { ket - )}

By the standard property of the Fourier transform, namely
that differentiation corresponds to multiplication by 1w, it
follows that

. {ddi(a(T - T*))} = iw Fr {k(a(r =)}

Thus, taking the magnitude squared, to compute the power
spectrum, we obtain

2

’]—‘T {ddi(a(T - T*))} = w? [P {k(a(r =)}

Hence,

Fo (N = o |7 {klatr =)}

Due to the translation invariance of the Fourier transform,
the shift by 7* does not alter the decay properties, so that

[ Fe {k(alr =)} = |7 {kan)}[".
Recalling that the spatial Fourier transform of k is k(w), we
deduce )

2 w
A} =25

or, equivalently,

k)|

)

\F {2 ()Y e O<w2 z;(w)z’).

Finally, while one might consider the possibility of mul-
tiple intersections (i.e., multiple neighborhoods where A(7)
changes sign), these contribute only as a multiplicative fac-
tor in the intermediate expressions (analogous to summing
over intersections) and do not affect the order of decay rate.
Therefore, the presence of at least one intersection governs
the tail behavior of the spatial power spectrum of the gradi-
ent kernel. O

Thus, we have demonstrated that the gradient of the sam-
ples can be approximated using local linear projections of
the gradient of the kernel into the spatial domain. Conse-
quently, the sharp transitions in the spatial domain are a di-
rect consequence of sharp transitions in the gradient of the
kernel. Since the tail behavior of the power spectrum de-
pends only on the existence of such sharp transitions and
not on their number, we considered a single intersection for
a single sample in our analysis.

We now present the proof of Theorem 1 under the as-
sumption that the training and explanation trajectories in-
tersect. This assumption is made primarily for theoret-
ical convenience. In practice, factors beyond our theo-
retical model—such as random initialization—can induce
sharp transitions at arbitrary locations. Consequently, the
absence of such intersections is highly improbable when
the explained sample lies within the support of the train-
ing data distribution. This also aligns with previous find-
ings that sharp transitions induced by ReLU breakpoints,
which introduce nonlinearity, occur not only on the training
data [43], but also in surrounding regions.



Theorem 1. Let X C R? be a fixed dataset and let
f : R* = R be a neural network whose associated Neu-
ral Tangent Kernel (NTK) is denoted by KN (c). Then,
the asymptotic decay of the power spectrum of K™ (c) is
directly proportional to the asymptotic decay of the power
spectrum of the spatial Fourier transform of V f ().

Proof. By Lemma 2, the spectral decay of the input-
gradient V f(x) of a shift-invariant kernel is characterized
by
9 .
AV = O(nw?k(w)),

when focusing on a single training sample and a corre-
sponding explanation instance we realize that n would be
a constant.

Next, under the high-autocorrelation assumption and the
existence of an intersection between the training and ex-
planation trajectories (as specified in Eq. (24)), Lemma 3
shows that the tail behavior of the spatial power spectrum
of the gradient kernel is governed by the local behavior at
this intersection. In this region, a linear approximation of
the difference A(7) is valid, and the induced local (approx-
imate) change of variables

r=aT

(with « # 0) enables us to relate the derivative with respect
to x to that with respect to 7 via % = id%.
Consequently, the Fourier transform of the gradient un-

dergoes the transformation

7, {dfcu.)} = LW F ko)) @9)
w2

o? l%(w)f

(26)

which implies that the power spectrum is asymptotically
proportional to

d ~
7 {dzk(-)} € O(w2 |k(w)|2).
Thus, the asymptotic decay of the power spectrum of

K®NT®(¢) is directly proportional to that of the spatial
Fourier transform of V f(x), as claimed. O

Derivations for Eq. (7) In this section, we compute the
two integrals related to the Neural Tangent Kernel (NTK)
connections, under the assumption that the underlying ker-
nel is the Laplace kernel [20]. Since the domain under con-
sideration is finite, we evaluate the integrals over a bounded
interval (I, h).

Our goal is to establish the relation G( f, f) ~ AEF, by
analyzing the asymptotic behavior of both quantities with
respect to the kernel variance parameter b, as it gets modi-
fied according to Lemma 1.

From Theorem 1, we know that the quantity S, in
Eq. (1) is asymptotically equivalent to the power spectral
density of the Laplace kernel:

~ 2b
E(w)]? = —5—
R = 1555
Moreover, Lemma 2 shows that G(f, f) in Eq. (7) has the
same leading-order behavior.

Substituting into the integrals and analyzing their asymp-
totics yields

27

G(1.7) ~ AEF ~ 0 7). (28)

as b — oo, and

~

G(f, f) ~AEF ~ O(b), 29)

as b — 07, thus confirming the scaling relation of interest.

We note that alternative derivations are possible, but we
chose the most direct approach, which also ensures that the
two orthogonal components (EF +A EF) share consistent
units.

F. Contribution of ReLLU to NTK’s Sharpness

The literature of NTK is somewhat denser in terms of the
results around ReL U networks, and as far as the authors are
concerned, SoftPlus has not been considered as an option
when analyzing properties of NTK. Here, we introduce a
creative technique to bypass tedious steps for finding ana-
lytical solutions to for NTK, assuming that we have some
initial results, which is based of convolution operation de-
fined as.

£ glu) = / S =gy (30)

We focus on a work that provides a simple introduction into
the equations needed to be solved for the ReLU NTK.

Summarizing one of the results in [52] for 1 hidden-
layer neural networks with initialization weights and bias
variances 02, = 1, o7 = 0, we have to compute the 7-
transform, defined as:

T (Cvp) = Ezl,ZQNp(zl,ZQ;c,a2) [¢ (Zl) (b (22)] (31)

where ¢ denotes the activation function, and

2 2
p(217z2;0702)=/\/<{8},[;2 e D (32)

After computing the 7-transform, we can compute the
NTK using the following recursive equations:

KNTK) (¢) = KO (¢) + KD (¢) (33)



where K(©)(c) and K (c) are defined as follows
K©(c) =14 (c;p) (34)
KW (e) =74 (c;p) (35)

where 74 is defined as follows

o (6:9) = S5y (cip)

Lemma 1. Let ¢ : R — R be an activation function, and
let KNK)(¢) denote the Neural Tangent Kernel (NTK) as-
sociated with ¢. Define ¢g = ¢ * gg as the activation
function obtained by convolving ¢ with a Gaussian function
gp(x) =4/ %e*ﬁﬂm of precision [3. Then, the NTK corre-
sponding to ¢g, denoted as K éNTK) (¢), leads to a smoother

function in the sense that it exhibits faster decay, compared
to KVTK) (¢).

Proof. We can simply start with the definition of 7-
transform and the convolution of a Gaussian function g with
ReLU ¢, as follows

= Tgugs (G D) (36)

// 03(21)0p(22)p(21, 22)dz1d 2o (37)
— [[ 6% 9ate2) gate)

Tos (€ D)

p(21, 22)dz1d2o (38)
et

5(11)g8(v2)p(21, 22)dr1dvedzi dzs (39)
////(b P(r2)gs(v2)gs(v1)

Iil + V1, K2 + VQ)dlildHQdVldVQ (40)

/ o(K1)d(k2)
(// 98(W2)gs(v1)p(K1 +vi, k2 + yg)duldyg)

dlildl*ig (41)
//¢ HZ1 /€2 (Kl,ﬁg)dﬁldﬂg (42)
=74 (i q) (43)

This shows that the convolution of ReLU with a Gaussian
function changes the covariance matrix of the 7-transform

to:
o? o2
wo-w([SL[0 ) w

As the range of ¢ € [—1, 1] is fixed, increasing 8 would lead
to a matrix closer to identity, hence a smoother kernel.
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Figure 11. Spectral Decay of the Empirical NTK Across

Smooth Parameterizations of ReLU. This figure depicts the
spectral decay of the empirical neural tangent kernel NTK, plotting
the eigenvalues (x-axis) against their normalized magnitudes (y-
axis). This empirical evaluation supports Lemma 1, demonstrating
how the choice of activation function influences the spectral tail
behavior. Notably, ReL U exhibits the heaviest tail, while increas-
ing the Softplus § parameter, shown by SP(3), results in a sharper
decay. For further insights, compare these results with Fig. 2
where there is a very similar progression in the tail of the spa-
tial power spectrum. This figure is produced by the code available
in [42].

We would like to conclude the proof by highlighting the
fact that

L (00 052)) =

where ¢’ = d%(b. Therefore, the 7-transform applied to the
second term of the kernel, i.e. K, would lead to the same
derivations, with a consistent replacement of ¢ — ¢’. [

¢’ * gs(2) (45)

It is important to note that in practice, we approximate
the convolution of Gaussian and ReLU with SoftPlus acti-
vation function. That is

¢ﬁ(x36)

with a proper choice of precision 3, which is directly pro-
portional to the parameter of SoftPlus.

We have also verified the statement in Lemma 1 exper-
imentally in Fig. 11, using the method in [42] for SoftPlus
activation function.

= ¢ * gg(z) ~ SoftPlus(zx; ), (46)

G. Regarding Input’s Spatial Autocorrelation

There are important confounding factors in our analysis, re-
garding the autocorrelation of the learned features and that
of the input features of the data. If the input data has high
spatial autocorrelation, then we naturally expect a high au-
tocorrelation in the learned features after training.

Even though being intuitive, specially in image data, this
phenomenon has not been theoretically proven yet.
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Figure 12. Impact of Low Spatial Autocorrelation on Spatial Power Spectrum of Gradient. This figure illustrates the impact of low
spatial autocorrelation in the input and, consequently, in the learned features on the tail behavior of the spatial spectral density of the
gradient. Compare with Fig. 10. (a) and (b): As in Fig. 10, the x-axis represents spatial dimensions, while the y-axis represents pixel
values. However, unlike Fig. 10, where the input and learned features exhibit high spatial autocorrelation, here both display low spatial
autocorrelation. This phenomenon can be observed in various data modalities, such as data frames. As a result, the relationship between
input samples—specifically, the sample to be explained (red line) and the training sample (gray line)—appears more irregular. (c¢): Taking
the gradient of the classifier with respect to the input yields a function in the spatial domain. Compared to Fig. 10, the gradient function
here is less structured, reflecting the reduced spatial autocorrelation. (d): In this case, applying the Fourier transform to the gradient
values may not reveal distinct spectral decay rates for the Laplace and Gaussian kernels, as the tail behavior is also influenced by the input
autocorrelation.

Unfortunately, proving this property is outside the scope
of explainability and is more towards the literature around
kernel methods or feature alignment. This is important as
we assume continuity and high spatial autocorrelation in our
analysis for recovering the behavior of the tail of the power
spectrum, without a formal proof.

We are aware that such assumption would rule out the
existence and influence of sharp changes in the image, such
as edges.

For a visualization of low feature autocorrelation that
might correspond to a network after initialization, or a net-
work trained on a data with low spatial autocorrelation,
compare Figs. 10 and 12.
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Figure 13. Sample Visualization of Explanations Outputs After Inverse Transformation Normalization. This figure presents a
visualization of the outputs from various explanation methods after applying the inverse transformation method. This normalization
technique aligns different distributions while preserving their spectral properties and maintaining insensitivity to magnitude.
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Figure 14. Sample Visualization of VanillaGrad Explanations Across Smooth ReLLU Parameterizations. This figure presents addi-
tional samples from trained networks with different smooth parameterizations of ReLU, denoted by SP(3). The goal is to illustrate how
the reliance on high-frequency information in a ReLU network and its smooth variants manifests in VanillaGrad explanations. This phe-
nomenon has been discussed in more detail in Sec. 3.4. VanillaGrad explanations provide a local snapshot of the network’s dependence on
features across different frequencies, also known as harmonics [29, 40]. Some of these harmonics can be ’suppressed” through surrogates
introduced by explanation methods. To ensure an unaltered view of this effect, all visualizations in this figure utilize the simplest gradient-
based explanation method, VanillaGrad, applied without any surrogates.



