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Abstract

In this supplementary material, we provide additional in-
formation for the implementation details (S1) and statistics
of the MVGT dataset (S2). We extend our model to use more
than 2 views (S3). We provide detailed information for the
absolute depth computation (S4) and camera calibration
procedure (S5). We show the angular errors of the predicted
gaze vectors of our model (S6). We provide further analyses
of the HIA (S7), UGS (S8), and ESA (S9) modules . We an-
alyze the sensitivity of the model to the camera parameters
(S10) and analyzed the complexity and costs of our model
(S11). We show the performance of training our model with
the same learning rate when evaluating on different scenes
(S12). We show the performance of a reproduced baseline
model on the GazeFollow dataset (S13). We provide addi-
tional discussions of the applicability, generalization, and
limitations of our dataset and model (S14).

S1. Implementation Details
In the overall loss computation, we used α = 10.0 and
λ = 0.1. As mentioned in the main text, we performed
leave-one-scene-out cross-validation in our experiments. β
was set as 0.05 when leaving out the commons room scene
for evaluation, and 0.3 when evaluating other scenes. We
used a learning rate of 5 × 10−5 and a batch size of 40
when pretraining the single-view version of our model on
GazeFollow [8]. When fine-tuning the model on MVGT,
we first train the gaze estimator with a learning rate of
1× 10−4 with a batch size of 60. Then we fine-tune the full
model using a batch size of 40 pairs of views. The learn-
ing rate is 2.5 × 10−6 when evaluating the lab and store
scenes, 2.5 × 10−5 when evaluating the commons scene,
and 1×10−5 for the kitchen scene. For the cross-view task,
due to the relatively small number of samples, we used a
learning rate 1 × 10−7 for the research lab and commons
room scenes, and 1× 10−8 for the store and kitchen scenes
. To obtain the eye location of the subject when computing
the field-of-view (FoV) heatmap, we apply a face keypoint
estimator [2] to the head crop of the subject and locate the
eye keypoint location. If no eye is detected (e.g., the per-
son is looking away from the camera), we choose the center
point of the head bounding box as the eye location.

S2. Additional Dataset Information
Here we provide more detailed statistics on the division of
of the dataset regarding the head and gaze target visibilities
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Table S1. Statistics of the camera view pairs in MVGT dataset
regarding head and face visibilities in both the primary and refer-
ence views. Cells shaded in green are the camera view pairs used
in comparison with single-view GTE methods. Cells shaded in red
correspond to the pairs used in the cross-view GTE experiment.

in the reference view. As shown in Tab.S1, we divide all the
68,430 camera view pairs into 4 × 4 cells according to the
head and face visibilities of the primary and reference view.
In Tab.1 in the main paper, we compared with single-view
gaze target estimation (GTE) baselines, and evaluated the
models on the primary view images. The cells shaded in
green are the samples used in this scenario, as the primary
view images must be applicable for GTE with themselves
(head is visible). Within those samples, the ones with the
target visible for the primary view are used for the GTE
task, while all the samples shaded in green are used for
the in/out classification task. On the other hand, the cells
shaded in red are the pairs that we used for cross-view GTE
and in/out classification, in which the head is only visible
in the reference view. The rest of the pairs (white) are not
used in any experiments, as neither single-view nor multi-
view GTE methods are applicable due to the head not being
visible in either view.

S3. Extension to More Camera Views

Method Views Dist. ↓ AP ↑
Ours-Single 1 0.150 0.868
Ours 2 0.130 0.894
Ours 4 0.121 0.897
Ours 6 0.118 0.898

Table S2. Results of extending to more camera views. Our method
shows greater improvements when using more camera views.

In this section, we extend our method to more than 2
camera views with a simple strategy by using multiple view
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Figure S1. (a). The procedure of absolute depth estimation. We first reconstruct the scene and obtain the absolute depth for all views using
a set of images from 6 cameras (e.g., calibration images). For a new input image, we estimate the scale and shift between the monocular
depth map and the absolute depth obtained from reconstruction using RANSAC, by masking out the person bounding box location along
with the calibration cube location in the reconstruction image. We use the estimated scale and shift values to obtain the absolute depth for
the new input image. (b) Example point clouds of the entire scenes reconstructed by Dust3R [12] using 6 images from 6 cameras.

pairs with the same primary view image simultaneously.
E.g., when using 4 camera views, we use 3 view pairs where
the same primary view (e.g. Camera1) is paired with 3 dif-
ferent reference view images (e.g., Cam2, Cam3, Cam4).
For each pair with index i, we obtain an uncertainty score
σi from the view with the lower σ value (i.e., the view se-
lected in UGS). From all 3 pairs with their obtained uncer-
tainty scores σ1, σ2, σ3, we choose the output from the pair
with the lowest σ value as the prediction for the primary
view. This enables our method to leverage more camera
views without any additional training.

Tab.S2 shows the results. Unlike Tab.1 in the main paper,
here we investigate the effect of the number of camera views
used without considering the head and gaze target visibility
of the reference views. In this way, a primary view image
is paired with each of the 5 other camera views and forms 5
pairs. In evaluation, for each primary view image, we ran-
domly select 1 pair when using 2 views, 3 pairs when using
4 views, and all 5 pairs when using 6 views. When using 2
or 4 camera views, we run the model 5 times and report the
average performance. Although our method with two views

already outperforms the single-view baseline significantly,
using more views shows even further improvement.

S4. Absolute Depth Computation

In this section, we describe our procedure for estimating the
absolute depth in cross-view GTE. As shown in Fig.S1a, we
first reconstruct the 3D scene using a set of images from all
6 cameras (e.g. images used in calibration) and obtain the
absolute depth D∗

r for each camera view. As we mentioned
in the main paper, by inputting the camera parameters cali-
brated in real-world metrics, Dust3R can generate depth es-
timations that are very close to the absolute depth values by
optimizing a reconstruction loss. After the 3D reconstruc-
tion, when a new input image comes during training and
evaluation, we estimate the scale and shift between its rela-
tive depth map D from a monocular depth estimation model
and the absolute depth D∗

r obtained from reconstruction by
masking out the area that changes with a mask Mr. We use
RANSAC to estimate the scale and shift for the input image



with this mask Mr:

a, b = RANSAC
M

(i,j)
r ==1

(D(i, j),D∗
r (i, j)), (1)

With the estimated scale and shift, we can obtain the ab-
solute depth D∗ of the new input image: D∗ = a ∗D + b.
Note that after reconstruction, we do not require additional
camera views to be available for input. We run this pro-
cedure for both the primary and reference views. With the
absolute depth from both views obtained, we can obtain the
real 3D eye location in the reference view, and transform the
location to the primary view’s coordinate system using the
extrinsic parameters. In this way, the FoV heatmap for the
primary view can be obtained in cross-view GTE settings,
even when the person is not visible in the primary view.

S5. Camera Calibration Details

Figure S2. Protocol for calibrating extrinsic camera parameters.
We use a cube stuck with AprilTag patterns to calibrate all cam-
eras’ extrinsic parameters. The automatically detected corners for
the patterns are visualized. We measured the 3D physical locations
of these corners before calibration.

In this section, we provide more details of our camera
calibration procedure. We used chessboard patterns for cal-
ibrating the intrinsic parameters, which is a common proto-
col for intrinsic parameter calibration. For calibrating the
extrinsic camera parameters, we used a cube stuck with
AprilTag patterns on different faces. As shown in Fig.S2,
we first measure the 3D physical locations of all the April-
Tag corners in the cube, and put the cube in a location where

it can be observed by all cameras. The 2D locations of
the corners can be automatically detected [7], and the ex-
trinsic parameters can be obtained using PnP (Perspective-
nPoints). By using this protocol, the extrinsic parameters
can be obtained with just one set of images taken. We cali-
brate the extrinsic parameters before the data collection ses-
sion of each subject. If no position is visible to all cameras
without occlusion, calibration is performed twice using a
common camera as the shared coordinate system.

S6. Analyses of Predicted Gaze Vectors
In this section, we specifically investigate the angular errors
of the predicted gaze vectors in our model under different
ablation conditions. The ground truth gaze vectors are ob-
tained from the 3D eye locations and gaze target locations
computed from triangulation when they appear in multiple
camera views. This provides more accurate ground truths
than the “pseudo” gaze vectors used in training. Tab.S3
shows the results. Training with the uncertainty loss results
in an overall improvement in predicted gaze vectors. The
HIA leads to a significant improvement when the head is
visible, showing its effectiveness in aggregating head infor-
mation from another view. It also shows a small improve-
ment when the head is not visible. We hypothesize that
this is because the model benefits from the overall multi-
view training. The UGS module shows improvement when
the reference view includes the head but not the gaze tar-
get, where the subject is typically facing the camera with
a clearly visible face and is selected as the more reliable
gaze vector. The ESA module is responsible for aggregat-
ing scene information, and does not show a large change in
gaze vector prediction.

σ HIA UGS ESA

Head Vis. Head Not Vis.
Target
Vis.

Target
Not Vis.

Target
Vis.

Target
Not Vis.

Ang. ↓ Ang. ↓ Ang. ↓ Ang. ↓
28.71 28.93 29.15 29.73

✓ 26.94 27.28 27.69 28.22
✓ ✓ 21.20 21.32 25.22 26.40
✓ ✓ ✓ 20.50 19.72 24.87 25.78
✓ ✓ ✓ ✓ 20.47 20.02 24.68 25.84

Table S3. Angular Errors of predicted gaze vectors of our method
under different ablation conditions.

S7. Analyses of HIA Module
In this section, we provide more detailed analyses of the
HIA module. We first analyzed the effects of the two addi-
tional inputs of HIA: the head crop image in the other view,
and the relative rotations between views computed from the
extrinsic parameters. Tab.S4 shows the results. Here we



treat our method only with the HIA module (without UGS
and ESA) as the base model to avoid the potential influ-
ence of other components. In the 2nd row, we discard the
head image input in the reference view, by inputting zero-
padded tensors to the HIA module in all cases. It shows a
large drop in all metrics when the head is visible, demon-
strating that HIA effectively leverages the head appearances
from the other view to enhance the embeddings. The per-
formance does not change when the head is not visible, as
the input is the same. In the first row, we trained the model
with HIA by removing the input camera parameters (rela-
tive rotations). This also results in a significant drop when
the head is visible. This suggests that without the geometric
relationship between views, the model cannot learn how to
effectively uses the head appearance from the other view.
There is also a large drop in AP when the head is not visible
in the reference view. This shows that with the input cam-
era parameters, the head embedding is enhanced with 3D
geometric-aware information and benefits the performance
of in/out prediction when input to the in/out prediction head,
as shown in Fig.4 in the main paper.

Method
Head Vis. Head Not Vis.

Target Vis. Target Not Vis. Target Vis. Target Not Vis.
Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑

No Cam. 0.150 0.880 0.152 0.875 0.175 0.776 0.154 0.847
No Head 0.149 0.876 0.155 0.886 0.174 0.821 0.155 0.873
Ours-HIA 0.135 0.896 0.133 0.897 0.174 0.821 0.155 0.873

Table S4. Analysis of the HIA module. We experimented by dis-
carding the head crop input or training without inputting camera
parameters, using our model with only HIA as the base model.

We also explored alternative strategies for aggregating
head features and training the gaze estimator. In Tab. S5
(Row 1), we replaced concatenation with multiplication
when including the camera rotation matrix in HIA’s cross-
attention, which led to worse performance, especially when
the head is not visible in the reference view. In Row 2, fix-
ing the gaze backbone during training also resulted in sig-
nificantly degraded performance.

Method
Head Vis. Head Not Vis.

Target Vis. Target Not Vis. Target Vis. Target Not Vis.
Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑

Ours-Mul 0.131 0.903 0.124 0.904 0.172 0.801 0.160 0.860
Ours-Fix 0.145 0.894 0.139 0.897 0.193 0.805 0.171 0.841
Ours 0.129 0.909 0.122 0.912 0.161 0.836 0.152 0.868

Table S5. Results of using multiplication for the relative rotation
(Row 1) and fixing the gaze backbone during training (Row 2).

S8. Analyses of UGS Module
In this section, we analyze the UGS module in detail by
demonstrating the correlation between the error in gaze vec-

tor prediction and the predicted uncertainty score σ, the per-
formance of UGS on samples with large errors in predicted
gaze vectors, and showing the effect of the UGS module
with some qualitative examples.

In Fig.S3 we visualize the average angular error of
the predicted gaze vectors with their predicted uncertainty
scores σ falling into different slots. About 93% of all sam-
ples have a predicted σ < 0.2. It can be seen a larger σ
value corresponds to a larger error for the gaze vector pre-
diction, supporting our motivation to select the view with a
lower σ value in an input view pair in the UGS module.

Figure S3. Average angular error for the predicted gaze vectors
with their uncertainty scores σ falling into different slots. We di-
vide the slot of σ by 0.05. The gaze vectors with larger predicted
uncertainty scores tend to have larger angular errors.

We also demonstrated the effectiveness of the UGS mod-
ule by operating the module on samples with large errors in
predicted gaze vectors, of which the predicted gaze vectors
have an angular error > 30° before uncertainty-based selec-
tion. To show the effectiveness of UGS, the models were
evaluated on all view pairs where the reference view con-
tains the head of the subject. As shown Tab.S6, in addition
to the substantial reduction in angular errors for gaze vec-
tors after selection, the Dist. and Ap. metrics in GTE also
exhibit notable improvements, highlighting its crucial im-
pact on samples with large initial prediction errors.

Method Dist. ↓ AP ↑ Ang. ↓
No selection 0.228 0.856 44.35°
Ours 0.200 0.883 35.91°

Table S6. Effect of the UGS module on samples with large errors
in predicted gaze vectors in the primary view before selection.

Fig.S4 demonstrates the effect of the UGS module. By
leveraging the reference view with a lower σ value, the un-
reliable gaze vector from the primary view will be replaced
with a much more accurate gaze vector, and lead to an FoV
heatmap with a much better quality.



Figure S4. Qualitative examples for the UGS module output. The left side shows the gaze vectors and FoV heatmaps without using UGS,
and the right shows the gaze vector and FoV heatmaps after selection and replacement in UGS. Red vectors correspond to the predicted
gaze vectors while yellow ones are the ground truth. Leveraging the reference view with a more accurate gaze vector predicted and a lower
uncertainty score, the UGS module can output a FoV heatmap with much better quality.

Query Point Attention Weights

Figure S5. Visualizations of attention weights in the ESA mod-
ule. The right column visualizes the attention weights between
the query point in the left column and the sampled feature tokens
along the epipolar line corresponding to the query in the reference
view. Larger attention values are shown with higher intensity. The
tokens located near the same location as the query point show the
highest weights along the entire epipolar line.

S9. Analyses of ESA module

In this section, we provide more analyses of the ESA mod-
ule, by showcasing its performance on the samples with oc-
clusion, and visualizing the attention weights of the epipo-
lar attention in the ESA module. We show the effective-
ness of the ESA module by visualizing the epipolar atten-
tion weights. As explained in the main paper, each feature
token in one view will be engaged in cross attention with
feature tokens sampled along the epipolar line in the other
view. In Fig.S5, we select a query feature location in the
primary view and visualize the attention weights with the
sampled feature tokens along the epipolar line in the ref-
erence view. We average the attention weights across all
heads in the cross-attention module. It can be seen the atten-
tion weights are the highest for tokens located near the same
location as the query point, demonstrating the effectiveness
of the ESA module in aggregating useful scene background
information from the other view.

On the other hand, we also perform an ablation study
of the ESA module on samples which are occluded in the
primary view, to investigate the effectiveness of epipolar
attention in differentiating occluding objects by using in-
formation from another view. We manually annotated the
locations of the occluded samples in the primary view by
referring to the target locations (laser points) in other views,
making up 1576 pairs of input views. Most of these targets
are partially occluded by another object, or self-occluded,
i.e., the laser point is located on the invisible side of the ob-
ject. As the total number of occluded samples are relatively
small and we assigned all occlusion samples to the “inside”
class for the in/out task, we observed the model showing



performance close to 1 in AP. Therefore, we just evaluated
the Dist. metric for the GTE task.

Tab.S7 shows the results. Compared to the model with-
out ESA module, the full model shows an obvious per-
formance when the target is visible in the reference view.
This supports our claim in the main paper that ESA pro-
vides complementary information on the potential gaze ob-
ject from the reference view, especially in disambiguating
the gaze target in case of occlusion in the primary view.

Method
Head Vis. Head Not Vis.

Target Vis. Target Not Vis. Target Vis. Target Not Vis.
Dist. ↓ Dist. ↓ Dist. ↓ Dist. ↓

No ESA 0.161 0.152 0.171 0.131
Ours 0.150 0.155 0.162 0.130

Table S7. Ablation of ESA module on samples with occlusion.
Without ESA, the model shows obvious drop in performance when
the target is visible in the reference view.

S10. Sensitivity Analysis to Camera Parame-
ters

In the main paper, we provide the results of our model with
calibrated camera parameters. In this section, we analyze
the sensitivities of our model to changes in camera param-
eters by considering potential errors and noise in camera
calibration in real applications. We randomly jittered the
intrinsic and extrinsic parameters by -5% ∼ 5%, and show
the results of the multi-view and cross-view experiments in
Tab.S8 and Tab.S9. As shown in both tables, the model only
has a slight drop in performance with the jittered camera pa-
rameters in both general multi-view and cross-view tasks.

Method
Head Vis. Head Not Vis.

Target Vis. Target Not Vis. Target Vis. Target Not Vis.
Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑

Ours* 0.130 0.907 0.124 0.910 0.165 0.830 0.153 0.865
Ours 0.129 0.909 0.122 0.912 0.161 0.836 0.152 0.868

Table S8. Results of sensitivity analyses to camera parameters.
Ours* shows the performance of the model with camera parame-
ters jittered by -5% ∼ 5%, and Ours is the original model. Our
model shows little drop in performance in all conditions.

Method Dist. ↓ AP ↑
Ours* 0.190 0.817
Ours 0.188 0.820

Table S9. Results of sensitivity analyses to camera parameters for
the cross-view task.

S11. Model Complexity and Cost
Tables S10 and S11 present the model size and inference
speed on an RTX A5000 GPU for the multi-view and cross-
view settings. Our model has a relatively larger number
of parameters compared to single view baselines due to
the use of transformer [4, 11, 13] as the encoder. How-
ever, our method only adds a very small number of param-
eters for multi-view processing compared to Ours-single,
and it shows a large improvement in performance. Regard-
ing inference speed, our method runs at 61.53 ms per image
(16.25 FPS), which is acceptable considering the theoretical
lower bound is 2 x due to processing two images. Despite
inference speed not being a primary design goal, we be-
lieve real-time performance is achievable with techniques
like quantization.

Methods Params. Runtime Dist. ↓
(ms) (Head Visible)

Chong[3] 61.5M 14.92 0.158
Miao[6] 61.7M 15.25 0.141
Tafasca*[10] 21.7M 16.74 0.148
Ours-single 101.9M 20.63 0.150
Ours 107.6M 61.53 0.125

Table S10. # Parameters and run-
time of multi-view models.

Methods Params. Runtime Dist↓(ms)
DeepGazeIIE[5] 104.1M 248.76 0.248
Recasens[9] 189.3M 10.48 0.271
Ours 108.4M 62.21 0.188

Table S11. # Parameters and run-
time of cross-view models

S12. Training with the same learning rate
In the experiments, we trained the model with different
learning rates when evaluating on different scenes in leave-
one-scene-out cross validation. We show the results when
training the model with the same learning rate in the general
multi-view (Tab.S12) and cross-view (Tab.S13) tasks with a
learning rate of 2.5×10−6 and 1×10−7 respectively. Even
when training with the same learning rate without tuning for
each scene specifically, the model only shows a small drop
in performance in all conditions.

Method
Head Vis. Head Not Vis.

Target Vis. Target Not Vis. Target Vis. Target Not Vis.
Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑

Ours† 0.134 0.905 0.125 0.910 0.167 0.823 0.159 0.860
Ours 0.129 0.909 0.122 0.912 0.161 0.836 0.152 0.868

Table S12. Results of training with the same learning rate in the
general multi-view task. Ours† shows the results of training the
models with the same learning rate.

Method Dist. ↓ AP ↑
Ours† 0.199 0.814
Ours 0.188 0.820

Table S13. Results of training with the same learning rate in the
cross-view task.



S13. Reproduced results of Tafasca et. al.
In Tab.S14, we show the results in the paper and our reim-
plemented numbers for Tafasca et.al [10] on the GazeFol-
low dataset [8]. We can achieve almost the same perfor-
mance. In Tab.1 in the main paper, the model trained on
GazeFollow is fine-tuned on our MVGT dataset for evalua-
tion.

Method AUC ↑ Avg. Dist. ↓ Min. Dist ↓
Tafasca [10] 0.936 0.125 0.064
Tafasca* 0.935 0.124 0.063

Table S14. Results of the numbers in the paper and the reproduced
results on the GazeFollow dataset for Tafasca et.al [10]. ∗ indicates
results for the reimplemented model.

S14. Discussions and Limitations
In this section, we discuss the applicability and general-
ization of our dataset and method. Although the MVGT
dataset is not as large scale as most available GTE datasets,
it is the first GTE dataset that includes valuable multi-view
scene/subject information, with calibrated camera parame-
ters and precise gaze target annotations. Furthermore, we
also introduce a well-defined, non-intrusive data collection
protocol for gathering GTE data with accurate annotations,
which is easily applicable to new scenes with multi-view se-
tups, and allows for potential scaling up of the dataset. We
hope our dataset will inspire broader community contribu-
tions to multi-view GTE.

For handling different scenarios in multi-view GTE, we
proposed two networks in the general multi-view and cross-
view task scenarios. The first model is applicable without
any assumptions; the second is modified from the first for
cross-view GTE, but can only be used when 3D scene re-
construction is available before GTE. In real applications,
when a 3D reconstruction exists, both models can be used:
the first model is used when the head is in the primary view,
and the second otherwise. If not, users can still use the first,
which outperforms single-view methods significantly.

Regarding the generalization of our method, we demon-
strate it in the main paper when evaluated on test scenes not
seen in training. In Fig.S6, we also apply our models to
some example images in the Shelf dataset [1], a multi-view
human pose estimation dataset distinct from our dataset. Al-
though no gaze target annotation in available in the dataset,
it can be seen from the supplementary view (rightmost col-
umn) in the figure that our models predict reasonable loca-
tions in both general multi-view and cross-view settings by
using the camera parameters provided in the dataset.

While our method is effective in multi-view and cross-
view GTE, it still has limitations. The reliance on explicit

camera parameters and 3D scene reconstruction in cross-
view GTE may limit its applicability in real-world scenar-
ios. Future work could explore learning geometric relation-
ships without camera parameters or performing cross-view
GTE without 3D scene reconstruction.

Figure S6. Our model evaluated on Shelf dataset. Output is shown
for the person with an overlayed head box in both general multi-
view (Row1) and cross-view (Row2) settings. The rightmost col-
umn is just for showing the potential target, and not used as input.
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