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1. Details of our network architecture

We provide a detailed breakdown of the network parame-
ters for our two-stage cascaded diffusion model. In the first
stage, a bi-directional recurrent Network performs coarse
reconstruction for all intermediate frames between the two
input RGB frames. The detailed network parameters are
listed in Tab. 1. Due to memory constraints, the second
stage applies frame-by-frame super-resolution on the low-
resolution frames reconstructed in the first stage, with de-
tailed network parameters provided in Tab. 2.

2. Details of our dataset spliting

2.1. GoPro

The original data was recorded at 240 Hz with a resolution
of 1280×720, with the trainset containing 22 video clips and
the testset containing 11 video clips. The transformation
process maintains the original train-test split while dividing
each video clip into sub-clips of 250 frames. From each
sub-clip, a 1280×640 center crop is extracted, which is then
further divided into four equal parts (top-left, bottom-left,
top-right, bottom-right), each with a resolution of 640×320,
effectively increasing the number of sub-clips by a factor of
four. After this transformation, the final trainset consists of
312 video clips, while the testset contains 175 video clips.

2.2. X4K1000FPS

The original dataset is divided into X-TRAIN and X-TEST.
X-TEST consists of 15 video clips, each containing 33
frames at 4K resolution and 1000 FPS. However, since
our data conversion method requires at least 50 consecutive
frames, we did not use X-TEST in our experiments and only
use X-TRAIN as a part of our training dataset. X-TRAIN
comprises 4,408 clips collected from 110 different scenes,
with each clip containing 65 frames at 1000 FPS. We extract
the first 50 consecutive frames from each clip and, based on
our camera’s resolution, split each 768×768 frame into two
equal parts (each 384×768), effectively doubling the num-
ber of clips. These frames are then resized to 640×320 using
bilinear interpolation. After our transformation process, the
remaining 6,126 clips are used for training.

2.3. SportsSlomo

The original dataset consists of 8,498 slow-motion sports
videos scraped from YouTube, with varying lengths. The
raw videos are segmented into clips with frame counts that
are integer multiples of 25 (ranging from 50 to 250 frames).
Each segment is center-cropped to 1280×640 and then pro-
portionally resized to 640×320. Since online videos of-
ten contain abrupt temporal transitions due to scene cuts
or stitched footage, an automated script is used to remove
discontinuous segments. After processing, the final dataset
consists of 5,689 training clips, 189 validation clips, and
838 test clips.

3. Details of our comparison method settings

For the RGB video interpolation comparison methods
XVFI [7], AMT [3], and LDMVFI [1], we retrain them
using the officially provided code. The first and last RGB
frames are taken from the camera-captured images obtained
after DMD conversion of the RGB video, which includes
motion blur caused by multi-frame integration during the
exposure period. The intermediate ground truth (GT) frame
is taken from the sharp frame in the original video. In
the “Only Interpolation” experiment, the first and last RGB
frames are also taken directly from the sharp frames in the
original video, testing only the interpolation performance
of the algorithms. This setup eliminates the influence of
blurred RGB frames on critical processes such as optical
flow estimation.

For the comparison of event-based interpolation meth-
ods, we use the official network structures and pretrained
weights for real-world evaluations. For CBMNet [2], we
adopt the “our large” network architecture and the pre-
trained “ours large weight.pth” model, which was trained
on the ERF-X170FPS dataset. For REFID [8], we use the
official network structure along with the “REFID-GoPro-
15skip.pth” weight file. (We also tested the provided
deblurring + interpolation weights, ”REFID-HighREV-
3skip.pth,” but possibly due to the smaller interpolation gap
during its training, it performed worse than the former in our
tests.) For TimeLens-XL [4], we utilize the “Expv8 large”
model with the “Expv8 large HQEVFI.pt” weight file. In
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Table 1. Detailed architecture of our Bi-directional Recurrent model for the first stage

Stage Layer Type Input Ch. Output Ch. Attn. head dim Additional Info

Input Layer

Input Conv2D 13 160 - Kernel=3, Padding=1

Time Embedding Layer

Time Embed Linear 160 640 - [160, 640], [640, 640]

Downsampling (Forward Encoder)

Down

DownBlock2D 320 160 - ResnetBlock * 4, Downsample (conv)
AttnDownBlock2D 320 320 32 (ResnetBlock + Attn.) * 4, Downsample (conv)
AttnDownBlock2D 640 320 32 (ResnetBlock + Attn.) * 4, Downsample (conv)
AttnDownBlock2D 640 640 32 (ResnetBlock + Attn.) * 4, Downsample (conv)

Downsampling (Backward Encoder)

Down

DownBlock2D 320 160 - ResnetBlock * 4, Downsample (conv)
AttnDownBlock2D 320 320 32 (ResnetBlock + Attn.) * 4, Downsample (conv)
AttnDownBlock2D 640 320 32 (ResnetBlock + Attn.) * 4, Downsample (conv)
AttnDownBlock2D 640 640 32 (ResnetBlock + Attn.) * 4, Downsample (conv)

Middle Layer (Bottleneck)

Mid UNetMidBlock2D 640 640 32 ResnetBlock + Attn.

Upsampling (Decoder)

Up

AttnUpBlock2D 1920 640 32 (ResnetBlock + Attn.) * 5, Upsample (conv)
UpBlock2D 1280 320 - ResnetBlock * 5, Upsample (conv)
UpBlock2D 960 320 - ResnetBlock * 5, Upsample (conv)
UpBlock2D 640 160 - ResnetBlock * 5, Upsample (conv)

Output Layer

Output Conv2D 160 3 - Kernel=3, Padding=1

Fig. 5 in the main article, all systems’ RGB pathways are
configured to 30 FPS, simultaneously recording the same
scene. The event-based method follows the original im-
plementation with 16× interpolation, whereas ours employs
25×.

4. Additional experiments

4.1. Per-frame comparison results

Per-frame visualization results are presented in Fig. 1. For
a fast-spinning windmill, the comparison methods exhibit
blurring and significant failure in intermediate frames far
from the RGB keyframes, whereas our sensor-algorithm
combination can still reconstruct sharp and color-rich in-
termediate frames.

4.2. Diffusion on pixel spaces and two-stage gener-
ation

Due to its high computational cost, the diffusion model
faces challenges in generating high-resolution images and
videos. Our method employs two-stage generation in pixel
space, whereas an alternative approach, proposed by [6],
performs generation in a downsampled latent space. How-
ever, for detail-rich low-level vision tasks, this can lead to
texture deformation and distortion [1, 9], particularly in fa-
cial features and structured grid patterns. In our experi-
mental setup, the latent space method uses a pre-trained
×8 VAE from [5] to generate in a single stage. The
single-stage pixel space experiment is conducted directly at
320×640 resolution, while the two-stage pixel space exper-
iment first generates at 48 × 96 resolution and then super-
resolves to 320 × 640. None of the networks incorporates
the Bi-directional Recurrent Blocks or any other temporal



Table 2. Detailed architecture of our model for the super-resolution stage

Stage Layer Type Input Ch. Output Ch. Attn. head dim Additional Info

Input Layer

Input Conv2D 16 160 - Kernel=3, Padding=1

Time Embedding Layer

Time Embed Linear 160 640 - [160, 640], [640, 640]

Downsampling (Forward Encoder)

Down

DownBlock2D 160 160 - ResnetBlock * 2, Downsample (conv)
DownBlock2D 160 320 - ResnetBlock * 2, Downsample (conv)
DownBlock2D 320 320 - ResnetBlock * 2, Downsample (conv)

AttnDownBlock2D 320 640 32 (ResnetBlock + Attn.) * 2, Downsample (conv)

Middle Layer (Bottleneck)

Mid UNetMidBlock2D 640 640 32 ResnetBlock + Attn.

Upsampling (Decoder)

Up

AttnUpBlock2D 1280 640 32 (ResnetBlock + Attn.) * 3, Upsample (conv)
UpBlock2D 960 320 - ResnetBlock * 3, Upsample (conv)
UpBlock2D 640 320 - ResnetBlock * 3, Upsample (conv)
UpBlock2D 480 160 - ResnetBlock * 3, Upsample (conv)

Output Layer

Output Conv2D 160 3 - Kernel=3, Padding=1

Table 3. Two-stage ablation study results on the SportsSlomo
dataset.

Diffusion Space Two Stage PSNR↑ SSIM↑ LPIPS↓

Latent × 21.25 0.6469 0.3670
Pixel × 16.77 0.6687 0.3037
Pixel ✓ 25.24 0.8127 0.1959

Table 4. Network parameters scaling results on SportsSlomo
dataset.

Num
resblocks

Channels Params PSNR↑ SSIM↑ LPIPS↓

2 [160,320,320,640] 113.63M 23.92 0.8512 0.0994
4 [160,320,320,640] 192.43M 24.78 0.8715 0.0839
2 [320,640,1280,1280] 641.94M 24.58 0.8651 0.0901

awareness mechanisms. Evaluation metrics are provided in
Tab. 4, and visualization results are shown in Fig. 2. It can
be observed that when using ×8 VAE to downsample the
original feature maps, the network struggles to accurately
recover fine details, resulting in unnatural textures in the re-

construction results. On the other hand, when directly gen-
erating high-resolution images in a single-stage approach,
limitations in network capacity and receptive field lead to
color artifacts in the reconstruction. The two-stage cascaded
network achieves the best performance. (Note that at this
stage, the two-stage network does not incorporate any tem-
poral awareness mechanisms, so its color restoration is not
fully optimized. This setup is intended for ablation compar-
isons.)

4.3. Scaling capability of network parameters

We discuss the scalability of our network in terms of pa-
rameter efficiency. Our baseline employs a single-stage de-
noising model in a 48× 96 pixel space, without any tempo-
ral awareness mechanisms. We conduct two sets of experi-
ments: one increases the number of convolutional residual
blocks, while the other expands channels of convolutional
layers. The evaluation metrics are presented in Tab. 4. Eval-
uation results show that increasing the network’s parameter
count significantly improves performance across all met-
rics. Compared to increasing the number of channels per
layer, adding more network layers proves more efficient,
achieving greater performance gains with a smaller increase
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Figure 1. Per-frame reconstruction results on real-captured data compared with event-camera-based methods.

Figure 2. Visualization of the two-stage ablation experiment.

in parameters.

5. More visualization results

In Fig. 3 and Fig. 4, we provide additional frame-by-frame
visualization results to better observe both our conditional
input data and the reconstruction quality.
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Figure 3. Frame by frame visualization results of our method, including input data and reconstruction result.
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Figure 4. Frame by frame visualization results of our method, including input data and reconstruction result.
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