Temporal Rate Reduction Clustering for Human Motion Segmentation

Supplementary Material

A. Experimental Supplementary Material
A.1. Datasets Description

Weizmann action dataset (Weiz). The Weizmann dataset [17] contains 90 motion sequences, with 9 individuals each com-
pleting 10 motions, e.g., running, jumping, skipping, waving and bending. The resolution of video is 180 x 144 pixels with
50 FPS.
Keck gesture dataset (Keck). The Keck dataset [21] contains 56 action sequences, with 4 individuals each performing 14
motions derived from military hand signals, e.g., turning left, turning right, starting, and speeding up. The resolution of video
is 640 x 480 pixels with 15 FPS.
UT interaction dataset (UT). The UT dataset [41] contains 10 video sequences, each of which consists of 2 people com-
pleting 6 different motions, e.g., shaking hands, hugging, pointing, and kicking. The resolution of video is 720 x 480 pixels
with 30 FPS.
Multi-model Action Detection dataset (MAD). The MAD dataset [19] contains 40 video sequences (20 people, 2 videos
each) with 35 motions in each video. The resolution of video is 320 x 240 pixels with 30 FPS. The dataset gives both depth
data and skeleton data.
UCF-11 YouTube action dataset (YouTube). The YouTube dataset [31] contains 1168 video sequences with 11 motions,
e.g., biking, diving, and golf swinging. The resolution of video is 320 x 240 pixels with 30 FPS. Specifically, the human
motions in the YouTube dataset are partially associated with objects such as horses, bikes, or dogs.

To have a fair comparison with the baselines, we cut down the number of human motions of Keck, MAD and YouTube
datasets to 10. For Keck, Weiz and YouTube datasets in which each video captures only one human motion, we concatenate
the original videos and conduct experiments on the resulting videos.

A.2. List of Hyper-Parameters

The hyper-parameters of training TR2C are summarized in Table A.1. We choose the same hidden dimension dpre, output
dimension d, window size s, coding precision ¢, and learning rate 7 for all the experiments and tune the weights \; and A
for each dataset. For training on CLIP features, we decrease the number of training iterations from 500 to 100 due to the
faster convergence, while keeping all the other hyper-parameters unchanged.

Table A.1. Detailed hyper-parameters configuration for training TR?C with different feature extractors.

Features Dataset Clgre d T A1 Ao s € n
Weiz 512 64 500 0.1 12 2 0.1 5x 1073
s Keck 512 64 500 0.1 10 2 0.1 5x 1073
UT 512 64 500 0.1 10 2 0.1 5x 1078
MAD 512 64 500 0.15 15 2 0.1 5x 1073
VGG YouTube 512 64 500 1 2 2 0.1 5x 1073
Weiz 512 64 100 0.1 12 2 0.1 5x 1073
CLIP Keck 512 64 100 0.1 10 2 0.1 5x 1073
YouTube 512 64 100 1 2 2 0.1 5x 1073

A.3. Visualization of Representations by GCTSC and TR*C

In the main text, we have visualized the representations from different motions by different colors to demonstrate the union-
of-orthogonal-subspaces distribution of learned representations. To further demonstrate the temporal continuity of learned
representations, we visualize the data points (i.e., the feature vectors of frames in video) with a continuously varying col-
ormap. As illustrated in Figure A.1 (in the first row), while the temporal consistency is preserved, the distribution of the
representations learned by TR2C are “compressed” in a structured way; whereas the learned representations by GCTSC (in



the second row) do preserve the temporal continuity very well, but lack of specific structures to facilitate the task of motion
segmentation.
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Figure A.1. PCA visualization of learned representations. First row: representations learned by TR?C . Second row: representations
learned by GCTSC. We conduct experiments on the first sequence of each dataset.

A 4. Clustering Performance Evaluation on Different Representations

To further validate the effectiveness of TR2C, we use the HoG features, the representations learned by GCTSC and TR?C
as the input and evaluate the performance of different methods, including Spectral Clustering (SC), Elastic Net Subspace
Clustering (EnSC), TSC and GCTSC. As shown in Figure A2, the clustering performance of representations from TR2C
consistently surpasses that of HoG features, regardless of the datasets and clustering methods used. The performance gap is
notably larger when clustering with SC and EnSC, as these classical clustering approaches overlook the temporal consistency
prior of HMS. In contrast, the performance improvements in TSC and GCTSC, which incorporate temporal consistency reg-
ularizers, are largely driven by the union-of-orthogonal-subspaces distribution learned by TR?C. Notably, the representations
learned by GCTSC also achieve satisfying clustering performance, though they do not outperform TR2C, except for clus-
tering with SC on datasets Weizmann and MAD. It is surprising that the accuracy yields by I' of TR2C even outperforms
“TR2C features+-GCTSC” on all the datasets except for the MAD, implying that the reparameterized affinity matrix is better
at capturing the subspace membership.

A.5. Ablation Study

We report the ablation study results of all the benchmarks in Table A.2. The performances are averaged across all the
sequences of each dataset. As analyzed in the main text, each term in TR?C is indispensable for the learning of temporally
consistent representations that align with a union of orthogonal subspaces.

Table A.2. Ablation study. We report the average performance of all the sequences.

Loss Weiz Keck UT MAD YouTube

L Lpe L, ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
v v 37.30 45.86 47.29 49.78 45.79 35.30 30.27 29.40 94.82 97.30
v v 53.14 61.51 4791 51.39 63.13 59.51 50.54 53.23 96.07 97.77

v v 64.68 74.67 58.60 65.21 65.67 66.09 64.91 72.37 48.16 53.36
v 41.21 44.57 44.01 41.46 46.80 37.49 28.00 22.97 58.87 54.08
v 56.03 64.19 47.50 52.11 76.39 72.41 43.23 43.11 90.15 91.79

v 52.59 60.33 48.35 50.87 62.13 58.29 50.54 53.13 96.01 97.52

v v v 94.07 96.08 86.78 86.93 94.05 92.34 83.99 87.32 96.40 98.50
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Figure A.2. Clustering performance evaluation on different representations.

A.6. Complexity Analysis

We analyze the time complexity of log det(-) operation, as it is the most computationally intensive component in TR?C.
By the commutative property: logdet(I + ZZ ") = logdet(I + Z " Z) (see [34]), we reduce the matrix size involved in
log det(-) from N x N to d x d, which significantly improves both time and memory efficiency, especially when d < N.
Since that —L, + L requires computing log det(-) for NV + 1 times, the complexity of our loss becomes O(N d?®), which
can be further accelerated with GPU support. We report the time cost (ms/iter) of TR2C with varying N on HoG features
(d = 324) in Table A.3. As can be seen, both the time and memory cost of TR?C are significantly reduced by exploiting the
commutative property of log det(-) operation.

Table A.3. Time cost (ms/iter) with varying N on HoG features. “OOM” refers to out-of-memory.

N 200 400 600 800 1000 2000 3000 4000 | Complexity
wlo Commutation 332 97.1 229.1 5468 10393 OOM OOM OOM | O(N%)
Our TR2C 161 177 213 236 280 539 1052 1629 | O(Nd3)

A.7. Learning Curves

We plot the learning curves with respect to £, — A Lpe, L£,, Lpe, £, and the clustering performance in Figure A.3. As
illustrated, the gap between £, and Lz increases rapidly as the £, — A\ L decreases, encouraging the UoS structure of
learned representations. The £, decreases, promoting the temporal continuity of learned representations. Consequently, the
clustering results gradually converge to state-of-the-art performances.
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Figure A.3. Learning curves of the TR>C framework on HoG features.

A.8. Segmentation Results Visualization

To qualitatively demonstrate the effectiveness of TR?C, we visualize the video segmentation results along with the ground-
truth labels for the first three sequences on the five benchmark datasets. Notably, our unsupervised TR*C produces segmenta-
tion results that closely match the manually annotated ground-truth labels on the Weizmann, UT, and YouTube datasets. For
the Keck and MAD datasets, segmentation errors primarily occur in frames capturing transitions between different human
motions. For instance, in the Keck dataset, these frames often show individuals adjusting their standing positions, making it
inherently difficult to determine whether they belong to the preceding or the subsequent motion motion.

A.9. Compared to CLIP Zero-Shot

Next, using the pretrained CLIP model, we explore the performance of zero-shot learning in the HMS task. For the Weizmann
dataset, we first convert the ground-truth labels of the dataset into textual descriptions of each motion. For instance, the motion
“Wavel” is described as “A photo of people waving one hand.” (see Table A.5 for all the descriptions). Then, we extract
text embeddings for all the descriptions using a pretrained text encoder of CLIP. For each frame in the dataset, we match its
image embedding to the text embedding with the highest cosine similarity and assign the corresponding description as the
zero-shot classification result for that frame.

As shown in Figure A.5, the classification accuracy for “Walk” and “Wavel” is 99.89% and 97.40%, respectively, making
them two of the best-performing classes. However, the overall classification accuracy is only 29.14%, which is significantly
lower than the performance of TR?C+CLIP (96.21%). Notably, 63.31% of frames are misclassified as “Walk” while no sam-

53 <¢

ples from the “Jack”, “Jump”, “PJump” and “Side” classes are correctly identified. If we reduce the difficulty by using coarse
labels consisting only of “bend”, “jump”, “run”, “walk” and “wave” (Table A.4), the accuracy of zero-shot classification for
HMS is 39.87%, which is still significantly lower than the performance of TR?C+CLIP (96.21%).

These results demonstrate that vanilla zero-shot classification is not suitable for HMS, which due to the fact that zero-
shot learning classifies frames individually, failing to capture in-context information. In contrast, TR?C+CLIP succeeds by

learning temporally consistent representations that align with a union of orthogonal subspaces.
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Figure A.4. Segmentation results visualization.

(c) Keck Dataset

Confusion Matrix ACC (%)
Wave2 | 44 1 199 2 99 259|117 | | 2.72 Table A.4. Zero-shot classification with coarse label for HMS task. The
Wavel{ 1 16 97.40 coarse ground-truth label is marked in blue .
Walk 1 99.89
— Target ACC
]
g S 283 > P 0-83 GT Bend  Jump Run Walk  Wave (%)
= .
Fi a 000 Bend | 10 629 1.56
‘S Run 21 308 11.44 Jack 83 270 7 327 42 37.04
EPjump 186 7 345 0.00 Jump 458 0.00
¢ .1 2 I8 P Pjump 107 431 19.89
Jume : Run 218 308 41.44
Jack]{ 53 11 321 207 133 4 0.00 Side 444 0.00
Bend]| 9 . 141 Skip 290 311 0.00
Walk 1 895 99.89
Bopy Tacy, i) ‘.7.,,%1?% Sige Sty Moy %"91%"92 Wavel 4 a1 605 92.65
Output label Wave2 | 77 217 330 | 5288

Figure A.5. Confusion matrix of zero-shot classifica-
tion result for HMS task.

A.10. Experimental Details for Temporal Action Segmentation

Datasets description. The Breakfast dataset [22] consists of 1, 712 videos capturing 52 participants performing 10 activities,
including making friedegg, sandwich, pancake, et al. The YouTube Instructional dataset [2] consists of 150 videos with 5
activities capturing complex interactions between people and objects, including changing tire, making coffee, repotting, et
al. The 50 Salads dataset [47] consists of 50 videos capturing people preparing mixed salads from a top-down perspective.
We follow the baselines for the feature extractor selection of each dataset. For the Breakfast and 50 Salads dataset, we
use the Improved Dense Trajectory (IDT) [49] features provided by [23]; and for YouTube Instructional dataset, we use a

concatenation of HOF descriptors [24] and VGG features [44].




Table A.5. Textual description for zero-shot classification of Weizmann dataset.

# Label Icon Textual Description ‘ #  Label Icon Textual Description

1 Bend H A photo of people bending. 6 Side A photo of people side jumping.

2 Jack M A photo of people jumping jacks. 7 Skip A photo of people skipping jump.
3 Jump “ A photo of people jumping. 8  Walk H A photo of people walking.

4 Pjump n A photo of people jumping in place. | 9  Wavel u A photo of people waving one hand.
5 Run H A photo of people running. 10 Wave2 “ A photo of people waving two hands.

Table A.6. Hyper-parameters configuration for training TR?C on temporal action segmentation benchmark datasets.

Dataset e d T A Ao s € n
Breakfast 64 64 100 0.05 12 2 0.1 1073
YouTube Instr. 512 64 500 0.05 20 2 0.05 102
50 Salads 256 64 500 0.05 15 2 0.05 102

Experimental details. A significant distinction of the TAS benchmark datasets compared to that of HMS is that it contains
a higher number of frames per video (e.g., the average number of frames per video of 50 Salads is 11, 788). To address
this discrepancy while maintaining computational tractability, we down-sample each video before training TR?C, then up-
sample the segmentation result back to the original number of frames. Commonly used evaluation metrics, namely, Mean
over Frames (MoF), F1-score, and Intersection over Union (IoU) are computed following the baselines. The architecture of
neural networks remains consistent with the experiments on HMS. The hyper-parameters configuration of training TR*C is
listed in Table A.6. When applying the state-of-the-art TAS methods to HMS datasets, we report the best results after tuning
hyper-parameters which are picked from the Table A.7.

Table A.7. Hyper-parameters tuning for temporal action segmentation methods on HMS datasets.

Method Hyper-parameters for Tuning

TWEF [42] N/A (Automatic Clustering, no parameter to tune)
ASOT [56] « € {0.2,0.5},r € {0.02,0.04,0.06,0.08,0.1}, p € {0.3,0.5,0.7}, A € {0.08,0.11,0.14,0.17,0.2}
HVQ [46] a € {1,2,3,4}, Awec € {0.0005,0.002,0.1}
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