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Figure S1. The mind map for the proposed adversarial robust
memory-based continual learner.

In the manuscript, we propose the problem of adversarial
robust continual learning. Fig. S1 shows the overall mind
map of the work, and Algorithm 1 shows the full pipeline
of our work. Below, we present more details and further
discussions.

A. Detailed Related Works
Continual learning. Continual learning [35] tries to make
the model adapted to the changed data distribution follow-
ing time while containing the knowledge of past data. For
the main challenge: catastrophic forgetting [30, 36], exist-
ing methods can be divided into three categories: memory-
based [7, 8, 37], regularization-based [21, 25, 26], and dy-
namic architecture [14, 39, 46, 50]. In this paper, we choose
two classic settings in continual learning [29]: class incre-
mental (class-il, models un-know task id) and task incre-
mental (task-il, models know task id). Memory-based con-
tinual learner shows superior performance among them in
either class-il or task-il settings without expanding model
size [7, 56]. Hence, our research is focused on robust con-
tinual learners based on it.

What’s more, some works [16, 48, 52] focus on the ro-
bustness of the continual learning under varying experimen-
tal conditions, such as task-order, memory constraints, com-
pute constraints or time constraints, and others focus on
the robustness of continual learning models against back-
door attacks [44] or privacy preservation [18]. Several re-
cent studies [17, 19, 20] have identified the vulnerability
of continual learning models to adversarial attacks, mean-
while applying adversarial sample techniques to stored data
can mitigate catastrophic forgetting in continual learning,

Algorithm 1: Memory-based Adversarial Robust
Continual Learner

Input: Model M with parameters θ, memoryM,
batch data (X1, Y1), ..., (XT , YT )
respectively from different task distributions
{D1, ...,DT }, step size of adversarial
perturbations ϵ, the number of task t epochs
epocht

Result: Final model MθT

1 M← {};
2 Random initialize θ0;
3 for t = 1, ..., T do
4 θt ← θt−1;
5 for m = 1, ..., epocht do
6 Sampling a random batch (Xt, Yt) ∼ Dt;
7 ifM ≠ {} then
8 Sampling a random batch

(XM, YM) ∼M;
9 Xt ← [Xt, XM], Yt ← [Yt, YM];

10 end
11 X̃t,Kt ← PGD(θt, Xt, Yt, ϵ);
12 hθt(X̃t)← Mθt(X̃t);
13 hlc

θt
(X̃t)← AFLC(hθt(X̃t)) Eq. (??);

14 θm+1
t ← Update (θmt , hlc

θt
(X̃t), YT )

Eq. (??);
15 Mt ← RAER(M, Xt,Kt);
16 end
17 M←M∪Mt;
18 end

as observed in recent studies [23, 45]. Chen et al. [10]
first tries to enhance the adversarial robustness of continual
learning models by combining LwF [25] with adversarial
training and using lots of unlabeled data. However, Differ-
ing from [10], we conduct an in-depth analysis of the main
challenges in achieving adversarial robustness in continual
learning and propose a solution that does not require addi-
tional data.

Adversarial defense. Deep neural networks usually are
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vulnerable to adversarial examples [15, 43, 55]. There are
abundant adversarial defense methods to improve the mod-
els’ adversarial robustness [1, 5]. Adversarial training has
been proven the most effective way among them [12, 13,
24, 27, 28, 33, 34, 53], which leverages adversarial exam-
ples as training data. Nowadays, adversarial robustness pa-
pers mainly focus on the ideal experimental setting, Wu et
al. [49] take into account that data in the real world often
have long-tailed distributions, and Shao et al. [40] puts the
problem of adversarial robustness in the open world. More-
over, some studies [11, 38] show that continual algorithms
can facilitate rapid model adaptation to new attack methods.
However, most of them are designed for single-task learn-
ing scenarios, and their effectiveness in continual learning
scenarios remains largely unexplored. Different from prior
works, we delve into how to improve adversarial robustness
in class and task incremental settings.

B. Detailed Experimental Settings
B.1. Main Experiments
Datasets. Following common adversarial training and con-
tinual learning works [6, 34, 57], we conduct systematic an-
alytical experiments on the Split-CIFAR10 [22] dataset and
validate our improvements on the Split-CIFAR10, Split-
CIFAR100 [22], and Split-Tiny-ImageNet [42] datasets.
The Split-CIFAR10 contains ten classes, with 5, 000 train-
ing samples and 1, 000 test samples per class. Split-
CIFAR100 consists of 100 classes, each with a set of 500
training samples and a test set of 100 samples. In the con-
tinual learning setting, Split-CIFAR10 is divided into five
binary classification tasks, and Split-CIFAR100 is divided
into ten tasks, each consisting of a ten-way classification
task. The Split-Tiny-ImageNet has 200 classes, with 500
samples per class for training and 50 samples for validation
and testing, respectively, and is split into ten tasks, where
each task is a 20-way classification task.
Training details. Following common adversarial training
settings, we set perturbations range of 8/255 and step size
of 2/255 while generating adversarial samples. In the train-
ing phase, following DER and X-DER, the learning rate
is 0.1, and the model architecture is ResNet18. For Split-
CIFAR10, Split-CIFAR100, and Split-Tiny-ImageNet, we
perform random cropping with padding of four pixels and
horizontal flipping for both the stream and buffer examples.
Here, we only consider how to achieve adversarial robust
continual learners without large amounts of unlabeled data1.
We train all networks using the SGD optimizer, which is
also consistent with DER. The results of all experiments are
run three times on different random seeds in Split-CIFAR10
and Split-CIFAR100 datasets and two times in Split-Tiny-

1The main external source for Chen et al. [10] is an 80M-TinyImage
dataset, which has been withdrawn due to privacy violations.

ImageNet, and the mean and standard deviation are calcu-
lated. Due to the size of the table, we only show the mean
results in the paper and put the results with standard devia-
tions in the Appendix.

Evaluation metrics. To better measure the concerns
of both adversarial robustness and continual learning, we
computed Final Average Accuracy (FAA) and forgetting for
the adversarial and clean samples, respectively. Projected
gradient descent (PGD) attack and Auto Attack (AA) [12]
are two common and effective adversarial attack methods
in evaluating adversarial robustness [33, 34, 47]. PGD is
a strong and classic white-box attack and we set its itera-
tion as 20 during testing. AA is an ensemble of four di-
verse black-box and white-box attacks to reliably evaluate
robustness, which has been proven to be reliable in evalu-
ating deterministic defenses like adversarial training. Addi-
tional black-box attack (RayS [9]) evaluation results are in
the Appendix.

Here, we set ati as the accuracy for the i − th task after
training on task t. FAA can be defined as:

FAA ≜
1

T

T∑
i=1

aTi , (1)

and forgetting can be defined as:

forgetting ≜
1

T − 1

T−1∑
j=1

fj , s.t. fj = max
l∈{1,...,T−1}

ali − aTj .

(2)
Forgetting ranges from [-100, 100] and measures the av-
erage decrease in accuracy, i.e., the maximum difference
in performance with respect to a given task observed over
training.

Furthermore, CRD, FRI, and RRD in the analysis section
can be defined as:

CRD ≜ FAAclean − F̃AAclean, (3)

FRI ≜ F̃orgettingclean − Forgettingclean, (4)

RRD ≜ (F̃AA
Joint

adv − FAAJoint
adv )− (F̃AAadv − FAAadv),

(5)
where FAAclean is clean data FAA of standard continual
learner, F̃AAclean is clean data FAA of adversarial robust
continual learner; samely FAAadv and F̃AAadv are adver-
sarial data FAA of standard continual learner and adversar-
ial robust continual learner, respectively; Forgettingclean
and F̃orgettingclean are clean data forgetting of standard
continual learner and adversarial robust continual learner,
respectively. F̃AA

Joint

adv is the adversarial FAA of the joint
adversarial learner, and FAAJoint

adv is the adversarial FAA of
joint learner without adversarial training.



B.2. Hyper-parameters in Analysis Experiment
When the continual algorithms are combined with Vanilla
AT (AT), the input of its loss function only changes from
clean samples to adversarial samples, so it will not be ex-
plained in detail.
• ER+AT We set the learning rate as 0.1, batch size as 32,

and the number of epochs per task as 50.
• DER+AT. We set the learning rate as 0.03, batch size as
32, the number of epochs per task as 50, and the α in DER
as 0.3.

• DER+++AT. We set the learning rate as 0.03, batch size
as 32, the number of epochs per task as 50, and the
α in DER as 0.3. The β in DER++ is 0.5 when the
buffer size is 200 for Split-CIFAR10 and 500,200 for
Split-CIFAR100. When the buffer size is 5120 for Split-
CIFAR10, the β in DER++ is 1.0.

• X-DER+AT. We set the learning rate as 0.03, batch size
as 32, m as 0.7, alpha is 0.05, beta is 0.01, gamma as
0.85, lambd as 0.05, eta as 0.001, temperature as 5, batch
size of SimCLR loss as 64, the number of augmentation
in SimCLR loss as 2, and the number of epochs per task
as 10.

B.3. Baselines
Due to the particularity of our task, our baselines comprise
continual learning methods and adversarial training meth-
ods, e.g. “ER+AT”. For the part of continual learning base-
lines, we choose four popular continual learning algorithms,
ER [37], DER [7], DER++ [7], and X-DER [6] in the
analysis section. Furthermore, we combine our approach
with two data selection-based continual learning methods:
GSS [2] and ASER [41], and a logit masking-based method
X-DER to show our performance in the main results sec-
tion. ER randomly stores samples of past tasks and re-
plays them in new tasks, achieving superior results without
other operations; DER and DER++ store logits of old data
based on ER, further alleviating catastrophic forgetting by
distilling knowledge from past tasks, and DER++ addition-
ally utilizes labels of past data to be resistant to forgetting;
and X-DER embraces memory update and future prepara-
tion and uses logit masking, a special case of our AFLC, to
reduce overweighting negative gradients of current data for
past data. GSS selects diverse samples based on gradients.
While ASER, also based on ER, utilizes the Shapley value
to identify the most helpful data for mitigating forgetting.

For the part of adversarial robustness baselines, we
choose four popular adversarial training algorithms:
Vanilla AT [27] (abbreviated as AT in our experiments),
TRADES [53], FAT [54], LBGAT [13], and SCORE [34].
AT adds the adversarial sample directly as training data,
while TRADES adds a regular term that requires the adver-
sarial sample to be consistent with the corresponding clean
sample in logit outputs, both of which are currently strong

robust baselines [33]. FAT chooses the adversarial sample
that just succeeds in each attack to reduce clean accuracy
decline in adversarial training. LBGAT achieves both ro-
bustness and clean accuracy improvements by distilling the
logit of the standard training model. SCORE employs local
equivariance to describe the ideal robust model’s behavior
to achieve top-rank performance in both robust and clean
data.

Given the expensive computation of exhaustively ex-
ploring permutations of various continual learning and ad-
versarial training algorithms, we adopt ER as the foun-
dational baseline in combination with adversarial train-
ing algorithms based on the simplicity and effectiveness
of ER+AT, and choose AT and TRADES as adversarial
training baselines in evaluate the effectiveness of our ap-
proach because of the superior performance of ER+AT and
ER+TRADES in adversarial FAA (Table S6).

Both continual learning and adversarial training are
hyper-parameter-sensitive domains. To reduce the work-
load of tuning parameters, we keep the hyper-parameters
of the continual learning algorithm consistent with the DER
code, and we keep the hyper-parameters of the adversarial
training algorithm consistent with their original papers.

Combined with different continual learning methods.
When the continual algorithms are combined with Vanilla
AT (AT), the input of its loss function only changes from
clean samples to adversarial samples, so it will not be ex-
plained in detail.
• ER+AT. We set the learning rate as 0.1, batch size as 32,

and the number of epochs per task as 50.
• GSS+AT. We set the learning rate as 0.03, batch size as
32, and the number of epochs per task as 50.

• ASER+AT. We set the learning rate as 0.1, batch size as
32, the maximum number of samples per class for ran-
dom sampling as 1.5, the number of nearest neighbors to
perform ASER as 3, and the number of epochs per task as
20.

• X-DER+AT. We set the learning rate as 0.03, batch size
as 32, m as 0.7, alpha is 0.05, beta is 0.01, gamma as
0.85, lambd as 0.05, eta as 0.001, temperature as 5, batch
size of SimCLR loss as 64, the number of augmentation
in SimCLR loss as 2, and the number of epochs per task
as 10.
Combined with different adversarial training meth-

ods. The learning rate, batch size, and other hyper-
parameters associated with the optimization algorithm are
all consistent with the ER algorithm.
• ER+TRADES. When ER+ TRADES combines with

ours, the loss of task t can be normalized as:

Lt ≜ CE(fθ(xt), yt) + β ∗KL(fθ(xt), fθ(x̃t))

+ CE(fθ(xM), yM) + β ∗KL(fθ(xM), fθ(x̃M)),
(6)

where β of TRADES is 6.0.



• ER+FAT. When ER+ FAT combines with ours, the loss
of task t can be normalized as:

Lt ≜ CE(fθ(x̃t), yt) + CE(fθ(x̃M), yM). (7)

Note that when solving the adversarial sample in the train-
ing phase, the iteration is stopped once the attack model
is successful.

• ER+LBGAT. Here we implement LBGAT based on
TRADES (β = 0.0). When ER+ LBGAT combines with
ours, the loss of task t can be normalized as:

Lt ≜ CE(fθ(x̃t), yt) + γ ∗MSE(f clean
θ (xt), fθ(x̃t))

+ CE(fθ(x̃M), yM)

+ γ ∗MSE(f clean
θ (xM), fθ(x̃M)),

(8)
γ of LBGAT is 0.1, and f clean

θ is a standard continual
learning model (ER on our experiments) with the model
architecture of ResNet-18.

• ER+SCORE. Compared with ER+TRADES, it performs
better on clean samples but is less adversarial robust,
probably because the hyper-parameters are unsuitable for
continual learning scenarios. We implement it using β as
4.0, label smoothing as 0.1, and gradient clip g as 0.

Lt ≜ MSE (fθ(xt), yt)

+ β ∗ ReLU(MSE(fθ(xt), fθ(x̃t))− g)

+MSE (fθ(xM), yM)

+ β ∗ ReLU(MSE(fθ(xM), fθ(x̃M))− g).

(9)

• ER+TRADES+ours. When ER+TRADES combines
with ours, the loss of task t is:

Lt ≜ CE(f lc
θ (xt), yt) + β ∗KL(f lc

θ (xt), f
lc
θ (x̃t))

+ CE(f lc
θ (xM), yM) + β ∗KL(f lc

θ (xM), f lc
θ (x̃M)),

(10)
where β of TRADES is 6.0.

C. More Experiments
In this section, we provide experiments mentioned in our
paper, including: 1)Evaluations on Split-Tiny-ImageNet
and more challenging datasets, 2)Extended robustness
verification usingadditional black-box (RayS) and adap-
tive attacks; 3)Training dynamics illustrated through
accuraey curves onSplit-CIFAR10 with varying buffer
sizes(200,5,120); 4)Sensitivity analysis of hyperparameters
(o in AFLC andp in RAER) based on ER+TRADES using
Split-CIFAR10with buffer size 200. 5)Training time for dif-
ferent methods.

C.1. Experiments on Tiny-ImageNet
The results in Table S8 clearly demonstrate that our pro-
posed method is also effective at improving upon the

baseline algorithms on the more challenging Split-Tiny-
ImageNet dataset. Specifically, our approach led to max-
imum improvements in clean FAA of 3.71%, adversarial
FAA of 2.50%, and alleviated forgetting by up to 4.06%.

C.2. Experiments on ViT
The results in Table S10 clearly demonstrate that our pro-
posed method is also effective at improving upon ViT. We
use a ViT-based adversarial training method [31] and ER as
a baseline on Split-CIFAR10. We achieve a max 33.56%
clean forgetting reduction, 20.10% robust forgetting reduc-
tion, and 13.6% FAA improvement.

C.3. Ablation Experiments
As shown in Table S4, we have performed ablation exper-
iments based on ER+TRADES under the Split-CIFAR10
dataset. The results demonstrate that AFLC (Sec. 4.2) can
effectively mitigate the increased forgetting caused by ad-
versarial training under class incremental setting (55.49%
for clean samples and 43.18% for adversarial samples for-
getting, with corresponding FAA improvements of 15.46%
and 2.86%, respectively). AFLC does not show significant
improvement in the task incremental setting due to exces-
sive suppression of future task classification heads and the
use of the same calibration value for classes within the same
task.

RAER (Sec. 4.3) can further improve the robust accuracy
of AFLC by 1.23% for class incremental setting and 2.07%
for task incremental setting and reduce the robust forgetting
by 12.16% and 3.47% respectively. That proves the data se-
lected by RAER describe the overall data distribution more
accurately and effectively mitigate the gradient obfuscation
phenomenon.

When considering the future prior adjustment (FP in Ta-
ble S4), we find that although the forgetting of the class in-
cremental setting is higher, the FAA of both clean samples
and adversarial samples has been significantly improved,
and the forgetting of the task incremental setting has been
further reduced, which proves that FP can reduce negative
gradients to future classes and help learn new tasks.
Hyper-parameter sensitivity. We study the sensitivity of
hyper-parameters α in AFLC and ρ in RAER on the basis of
ER+TRADES with a dataset of Split-CIFAR10 and a buffer
size of 200.
• Impact of ρ. The results are shown in Table S3. The

value of ρ in the range of [5, 10] is robust and ensures
the selection of safe and diverse samples for storage, but
when the parameter ρ is too small (1), the samples se-
lected are safe but not diverse enough to improve the ro-
bustness of the model to a limited extent. We can also
find that adding only RAER does not help the robustness
of the class incremental setting, because the adversarial
sample is too suppressed for the past category, and the ro-
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Figure S2. Schematic diagram of the RAER. A larger k means that the sample is more vulnerable, so the closer it is to its task decision
boundary. RAER can exclude vulnerable samples that over-fit the boundary of the current task, thus selecting samples that are more
robustly safe and more representative of the data distribution.

Methods Class Incremental Setting Task Incremental Setting
Clean Data Adversarial Data Clean Data Adversarial Data

FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓ FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓
ER+AT (ViT) 29.22±0.62 77.33±1.01 18.05±0.12 17.71±0.42 68.39±1.23 85.23±0.62 10.11±0.86 45.19±0.99 44.78±1.21 35.82±0.98

ER+AT (ViT)+Ours 40.41±0.56 43.77±0.21 30.42±0.11 30.24±0.10 48.29±0.45 90.05±0.09 7.93±0.07 58.88±0.27 57.62±0.19 24.16±0.32

Table S1. Experiment results on Split-CIFAR10 dataset and buffer sizes of 200 in ViT. Bold represents the best experimental results for
the same settings.

bustness in class incremental is improved when AFLC is
added (as shown in Table S4).

• Impact of α. The results are shown in Table S5. Ob-
serving the experimental results, we find that as the value
of α increases, the negative gradient impact of adversar-
ial examples on the classification head of previous tasks
decreases, indicating a stronger ability of the model to
resist forgetting. However, when α becomes excessively
large, the model’s learning capacity for the current task is
heavily suppressed, resulting in a decline in the model’s
adversarial robustness. Therefore, we choose α = 3.5 in
other experiments.

C.4. Generalization on Adaptive Attacks

As mentioned by [4, 32], generic attack methods alone are
not adequate to account for solid robustness. Therefore, we
use the adaptive attack based on PGD-20 and Auto Attack
by doing the same logit calibration as our model training
phase when generating the adversarial samples (details in
supplemental materials). As shown in Table S9, we are still
able to maintain stable robustness even under adaptive at-
tacks. We find that adding logit calibration to the solution
adversarial sample stage reduces the attack strength, espe-
cially for AA, and Yang et al. [51] also find a similar phe-
nomenon. We conjecture that logit calibration may intro-
duce overfitting from logit prior when generating adversar-
ial examples.

For both PGD-20 and AA, we considered both class in-

cremental setting and task incremental setting, and the logit
in solving the adversarial sample is processed by AFLC.

hlc
θ (x̃)i = hθ(x̃)i − vi, (11)

where vi is the same as the v of the last task training phase.
More Black-box Attack Method. AA used in our
experiments contains a query-efficient black-box attack,
Square [3]. What’s more, we additionally test the robust-
ness of our model against another strong black-box attack,
RayS [9] (query limitation is 10, 000). As shown in Ta-
ble S2, our method can effectively improve the robustness
of the continual learners under black-box attacks.

Table S2. Defense success rate under black-box attack RayS.

Method S-CIFAR10 200 S-CIFAR10 5120 S-CIFAR100 500 S-CIFAR100 2000

ER+TRADES 7.55 17.90 3.73 4.41
ER+TRADES+Ours 17.4917.4917.49 26.1126.1126.11 9.619.619.61 11.0611.0611.06

Results with Standard Error. In this section, we provide
results with mean and standard error. In the task incre-
mental setting, we observe more stable experimental results
compared to the class incremental setting. Furthermore, our
approach achieves consistent improvements in the majority
of cases.
Accuracy during Training in Split-CIFAR10/100. Fig-
ure S3 shows FAAs of different continual training phrases
of ER+AT, ER+TRADES, and their combination with us.
In the vast majority of experiments, our proposed method



Table S3. Data selection strategy ablation experiments on the
CIFAR-10 dataset with the buffer size of 200, using ER +
TRADES as the baseline in the class/task incremental settings.
When ρ = 11, this is equivalent to not applying the robust data
selection strategy.

ρ
Class Incremental Setting Task Incremental Setting
FAA↑ PGD-20↑ FAA↑ PGD-20↑

11 22.42±7.11 15.72±0.82 78.79±0.81 51.33±2.3

10 18.04±0.58 15.31±0.18 80.38±0.16 59.88±1.21

5 18.21±0.25 15.50±0.12 80.52±0.71 59.50±1.82

1 18.35±0.88 15.06±0.17 79.62±0.23 56.92±0.36

can improve the performance of the baseline models at each
incremental training stage. Despite a minor decline in FAA
on clean samples compared to baselines under the task in-
cremental setting with a buffer size of 5, 120, this is due
to the balance between robustness and performance and the
forgetting alleviation from AFLC diminishes as buffer size
increases. For FAA, this is attributed to that the RAER
component designed for robustness improvement can ad-
versely affect clean data performance, exacerbated by the
large buffer size. The trade-off between standard and robust
accuracy is an expected consequence of adversarial train-
ing, wherein improved adversarial robustness typically in-
curs some cost to natural sample performance. Nonethe-
less, our approach still confers substantial gains in adversar-
ial robustness with limited sacrifice of conventional accu-
racy compared to baselines, as elucidated by the buffer size
analysis on the interaction between RAER and AFLC. In
addition, AFLC aims to mitigate the phenomenon of forget-
ting which hinders the learning of current tasks. Therefore,
in the initial task, there might be a slight performance de-
cline due to AFLC. However, the benefits of AFLC become
prominent in later stages, leading to improved robustness.

Figure S4 shows FAAs of different continual training
phrases of ER+AT, ER+TRADES, and their combination
with us. In the vast majority of experiments, our proposed
method can improve the performance of the baseline mod-
els at each incremental training stage.

C.5. Training time
Table S10 shows the GPU memory usage and training time
per epoch of different methods



Table S4. Ablation experiments on the Split-CIFAR10 dataset with the buffer size of 200, using ER+TRADES as the baseline. Bold
indicates that the inclusion of this module will relatively enhance the corresponding evaluation metrics. Experiments have demonstrated
that AFLC mitigates clean-sample accelerated forgetting from adversarial samples, RAER mitigates gradient obfuscation (Adversarial
FAA has a boost) and robust forgetting; adding FP improves the model’s ability to learn new tasks (FAA has an overall increase).

AFLC RAER FP
Class Incremental Setting Task Incremental Setting

Clean Data Adversarial Data Clean Data Adversarial Data
FAA↑ Forgetting↓ FAA↑ Forgetting↓ FAA↑ Forgetting↓ FAA↑ Forgetting↓
22.42±7.11 77.25±10.79 15.72±0.82 64.95±5.58 78.79±0.81 8.1±0.97 51.33±2.3 21.97±1.31

37.88±0.54 21.76±0.23 18.58±1.9 21.77±0.24 81.66±0.02 10.86±0.78 53.64±1.48 17.6±0.28

37.45±5.28 10.29±11.3610.29±11.3610.29±11.36 19.81±1.7519.81±1.7519.81±1.75 9.61±6.389.61±6.389.61±6.38 78.13±3.1 15.39±4.28 55.71±3.4755.71±3.4755.71±3.47 14.13±3.0914.13±3.0914.13±3.09

43.34±4.2743.34±4.2743.34±4.27 33.40±11.02 19.85±1.5519.85±1.5519.85±1.55 30.78±8.84 82.59±1.1282.59±1.1282.59±1.12 7.53±1.247.53±1.247.53±1.24 59.41±0.6159.41±0.6159.41±0.61 14.16±1.29

Table S5. Ablation experiments of different α.

α
Class Incremental Setting Task Incremental Setting

Clean Data Adversarial Data Clean Data Adversarial Data
FAA↑ Forgetting↓ FAA↑ Forgetting↓ FAA↑ Forgetting↓ FAA↑ Forgetting↓

0.0 38.85±3.2638.85±3.2638.85±3.26 47.53±21.21 17.56±1.40 42.80±21.82 82.70±0.4382.70±0.4382.70±0.43 9.97±1.049.97±1.049.97±1.04 50.67±6.55 26.28±10.45

3.5 37.88±0.54 21.76±0.23 18.58±1.9018.58±1.9018.58±1.90 21.77±0.24 81.66±0.02 10.86±0.78 53.64±1.4853.64±1.4853.64±1.48 17.60±0.28

7.0 35.92±0.88 20.99±6.0320.99±6.0320.99±6.03 13.89±0.63 21.76±0.6721.76±0.6721.76±0.67 82.56±0.58 10.49±3.75 52.69±1.18 16.25±2.5216.25±2.5216.25±2.52

Table S6. Experiment results on Split-CIFAR10/100 dataset and model architecture is ResNet18. Here PGD-20 and AA are adversarial
data Final Average Accuracy (FAA) generated by PGD-20 and Auto Attack (AA) respectively. Forgetting of adversarial data is computed
based on PGD-20. With the addition of ours, model performance can be improved across the board.

(a) Results on Split-CIFAR10. We chose two buffer sizes of 200 and 5120.

Buffer Size Methods
Class Incremental Setting Task Incremental Setting

Clean Data Adversarial Data Clean Data Adversarial Data
FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓ FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓

200

ER+AT 28.18±0.69 80.58±1.05 17.86±0.29 16.94±0.38 69.58±1.15 84.49±0.61 10.23±0.98 44.30±1.05 44.69±1.04 36.89±1.11

ER+TRADES 22.42±7.11 77.25±10.79 15.72±0.82 15.53±0.68 64.95±5.58 78.79±0.81 8.10±0.97 51.33±2.30 51.50±2.33 21.97±1.31

ER+FAT 33.61±6.80 69.21±8.95 15.14±0.80 14.81±0.92 49.04±7.29 83.40±0.92 10.35±0.83 43.69±2.08 43.96±2.11 28.56±2.14

ER+LBGAT 25.68±0.56 84.47±0.63 16.65±0.11 16.56±0.09 70.5±0.29 78.19±1.17 18.85±1.58 40.69±3.03 40.73±3.15 40.83±3.80

ER+Pang et al. [34] 48.65±1.76 56.79±1.78 2.40±0.46 0.93±0.03 18.96±2.47 88.90±2.02 9.82±2.53 7.25±1.06 6.72±0.55 8.70±0.06

ER+AT+Ours 35.68±0.57 71.18±0.66 18.40±0.56 18.16±0.50 67.85±0.72 84.87±0.56 9.93±0.60 47.30±1.31 47.61±1.35 34.04±1.42

ER+TRADES+Ours 43.34±4.27 33.40±11.02 19.85±1.55 18.35±1.14 30.78±8.84 82.59±1.12 7.53±1.24 59.41±0.61 59.59±0.64 14.16±1.29

5120

ER+AT 61.88±0.74 37.72±0.73 27.28±0.56 26.69±0.52 41.66±1.22 91.24±0.19 2.56±0.12 56.59±0.88 56.90±0.88 19.34±1.11

ER+TRADES 20.36±2.81 85.14±4.28 16.3±0.44 16.18±0.35 72.85±1.46 88.48±0.81 1.59±0.86 64.36±0.51 64.52±0.48 12.47±0.37

ER+FAT 54.55±6.71 43.18±7.51 19.68±2.54 18.91±2.38 42.15±3.59 91.50±0.53 2.12±0.80 56.72±0.65 56.87±0.70 14.79±1.13

ER+LBGAT 62.45±0.46 37.73±0.97 27.42±0.27 26.66±0.33 47.83±0.49 91.10±0.62 3.25±1.06 56.57±1.02 56.31±1.13 19.38±0.84

ER+Pang et al. [34] 51.37±6.44 52.84±8.47 3.14±0.49 1.10±0.05 20.29±2.92 95.63±0.17 1.58±0.21 14.66±0.15 13.92±0.04 2.53±0.46

ER+AT+Ours 64.34±0.68 23.64±0.23 31.31±0.07 30.49±0.06 20.46±0.75 91.0±0.07 3.51±0.14 60.49±0.24 60.61±0.28 13.27±0.33

ER+TRADES+Ours 39.80±12.23 44.08±18.66 23.07±6.10 21.98±5.41 41.37±11.41 86.48±2.55 1.71±0.62 69.25±2.23 69.38±2.23 5.33±0.74

(b) Results on Split-CIFAR100. We choose two buffer sizes of 500 and 2000.

Buffer Size Methods
Class Incremental Setting Task Incremental Setting

Clean Data Adversarial Data Clean Data Adversarial Data
FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓ FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓

500

ER+AT 11.94±0.74 73.54±0.75 5.66±0.31 5.54±0.31 38.03±0.10 52.71±0.96 28.44±1.11 17.35±0.08 19.56±0.10 25.67±0.26

ER+TRADES 7.59±0.08 68.13±0.61 5.43±0.05 5.11±0.06 44.13±0.89 50.75±0.42 20.22±0.49 26.89±0.58 27.69±0.56 20.34±0.72

ER+FAT 11.48±0.72 73.99±1.18 5.35±0.26 5.23±0.27 37.26±0.62 56.1±1.23 24.71±1.00 20.01±0.85 22.99±0.91 22.31±1.10

ER+LBGAT 11.77±0.37 75.1±0.40 6.16±0.11 5.82±0.13 39.77±0.18 42.02±2.36 26.45±0.30 13.99±0.83 14.43±0.97 23.14±0.21

ER+Pang et al. [34] 16.22±0.63 77.71±0.44 0.91±0.05 0.62±0.00 6.13±0.16 68.87±0.25 11.21±0.73 3.23±0.42 7.95±0.06 4.94±0.05

ER+AT+Ours 24.14±0.44 53.03±0.3 7.13±0.05 6.68±0.04 25.81±0.13 56.0±0.05 26.19±0.03 17.95±0.04 20.26±0.06 24.87±0.08

ER+TRADES+Ours 23.24±0.01 24.29±0.0 9.93±0.37 7.5±0.37 11.7±3.32 56.68±0.44 21.39±0.12 27.39±0.41 28.5±0.34 16.76±0.22

2000

ER+AT 18.77±0.18 65.06±0.58 7.20±0.18 7.01±0.18 33.56±0.26 62.01±0.76 17.97±0.80 21.16±0.38 24.04±0.23 20.47±0.25

ER+TRADES 9.50±0.24 70.49±0.38 5.35±0.19 5.01±0.17 42.08±0.40 60.63±1.03 13.78±0.90 26.68±0.51 29.19±0.70 18.60±0.54

ER+FAT 17.09±1.96 66.91±3.02 6.12±0.40 5.93±0.38 33.62±1.72 63.88±0.02 15.99±0.47 23.48±0.06 26.75±0.05 17.12±0.62

ER+LBGAT 20.58±0.15 63.31±0.20 7.93±0.17 7.05±0.16 30.09±0.32 55.77±0.23 25.11±0.54 17.95±0.43 18.88±0.54 19.18±0.48

ER+Pang et al. [34] 30.10±0.53 61.51±1.00 0.75±0.22 0.51±0.02 4.10±0.60 76.90±0.44 19.60±0.32 4.88±0.24 11.97±0.26 5.25±0.20

ER+AT+Ours 31.93±0.07 40.5±0.12 9.61±0.06 9.16±0.04 17.78±0.22 63.77±0.18 17.16±0.31 23.11±0.02 25.59±0.08 17.57±0.07

ER+TRADES+Ours 28.73±1.79 24.16±2.6 12.75±0.34 11.02±0.66 14.56±0.7 62.01±0.89 13.16±1.9 34.81±0.41 35.36±0.95 11.6±0.17



Table S7. Experiments with other data selection-based and logit masking-based continual learning methods.

Method Publication
Class Incremental Setting Task Incremental Setting

Clean Data Adversarial Data Clean Data Adversarial Data
FAA↑ Forgetting↓ FAA↑ Forgetting↓ FAA↑ Forgetting↓ FAA↑ Forgetting↓

ER+AT NeurIPS 2019
28.18±0.69 80.58±1.05 17.86±0.29 69.58±1.15 84.49±0.61 10.23±0.98 44.30±1.05 36.89±1.11

ER+AT+Ours 47.70±0.67 53.19±1.87 18.20±0.02 56.73±1.10 85.40±1.28 9.20±1.67 48.38±0.67 31.68±1.49

GSS+AT NeurIPS 2019
27.59±0.62 80.78±0.99 16.67±0.16 68.53±0.11 84.41±0.10 9.83±0.13 44.25±0.87 34.79±0.09

GSS+AT+Ours 36.93±7.13 67.72±15.65 16.84±0.01 60.04±16.20 85.57±0.56 8.86±1.84 47.11±0.04 31.83±0.36

ASER+AT AAAI 2021 18.85±0.00 87.78±0.34 14.06±0.57 65.57±0.01 73.87±6.23 19.01±13.46 30.65±14.44 44.85±30.80

ASER+AT+Ours 24.45±0.03 81.73±0.60 14.91±0.07 62.74±0.66 77.70±0.08 15.21±0.43 34.50±0.15 38.55±0.39

X-DER+AT TPAMI 2022 34.04±0.81 25.13±16.25 16.82±0.95 27.84±17.33 80.80±0.44 4.96±2.74 60.83±0.31 10.99±0.65

X-DER+AT+Ours 43.25±0.09 20.77±2.56 17.22±0.00 18.56±11.86 84.87±0.00 1.74±0.02 61.68±0.00 7.03±1.50

Table S8. Experiment results on S-Tiny-ImageNet dataset and model architecture is ResNet18. Following [7], we choose two buffer sizes
of 200 and 5120. Here PGD-20 and AA are adversarial data Final Average Accuracy (FAA) generated by PGD-20 and Auto Attack (AA)
respectively. Forgetting of adversarial data is computed based on PGD-20. Bold represents the best experimental results for the same
settings. With the addition of ours, model performance can be improved across the board.

Buffer Size Methods
Class Incremental Setting Task Incremental Setting

Clean Data Adversarial Data Clean Data Adversarial Data
FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓ FAA↑ Forgetting↓ PGD-20↑ AA↑ Forgetting↓

200 ER+TRADES 5.50±0.41 54.67±0.13 2.04±0.35 1.92±0.35 22.62±0.21 23.51±1.38 34.72±1.15 5.28±0.73 6.48±0.91 19.10±0.42

ER+TRADES+Ours 7.35±0.437.35±0.437.35±0.43 52.38±0.2252.38±0.2252.38±0.22 2.22±0.082.22±0.082.22±0.08 2.05±0.032.05±0.032.05±0.03 20.79±0.1420.79±0.1420.79±0.14 25.58±0.7325.58±0.7325.58±0.73 34.94±1.4434.94±1.4434.94±1.44 6.24±0.306.24±0.306.24±0.30 7.60±0.267.60±0.267.60±0.26 18.41±0.2018.41±0.2018.41±0.20

5120 ER+TRADES 7.24±0.39 55.69±1.06 2.39±0.16 2.21±0.14 21.59±0.91 41.36±1.07 18.16±1.74 11.01±0.92 13.71±0.78 12.61±1.45

ER+TRADES+Ours 10.95±0.810.95±0.810.95±0.8 51.63±1.1151.63±1.1151.63±1.11 3.01±0.243.01±0.243.01±0.24 2.79±0.252.79±0.252.79±0.25 21.74±0.621.74±0.621.74±0.6 44.81±0.1344.81±0.1344.81±0.13 15.20±0.0815.20±0.0815.20±0.08 12.92±0.1612.92±0.1612.92±0.16 16.21±0.0616.21±0.0616.21±0.06 12.33±0.4212.33±0.4212.33±0.42

Table S9. Adaptive Attack for ER+TRADES+ours. All the attack methods in the table incorporate the same logit calibration as in the
training phase of our model. Forgetting is based on PGD-20. Results show our method still maintains decent robustness.

Dataset Buffer Class Incremental Setting Task Incremental Setting
Size PGD-20 AA Forgetting PGD-20 AA Forgetting

CIFAR-10 200 23.99±1.36 41.76±0.00 26.43±8.04 58.18±0.17 58.32±0.26 15.40±0.26

5120 27.50±2.80 35.29±0.52 1.53±0.69 65.59±3.26 60.69±0.50 5.89±3.20

CIFAR-100 500 9.91±0.52 20.61±0.98 13.10±1.52 26.84±0.94 28.20±0.72 17.13±0.79

2000 13.68±0.93 25.85±0.73 15.33±1.02 34.83±0.62 35.72±0.84 11.59±0.42

Table S10. GPU memory usage and training time per epoch on a single RTX 3090 GPU using Split-CIFAR10 with buffer size 200 and batch size 32. The
results presented are the average values computed across tasks 2 through 5.

Methods SGD+AT Joint AT ER+AT DER+AT DER+++AT X-DER+AT GSS+AT ASER+AT ER+TRADEs ER+FAT

GPU memory/MB 2520 2524 2724 2807 2832 2904 2847 2723 2710 2808
Training time/s 350 1787 356 364 369 387 381 359 438 389

Methods ER+LBGAT ER+SCORE ER+AT+Ours ER+TRADES+Ours GSS+AT+Ours ASER+AT+Ours X-DER+AT+Ours

GPU memory/MB 3722 2819 2758 2773 2853 2734 2984
Training time/s 508 447 358 439 396 360 389
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Figure S3. Accuracy curves on the Split-CIFAR10 with buffer size 200, and 5, 120 settings. The plots’ x-axis denotes the total number of
tasks trained cumulatively up to each learning stage. The y-axis shows the average accuracy of the current task at each respective stage.
The results demonstrate consistent improvements across most stages of continual learning when our proposed approach is combined with
the baseline model.
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Figure S4. Accuracy curves on the Split-CIFAR100 with buffer size 500, and 2, 000 settings. The plots’ x-axis denotes the total number
of tasks trained cumulatively up to each learning stage. The y-axis shows the average accuracy of the current task at each respective stage.
The results demonstrate consistent improvements across most stages of continual learning when our proposed approach is combined with
the baseline model.
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