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The supplementary materials are organized as follows:

¢ Dataset details (Section S1).

* Implementation details (Section S2).

¢ Comparison of AGL and related tasks (Section S3).

* Supplementary experiments: parameter analysis, ex-
periments on varying budget and larger grid size, evalua-
tions using step-to-the-goal as metric, and supplementary
results (Section S4).

¢ Supplementary analysis: path analysis, additional visu-
alization samples and failure case analysis (Section S5).

¢ Discussions: limitations and future work (Section S6).

S1. Datasets Details

S1.1. Massachusetts Buildings (Masa) Dataset

Data Collection. The Massachusetts Buildings (Masa)
dataset [17] consists of 1188 high resolution images of
the Boston area. Building footprint annotations were ob-
tained by rasterizing data from the OpenStreetMap project.
Dataset Composition. The dataset is split in 70% for train-
ing (832 images), 15% for testing and evaluation (178 for
validation and 179 for testing) [19, 21]. Each image, or
search area, is structured as a 5 x 5 grid of search cells,
with 300 x 300 pixels per grid cell. During training, data
augmentation is applied through top-right and left-right flip-
ping, and each search area allows for 25 start positions with
24 possible goal locations, leading to approximately 2 mil-
lion unique training trajectories. For testing and validation,
only a fixed configuration is randomly selected per start-to-
goal distance and per search area, ensuring 895 fixed test
trajectories.

S1.2. MM-GAG Dataset

The MM-GAG dataset [21] was constructed to address the
limitations of existing datasets for Active Geo-localization
(AGL), which often lack precise coordinate annotations and
meaningful goal representations across diverse modalities.

Multi-Modal Goal Representations. Unlike many exist-
ing datasets that focus solely on aerial-to-aerial or aerial-
to-ground localization, MM-GAG introduces multi-modal

goal representations:

* Aerial Imagery,

* Ground-Level Imagery,

* Natural Language Descriptions.

Data Collection. The MM-GAG dataset was built by col-
lecting high-quality geo-tagged images from smartphone
devices across diverse locations. Images have been filtered,
resulting in 73 distinct search areas. Note that through the
link provided in the original paper', we only find 65 search
areas. To ensure fair comparison, we evaluate the proposed
method and the pretrained baseline model provided in the
original paper in Section S4. For each of the 73 ground-
level images, high-resolution satellite image patches were
retrieved at 0.6m per pixel resolution. From these patches,
5 x 5 search grids with 256 x 256 pixels per grid cell
were constructed. To generate textual goal descriptions,
each ground-level image was automatically captioned us-
ing LLaVA-7B [15]. The captioning prompt was carefully
designed to ensure concise and relevant descriptions.
Dataset Composition. Trajectories are selected by ran-
domly sampling start and goal locations within each of the
73 search areas, ensuring a diverse range of search scenar-
ios. For each area, five {start, goal} pairs are chosen for
every predefined distance category, resulting in a total of
365 evaluation trajectories per start-to-goal distance.

S1.3. xBD Dataset

The xBD dataset [13] is a large-scale aerial imagery dataset
designed for disaster analysis. It contains images captured
before (xBD-pre) and after (xBD-disaster) various natural
disasters such as wildfires, floods, and earthquakes.

Data Collection. Imagery for the original xBD dataset was
sourced from the Maxar/DigitalGlobe Open Data Program?,
which provides high-resolution satellite images for major
crisis events. The dataset includes imagery from 19 natural
disasters across 45, 361.79 km? of affected areas. A total of
22,068 images were collected, covering 850, 736 human-
annotated building polygons.

Thttps://huggingface.co/datasets/MVRL/MM-GAG/tree/main
Zhttps://www.digitalglobe.com/
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Figure S1. Additional examples from the proposed SwissViewMonuments dataset with unseen targets. From up to down: goal
presented as ground-level images, goal presented in aerial view, and the search areas.

Dataset Composition. For the specific task of AGL, 800
bitemporal search areas (one image before and one im-
age after the disaster) have been selected from the original
dataset. Each search area corresponds to a 5 X 5 search
grid with 300 x 300 pixels per grid cell. Trajectories are
obtained by randomly sampling 5 pairs of start and goal lo-
cation per start-to-goal distance, resulting in 4000 evalua-
tion trajectories per start-to-goal distance.

S1.4. SwissView Dataset

Data Collection. The SwissView dataset consists in
two complementary components: SwissViewl00 and
SwissViewMonuments. For SwissView100, a total of 100
images were randomly sampled across the entire territory
of Switzerland, sourced from Swisstopo’s SWISSIMAGE
10 cm database’. The spatial distribution of the images is
provided in Figure S2. The original images, with a spa-

3https://www.swisstopo.admin.ch/fr/orthophotos-swissimage-10-cm
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Figure S2. Geographic distribution of the images from the
SwissView dataset. Red points indicate the locations of the 100
randomly sampled images from the SwissView100 subset, while
blue points represent the images from the SwissViewMonuments
subset.

tial resolution of 0.1 meters per pixel and dimensions of
10,000 x 10,000 pixels, were downsampled to a resolu-
tion of 0.6 meters per pixel, resulting in 1500 x 1500 pix-
els images. These downsampled images were subsequently
partitioned into 5 x 5 patches, each measuring 300 x 300
pixels. For SwissViewMonuments, the procedure is iden-
tical, if only for the choice of images. For this part of the
dataset, 15 specific areas of Switzerland have been care-
fully selected for their atypical constructions or landscapes.
We consider targets from two categories: 1) object unique-
ness: landmarks or localizable architectures; 2) location
and scene uniqueness: unseen scene classes. The result-
ing dataset, for example, includes images from remarkable
buildings such as cathedrals and castles, and rare landscapes
like glaciers. Besides the aerial view of the search area, we
also provide the corresponding ground-level images and its
location associated to the aerial view. A few examples from
the SwissViewMonuments dataset are shown in Figure S1.

Dataset Statistics. The location of the selected areas is
also given in Figure S2. Samples from the SwissView100
dataset (in red) are distributed among the region and sam-
ples from the SwissViewMonuments (in blue) are chosen
from cities, tourist attractions and nature reserves.

Dataset Composition. To generate trajectories for the
SwissView100 subset, we followed a similar approach to
other datasets by randomly generating 5 {start, goal} pairs
for each trajectory and each start-to-goal distance, result-
ing in 500 trajectories per distance considered. In contrast,
for the SwissViewMonuments subset, we provide 25 shifted
aerial views for each aerial-ground pair (15 x 25 samples in
total), fixing the goal at all positions in a 5 x 5 grid. For
each specified start-to-goal distance C € {4,5,6,7,8}, we
randomly select one starting point per sample that satisfies

the given distance relative to the fixed goal. Samples with
goal positions that do not permit any valid starting point at
a given distance are excluded from the evaluation for that
distance. This process results in {375, 360, 300, 180,60}
configurations for distances C in {4, 5, 6, 7, 8}, respectively.

S2. Implementation Details

This section provides an overview of the implementa-
tion details, including the pretrained models used for text,
ground-level, and aerial image encoding, as well as the
causal transformer used for action-state modeling. Note
that apart from the action-state dynamics modeling and
curiosity-driven component of our model, the implementa-
tion and training parameters remain consistent with those
outlined in the work of Sarkar et al. [21], which serves as
the baseline for our study.

Text and Ground-level Image Encoders. To encode text
descriptions and ground-level images of the goal, we use
the pretrained encoders from the CLIP model [20], with the
same pretrained weights used in [21], which are available on
Hugging Face®. Specifically, the vision encoder is a Vision
Transformer (ViT-b-32), and the text encoder is based on
the BERT architecture, both of which are aligned in a shared
multimodal embedding space through contrastive learning.
These encoders remain frozen during training of the Geo-
Explorer model.

Aerial Image Encoder. The aerial images are processed
with the Sat2Cap satellite encoder [8], which is fine-tuned
to align its feature representations with the CLIP embedding
space. The alignment is performed using contrastive learn-
ing with the InfoNCE loss [18], leveraging a large-scale
dataset of paired aerial and ground-level images. Note that
the CLIP image encoder remains frozen during this finetun-
ing of the aerial image encoder. This alignment ensures that
the features extracted from the aerial images share the same
representation space as the features from the text descrip-
tions and ground-level images. We use the same pretrained
weights for Sat2Cap as the reference work [21], which can
be found on Hugging Face”.

Causal Transformer. For the Causal transformer used for
sequential action and state prediction, we employ a pre-
trained Falcon-7B model [1]. The pretrained weights can
be found on Hugging Face®. We follow the multi-modal
projection layer introduced in GOMAA-Geo [21], to align

the visual and language modalities into the latent space of

“https://huggingface.co/openai/clip-vit-base-patch32
Shttps://huggingface.co/MVRL/Sat2Cap
Shttps://huggingface.co/openai/clip-vit-base-patch16
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Figure S3. Model architecture of the actor-critic network (action
prediction head).

the Falcon-7B model. Additionally, relative position encod-
ings, measured with respect to the top-left position of the
image, are incorporated into each state representation, al-
lowing the model to encode spatial relationships between
observed aerial images. Note that the primary distinction
from the work of Sarkar et al. [21] is that, in our approach,
both states and actions are predicted sequentially, rather
than solely predicting actions. However, the overall struc-
ture remains unchanged. The Causal transformer is trained
using a learning rate of le — 4, a batch size of 1, and the
Adam optimizer over 300 epochs. We followed the settings
in GOMAA-Geo [21] to ensure a fair comparison.

PPO. During the Curiosity-Driven Exploration (CE)
phase, we introduce an action prediction head on top of
the frozen pretrained Causal Transformer. Since the Causal
Transformer alone does not inherently model decision poli-
cies, the addition of the action prediction head is crucial, as
it allows the system to explicitly learn a mapping from the
learned state representations to the concrete actions to take.
The action prediction head is implemented using an actor-
critic framework and optimized using the Proximal Pol-
icy Optimization (PPO) [22]. This framework consists of
an actor network responsible for policy learning, my(a|s;)
and a critic network vy, (s;) that evaluates the expected to-
tal reward from state s;. As shown in Figure S3, the actor
and critic networks are implemented as Multi-Layer Percep-
trons (MLPs) with three hidden layers. Each hidden layer is
followed by a tanh activation function. The final layer of
the actor network includes a softmax activation to output
a probability distribution over actions, ensuring valid action
selection. The critic network outputs a single scalar value
representing the estimated value function.

At each time step ¢ (which specifies the time index in
[0, 7)), with the state representation s;, the learning process
of PPO can be described as:

(1) The actor chooses an action d; ~ mg (als;), where a €
A is an action from avaliable action set.

(2) The agent executes the action in the environment and
obtains the new state s;; 1 and reward 7<%,

(3) The value, i.e. the total reward from state s; is calcu-
lated by the critic vy (s¢).

(4) The return, i.e. the total reward from taking action a
from state s; is calculated:

T
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(5) The advantage function A; is calculated to estimate
how much better (or worse) an action a; is compared
to the average performance expectation at state s;:

Ay = q(s¢,a) — vy (5¢). )

(6) The actor and critic are updated.

We update both the actor and critic networks using the
PPO loss function, which consists of three main compo-
nents:

* Actor loss (clipped surrogate objective), which compares
the probabilities from the old and the updated policies and
will constrain the policy change in a small range:

Loactor = min{ o Ay, clip <1 —e1+e¢, 7o > At} .

719 0ld 716 ,0ld

* Critic loss, which measures how well the model predicts
the expected reward:

Lciite = (vy(s¢) — q(s¢, 1)) “4)

» Entropy regularization, which encourages policy explo-
ration by preventing premature convergence to subopti-
mal policies:

H [me] (s¢) = — Zﬂg(a\st) logmp(alst).  (5)

The final loss function used for optimization is:
Lppo = E [~ Lactor + wLcritic + pH], (6)

where w and p are hyperparameters controlling the balance
between policy learning, value estimation, and exploration.
We choose the hyperparameters to be consistent with the
baseline model [21]. The learning rate is set to le—4 and the
batch size is 1. The model is trained for 300 epochs using
the Adam optimizer. The values for the hyperparameters «
and S are set to 0.5 and 0.01, respectively. The clipping
ratio € is chosen to be 0.2 and the discount factor  is set to
0.99 for all experiments. As in [21], we copy the parameters
of 7y onto 7y o1q €very 4 epochs of policy training. For CE
stage, patches are resized to 224 x 224 and normalized.



S3. Comparison of AGL and Related Tasks

The following section provides a comparison of four related
tasks: Active Geo-Localization, Visual Geo-Localization,
Cross-View Geo-Localization, and Visual Navigation. It
highlights their characteristics and differences, as well as
associated challenges.

Active Geo-Localization. Active Geo-Localization aims
at locating a target by exploring an environment using a
sequence of visual aerial observations [19]. This task is
especially important in applications such as search-and-
rescue [19, 21], where efficient exploration is crucial for
success. Unlike Visual Geo-Localization [31], where local-
ization relies solely on unique and static observations, AGL
involves movement of an agent to refine position estimates
and ultimately reach the goal. Generally, the goal can be
specified with different modalities, such as images or text
descriptions [19, 21]. Reinforcement learning is often used
to define the agent’s exploration strategy, guiding it towards
the predefined target.

Visual Geo-Localization. The task of Visual Geo-
Localization [31] is linked to the task of Active Geo-
Localization in the sense that both aim at determining a
location based on a given image. However, while Ac-
tive Geo-Localization uses an agent to explore the environ-
ment to refine its position and reach the goal, visual geo-
localization depends on single inputs, such as images or
video frames, without the need for an agent to move [2, 26].
The input image’s location is estimated by comparing the
observed images to an existing database of geotagged im-
ages, often leveraging image-retrieval techniques [4, 5]. Vi-
sual geo-localization can operate in various settings, from
small-scale areas like specific streets [2] to large urban en-
vironments [4], depending on the breadth of the dataset
used. Common applications include mobile device localiza-
tion [6] or autonomous vehicles using street-view data [9].

Cross-View Geo-Localization. The task of cross-view
geo-localization aims at localizing a ground-level image
by retrieving its corresponding geo-tagged aerial view [29,
29, 32, 33]. Especially, fine-grained cross-view geo-
localization [11, 24, 25, 27, 30] requires estimating the 3
Degrees of Freedom (DoF) pose of a query ground-level
image on an aerial image, which is similar to the AGL set-
ting. Although related, cross-view geo-localization requires
full access to the search area to perform matching, while
AGL only provides the agent with partial visibility to the
search area from the outset and performs observation only
along the exploration trajectory.

Visual Navigation. Visual navigation [3, 14, 23] is sim-
ilar to Visual Geo-Localization as both tasks involve an
agent exploring its environment to reach a predefined goal.
However, unlike Visual Geo-Localization, which functions
in aerial, i.e., bird-eye-view environments, visual naviga-
tion typically operates in a ground-level environment. De-
spite the similarities, Active Geo-Localization presents its
unique challenges compared to Visual Navigation. One key
difference is that, in Active Geo-Localization, the goal may
not be visible to the agent in advance or even presented in
different modalities from the agent observation, which intro-
duces a level of uncertainty and complexity. Moreover, the
environment may change abruptly between two actions, as
the agent can quickly transition from one type of terrain to
another (such as moving from an urban region to a wooded
area) due to the larger spatial scope of observations at each
step. In contrast, the environment in which the agent oper-
ates is more localized in visual navigation, which allows for
more accurate location estimation and easier navigation.

Vision-Language Navigation. Vision-language naviga-
tion (VLN) [12, 28], especially Aerial VLN [10, 16], is
linked to AGL as both tasks provide multimodal guidance
to the agent to reach a goal in an environment. Unlike AGL,
VLN performs the navigation in a continuous space in terms
of both observation and action, which poses an additional
challenge. However, AGL also has its unique challenges
compared to VLN. Since VLN assumes that the instructor
knows the goal’s location, the natural language instructions
are detailed throughout the navigation and typically corre-
spond to the agent’s actions (e.g.,“turn right”). In AGL, the
only guidance provided is the goal information, making the
setting more challenging due to the sparse reward and ac-
cumulated errors in a goal-reaching reinforcement learning
context. Moreover, the mainstream methods of VLN are
based on sequence modeling and prediction, which differs
from the RL pipeline in AGL.

S4. Supplementary Experiments

S4.1. Parameter Analysis

The impact of loss weight a. We use loss weight « to
balance the contribution of action modeling loss and state
modeling loss. To evaluate the effectiveness of different ab-
lations, we randomly generate the action-state trajectories
with the optimal actions for each time step on the test set of
the Masa dataset, following the steps described in Section
3.3 of the main paper. Then, we evaluate the models to pre-
dict optimal actions at each step of the trajectory. We use
random seeds to ensure the same trajectories are tested for
all the methods in a test, and we evaluate the models on 5
different tests. The action prediction accuracy for each test
as well as the average prediction among 5 tests are reported



Table S1. Parameter analysis of loss weight o on the test set of
the Masa dataset. The action prediction accuracy is reported for
the DM stage. o« = 0 denotes the baseline with action modeling
loss only.

a Testl Test2 Test3 Test4 Test5S  Average
0 0.6056 0.1883 0.0838 0.6953 0.1429 0.3432
0.5 0.5162 0.1708 0.1133 0.7034 0.1429  0.3293
1 05777 02602 0.0407 0.8299 0.1429  0.3703
2 05687 0.2179 0.0064 0.8055 0.1524 0.3502

Table S2. Parameter analysis of reward weight 3 on the test set
of the Masa dataset. 8 = 0 denotes the baseline with extrinsic

reward only.

B C=4 C=5 C=6 C=7 C=8
0 03978 04939 0.7609 0.8413 0.8648
025 04324 05318 08156 09229 0.9497
0.5 03597 04849 0.7687 0.9073 0.9587
1 03988 04983 0.7542 09028 0.9352

in Table S1. Among most of the tests except test 1, adding
state modeling loss leads to a better action prediction per-
formance, which confirms the fact that state and action tran-
sitions are inherently interconnected and dynamically influ-
encing each other. When o = 1, the model achieves best
overall performance with an improvement of 0.0271 over
the baseline with only the action modeling loss (o = 0).

The impact of reward weight 5. We also control the im-
pact of intrinsic reward on the final reward by using reward
weights 5. Results in Table S2 suggest a good balance
should be achieved between the goal-oriented extrinsic re-
ward, which directs the agent to the goal and the curiosity-
driven intrinsic reward, which encourages the agent to ex-
plore the environment. The empirical results show that
when 5 = 0.25, the agent balances the guidance from ex-
trinsic goal and intrinsic curiosity best.

S4.2. Results on the xBD dataset

We present the supplementary results on the xBD dataset
in Table S3. The results show a small performance gap of
GeoExplorer between the two subsets (0.0149 on average),
indicating the generalization ability of the model.

S4.3. Results on the SwissView100 dataset

The proposed SwissView dataset has two subsets:
SwissViewMonuments for unseen target generalization
evaluation and SwissView100 for cross-domain transfer
evaluation. We present the results from the former setting in
the main paper and the latter one in this section. As stated
before, the test setting for SwissView 100 dataset is the same
as the cross-domain transfer setting on the MM-GAG Aerial
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Figure S4. Comparison between GeoExplorer and the baseline
model with varying search budget when C = 6.

and xBD dataset: the model is only trained on the Masa
dataset and the goal is presented in aerial view. As shown
in Table S4, the model faces domain shifts across datasets:
Compared with the performance on the Masa dataset, the
performance of both methods decreases 0.0375 on average.
However, GeoExplorer still outperforms the baseline, sug-
gesting a better cross-domain transferability.

S4.4. Supplementary results on the MM-GAG
dataset

As mentioned in Section S1, only 65 search areas are found
through the link provided by the paper. To ensure fair
comparison, we evaluate GeoExplorer and the pre-trained
GOMAA-Geo on the same test configurations and report
the results in Table S5. We also report the GOMAA-Geo
performance from the original paper for reference. The re-
sults suggest similar observations with 65 and 73 search ar-
eas: GeoExplorer achieves performances comparable to the
baseline on short paths, while significantly improving SR
when the path is longer.

S4.5. Exploration with varying search budget

Search budget (B) is an important factor in AGL. To give
further insights on its impact on the exploration behaviour,
we compare GeoExplorer and the baseline model GOMAA-
Geo with varying B, when C = 6 in Figure S4. As expected,
as B increases, the performance of both models improves,
as the tolerance for mistakes is higher. More interestingly,
the advantage of GeoExplorer is more obvious when B in-
creases (0.0603 when B = 6 while 0.0850 when B = 12),
as it allows more exploration during localization process.

S4.6. Exploration with larger grid size

We compare GeoExplorer and GOMAA-Geo [21] on a grid
size of 10 x 10 with C = {14 — 18}, providing more
variability for longer paths. As shown in Table S6, Geo-
Explorer consistently shows improvements, especially for



Table S3. Cross-domain transfer on the xBD-pre and xBD-disaster datasets. Note that the models are only trained on the Masa dataset
and the goal is always presented from the aerial view before the disaster for both datasets.

Evaluation using xBD-pre Dataset

Evaluation using xBD-disaster Dataset

Method C=4 cC=5 cC=6 cC=7 C=38 cC=4 cC=5 cC=6 cC=7 C=38
Random policy 0.1412 0.0584 0.0640 0.0247 0.0236 0.1412 0.0584 0.0640 0.0247 0.0236
PPO policy [22 0.1237 0.1262 0.1425 0.1737 0.2075 0.1132 0.1146 0.1292 0.1665 0.1953
AiRLoc [19] 0.1191 0.1254 0.1436 0.1676 0.2021 0.1201 0.1298 0.1507 0.1631 0.1989
DiT [7] 0.1132 0.2341 0.3198 0.3664 0.3772 0.1012 0.2389 0.3067 0.3390 0.3543
GOMAA-Geo [21] 0.3825 0.4737 0.6808 0.7489 0.7125 0.4002 0.4632 0.6553 0.7391 0.6942
GeoExplorer 0.3973 0.4990 0.7328 0.8390 0.8363 0.3975 0.5025 0.7185 0.8190 0.7923
Table S4. Cross-domain transfer evaluation on the Table S7. Step-to-the-goal evaluation of unseen objects gener-

SwissView100 subset of SwissView dataset.

Method C=4 C=5 C=6 C=7 C(C=8
GOMAA-Geo® 0.4100 0.5000 0.6580 0.7780 0.6880
GeoExplorer 0.4020 0.5120 0.7660 0.9040 0.8800

Table S5. Supplementary results on the MM-GAG dataset with
65 search areas. The goal is presented as an aerial image (“I”), a
ground-level image (“G”), or a text (“T”"). Results from the original
paper are in gray and * denotes the results on the same configura-
tions using pretrained model provided by the paper.

Goal Method C=4 (C=5 (C=6 C=7 (C=8
GOMAA-Geo [21] 04085 0.5064 0.6638 0.7362  0.7021

1 GOMAA-Geo* 0.4246 0.4769 0.7385 0.7662  0.6369
GeoExplorer 0.4338 0.5415 0.7631 0.8369 0.8277
GOMAA-Geo [21] 04383 0.5150 0.6808 0.7489 0.6893

G GOMAA-Geo* 0.4585 0.4554 0.6646 0.7169 0.6708
GeoExplorer 0.4308 0.5138 0.7200 0.8246 0.7815
GOMAA-Geo [21] 0.4000 0.4978 0.6766 0.7702  0.6595

T GOMAA-Geo* 0.4277 05015 0.6523 0.7538  0.6677
GeoExplorer 0.4431 0.4892 0.7200 0.8062 0.7631

Table S6. Comparison between GeoExplorer and the baseline
model with larger grid size on the Masa dataset. Note that all
the methods are trained on the 10 x 10 grid size. ** corresponds to
results obtained from the re-trained model using official code [21].

Method C=14 C=15 C=16 C=17 C=18
GOMAA-Geo™  0.2603  0.2704  0.2916  0.2413  0.2201
GeoExplorer 0.2883  0.3117 03352 0.3073  0.3151

longer paths, which aligns with results tested on 5 x 5. Note
that all the models are retrained for the grid size of 10 x 10.

S4.7. Step-to-the-goal (SG) Evaluation

Besides the commonly used metric success ratio (SR) in
AGL, we also provide step-to-the-goal (SG) to evaluate the
Manhattan distance between the path-end and goal loca-
tions on the SwissView dataset. Results in the Table S7
indicate that GeoExplorer improves success rate and brings
the agent much closer to the goal.

alization ability on the SwissViewMonuments dataset. * corre-
sponds to results obtained from the pretrained model [21].

Method C=4 C=5 (C=6 C=7 C=8

GOMAA-Geo*  2.16 1.91 1.18 0.93 0.77
GeoExplorer 2.08 1.56 0.65 0.28 0.30
GOMAA-Geo*  2.19 1.81 1.07 0.69 0.77
GeoExplorer 2.14 1.51 0.64 0.29 0.70

SS. Suppelmentary Analysis
S5.1. Path statistics

We provide an in-depth analysis of the exploration ability
of the model by tracking the visited patches of the baseline
model and GeoExplorer. In Figure S5 (a), we count the end
location of 895 paths from the Masa test set for the ground
truth (goal location), GOMAA-Geo and GeoExplorer. The
results confirm that 1) for C = 4 the goal locations are more
evenly distributed in the search area while the configura-
tions are limited for C = 8. This could explain why we usu-
ally have higher performance when C = 8. As the trajectory
grows, the agent may infer that the goal is likely located at
the corner, based on the training data distribution. 2) The
path end distribution of the baseline model suggests a ten-
dency to visit edge patches (with 84.36% of paths ended
on the edge patches when C = 4), while GeoExplorer im-
proves the exploration of inside patches. The visited patch
distribution shown in Figure S5 (b) confirms this observa-
tion: when C = 4, only 20.08% of the visited patches are
inside for GOMAA-Geo and GeoExplorer increases this ra-
tio as 30.79%. This finding indicates that Geoexplorer im-
proves the performance on the AGL benchmarks by a better
exploration ability of the environment.

S5.2. Failure case analysis

We check and analyze the failure cases of GeoExplorer.
Examples shown in Figure S6 imply two main reasons of
failure: (a) Insufficient target information and (b) Homoge-
nized search area. In Figure S6 (a), the goals are located in
the water and are very similar to the surrounding patches,
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Figure S5. GeoExplorer tends to explore more patches in the search areas, especially the inside patches. (a) Statistics of the path end.
We count the end location of the 895 paths in the Masa dataset test set for ground truth (goal location), GOMAA-Geo and GeoExplorer
when C = 4 and C = 8. (b) Statistics of the path visited. We count all the visited patches of 895 paths in the Masa dataset test set for

GOMAA-Geo and GeoExplorer when C = 4 and C = 8.

(b) Homogenized search area

Figure S6. Failure case analysis. (a) Insufficient target informa-
tion. The target provides limited information for the localization.
(b) Homogenized search area. Patches in the search area are simi-
lar and could mislead the exploration.

providing limited localization information. Along the gen-
erated path, several similar patches have been visited, but

not the target patch. In Figure S6 (b), all patches are similar
in the search area (e.g., similar building patches in an urban
area or mountain patches), which could probably mislead
the exploration process.

S5.3. Additional path visualization examples

To further support our findings, we provide additional
visualization examples from the SwissViewMonuments
dataset (Figure S7), the Masa dataset (Figure S8) and the
SwissView 100 dataset (Figure S9). These figures illustrate
key aspects of GeoExplore’s performance, in particular in
terms of adaptation to new environments and targets and
better exploration strategies, and confirm the quantitative
results presented before. In particular, the three figures
show that (1) GeoExplorer achieves higher success rates
(SR) and generalizes better in novel environments (Fig-
ure S9, SwissView100 examples) and when faced with un-
usual and unseen goals (Figure S7, SwissViewMonuments
examples). (2) GeoExplorer produces also more diverse
paths, while the baseline model (GOMAA-Geo) tends to
follow edge patches, often navigating towards corners be-
fore heading to the goal. This aligns with the statistical
observations made in the main paper, which highlighted
that the goals were more frequently located on the edges
and corners and may lead GOMAA-Geo to overfit in these
areas. (3) Visualization samples also indicate the robust-
ness of GeoExplorer’s exploration. The right panels of
Figures S8 illustrate how a slight change in the goal lo-



cation affects the exploration process for both the Masa
dataset. GeoExplorer seems to be more robust and adapt
its exploration, demonstrating diverse and flexible path se-
lection. In contrast, the baseline model tends to follow sim-
ilar paths regardless of these small changes. The right pan-
els of Figure SO show another controllable configuration on
the SwissView 100 dataset, where we reverse start and goal
locations between the upper and lower examples, which
demonstrates GeoExplorer’s exploration is more robust to
this reversion. Moreover, the images in the two figures are
sourced from different platforms, have varying resolutions,
and depict different locations. This highlights how the pro-
posed dataset enhances data diversity for the task.

S5.4. Additional intrinsic reward visualization ex-
amples

To provide further insights to the intrinsic reward, we pro-
vide additional samples from the SwissViewMonuments
dataset in Figure S10. The patches with higher intrinsic re-
wards are usually unique patches in the search area (e.g.,
the first example of the right column: a green land in an
urban region) or the surprising sample along the path (e.g.,
the first example of the left column: moving from an urban
patch to river). The findings indicate the intrinsic rewards
are content-aware and improve the model’s exploration abil-
ity with dense and goal-agnostic guidance.

S6. Discussion

As an emerging research topic, the task configuration of
AGL still includes some limitations: (1) Continuous state
and action space. Currently, AGL considers a grid-like en-
vironment space for states and actions. For example, differ-
ent states have no overlaps and actions are chosen from a
discrete space. This setting could be further improved as a
continuous space for both states and actions to meet the re-
quirements of real-world search-and-rescue operations. (2)
Real-world development. When developing the models on
an UAV agent, there are some other challenges, for exam-
ple, the noisy ego-pose of the agent and the observation de-
formation. Those challenges should also be considered for
further real-world development of AGL tasks.

As for the methodology, the proposed Curiosity-Driven
Exploration has shown impressive exploration ability for
the AGL task, and would encourage future work to further
understand the exploration pattern of an agent. For exam-
ple, an in-depth study and analysis of how intrinsic reward
affects extrinsic reward and a comprehensive analysis of
how to combine those two motivations would further pro-
vide insights to not only AGL but also other goal-reaching
reinforcement learning tasks.
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Figure S7. Path visualization from the SwissViewMonuments dataset with goals presented in aerial and ground views.
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Figure S8. Path visualization from the Masa dataset test set with goals presented in aerial view. On the right, we show examples with
more controllable {start, goal} configuration: the location of the goal patches changed slightly and the start patch remains the same.
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Figure S9. Path visualization from the SwissView100 dataset with goals presented in aerial view. On the right, we show examples with
more controllable {start, goal} configurations: with reversed start and goal locations.
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Figure S10. Intrinsic reward visualization with images from the SwissViewMonuments dataset. For each sample, from left to right:
the search area, path visualization and intrinsic reward per patch. The patch with the highest intrinsic reward is highlighted with an orange
rectangle in the search area.
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