MVQA: Mamba with Unified Sampling for Efficient Video Quality Assessment

Supplementary Material

1. Visualization of USDS

In Fig. 1, we show the details of USDS sampling in detail.
For each sampled region, we sample three times at the orig-
inal resolution and splice the sampled three chunks accord-
ing to the relative positions of the samples, and then scale
the sampled region to the same size as the sampled chunks
and splice it with the three chunks sampled at the original
resolution. Note that the scaled block is always placed in
the lower right corner. The sampled map obtained by sam-
pling and splicing not only contains distortion information,
but also retains sufficient semantic information, since the
lower right block is a scaling of the entire sampled block.

2. Experiments on Proportion of Mask

During the sampling masking process, we can set the mask-
ing ratio to determine the amount of semantic content to be
retained, as shown in Fig. 2. The experimental results with
different mask ratios are shown in Tab. I. When masking
at ratios of 1/16 and 15/16, the size of the sampled blocks
is 8 x 8. However, since the input block size of the model
is 16 x 16, each input block contains four smaller blocks.
However, when each 16 x 16 input chunk contains four
8 x 8 sampling chunks,this heterogeneity destroys the over-
all consistency of the input chunks, making Patch Embed-
ding unable to effectively integrate the four 8 x 8 sampling
chunks into a unified feature representation. As a result, the
model is inefficient in extracting the local features of each
small block, leading to a significant decrease in the ability to
characterize distorted and semantic information. Addition-
ally, when the ratio is set to 1/2 and 3/4, the performance
decreases, which suggests that while semantic information
plays an important role in VQA, quality information has a
greater impact on quality assessment. As verified in CLiF-
VQA [2] using only semantic information for VQA is very
ineffective, this is because the distorted information plays
a crucial role in the prediction of the model, while the se-
mantic information complements the distorted information.
Therefore, when the proportion of semantic information is
too large, it leads to the deterioration of the model’s effec-
tiveness, so the proportion of semantic information needs to
be controlled.

3. More Experiments on Semantic Analysis

In order to fully verify that USDS can effectively retain the
semantic information of the video, we conduct a large num-
ber of experiments to illustrate this, as shown in Fig. 3.
Consistent with the experimental scheme in the paper, we

Table 1. Experimental results on proportion of mask.

Datasets LSVQ¢est KoNViD-1k LIVE-VQC
Proportion | SROCC PLCC | SROCC PLCC | SROCC PLCC
1/16 0.834 0.830 | 0.826 0.824 | 0.760 0.795
15/16 0.820 0815 | 0.811 0815 | 0.749  0.780
2/4 0.865 0.866 | 0.857 0.861 | 0.795 0.838
3/4 0.856 0.859 | 0.830 0.836 | 0.772  0.820
T1/4 T 7 7| 70882 0.883 | 0.870 ~ 0.868 | 0.828 0.848

use the CLIP [3] model, which has strong visual language
capabilities, for semantic perception. Specifically, we de-
sign a textual description for each experimental video that is
most relevant to the semantic information of the video, and
then this textual description is input into CLIP for seman-
tic perception along with an empty description. Numerous
experimental results demonstrate that the USDS designed
in this paper can retain more semantic information of the
videos compared to Fragments. Specifically, in all the re-
sults in Fig. 3, the average semantic score of Fragments is
0.353, while the average score of USDS is 0.845.

4. Comparison of USDS and Simple Connec-
tion

Compared to the semantic fusion approach of USDS, the
simple connection of original video frames with complete
semantic information directly to the sampling results is the
most intuitive semantic fusion approach. Here, we compare
the connected fusion approach with USDS. Specifically, 1
scale the original video frames to a size of 224 x 224 as a
semantic map and then concatenate them with the sampled
distortion maps from Fragments. We keep the total num-
ber of frames in the input of the model to 32 frames. We
compare the effect of connecting 1, 4 and 16 frames of the
semantic map respectively. As shown in Tab. 2. From the
experimental results, it can be concluded that better results
can be obtained by USDS compared to simple connection.

Table 2. We perform simple concatenation with the semantic in-
formation of 1, 4 and 16 frames, respectively.

Datasets LSVQ¢est KoNViD-1k LIVE-VQC

Sampling SROCC PLCC | SROCC PLCC |SROCC PLCC

Concatenation (1) | 0.850 0.852 | 0.838 0.840 | 0.766 0.802
Concatenation (4) | 0.862 0.862 | 0.849 0.852| 0.783 0.808
Concatenation (16) | 0.848 0.846 | 0.834 0.834 | 0.759 0.773
USDS 0.882 0.883 | 0.870 0.868 | 0.828 0.848
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Figure 1. Visualization of USDS.
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Figure 2. A schematic of the different scale masks. We perform mask fusion between distortion sampling and semantic sampling at
different proportions, embedding the smaller sampling results into the larger ones. The red boxes represent the embedding locations.

5. Additional Description of Single-branch and
Multiple-branches

In the experimental section of the paper, we categorize the
deep learning-based VQA methods into single-branch and
multi-branch methods. This type of method usually ex-
tracts only one type of features, such as spatial details or
statistical properties, from the input video data. Single-
branch methods rely on a single path and aim to capture
core quality-related information in a compact and computa-
tionally efficient framework. The computational complex-
ity of single-branch methods is typically low, giving them
an advantage in resource-constrained scenarios. However,
since video quality perception involves multiple visual and
temporal cues, it may be difficult for single-branch methods
to fully capture its complexity. In contrast, multi-branch
approaches utilize a more complex architecture that con-
tains two or more independent processing channels. Each
branch is typically designed to extract specific types of fea-
ture information, enabling a richer and more comprehen-
sive analysis of video quality. For example, one branch
may focus on extracting spatial features such as texture
or edge information, while another branch targets tempo-
ral features such as motion coherence or inter-frame con-
sistency. By integrating these heterogeneous feature rep-
resentations through a fusion mechanism, multibranch ap-

proaches are better able to model the complex interactions
between multiple factors that affect the perception of video
quality. However, this enhanced flexibility and granular-
ity not only increases the complexity of model design, but
also significantly increases the computational complexity,
making multibranch methods often far more demanding in
terms of computational resources than single-branch meth-
ods. The difference between these two paradigms highlights
a fundamental trade-off in VQA research: single-branch
methods achieve efficiency and simplicity with low com-
putational complexity, whereas multi-branch methods trade
higher computational complexity for robustness and adapt-
ability to diverse characteristics of video content and dis-
tortion. In this study, on the one hand, thanks to the unique
characteristics of USDS sampling, our method is able to ex-
tract both distortion features and semantic features under
a single branch, which retains the low complexity advan-
tage of single-branch methods; on the other hand, by effec-
tively integrating distortion and semantic information, our
mamba-based architecture significantly reduces the compu-
tational complexity while realizing significant performance
improvements compared to previous methods. On the other
hand, by effectively integrating the distortion and seman-
tic information, our mamba-based architecture significantly
reduces the computational complexity while realizing sig-
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Figure 3. Results of semantic analysis experiments.
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