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1. Appendix

Statistics of COCO-3D Fig. 2 shows the number of in-
stances for each category. The x-axis lists the categories,
while the y-axis represents the instance count. Fig. 3 il-
lustrates the percentage distribution of points across differ-
ent categories. The x-axis represents the various categories,
and the y-axis indicates the percentage of points assigned
to each category. From the figures, it is evident that most
points are concentrated in the “person” category, which ac-
counts for 30% of the total points—far exceeding the other
categories. Compared to other domain-specific 3D datasets,
our dataset exhibits notable differences. COCO-3D is de-
rived from the transformation of COCO data, which enables
us to retain the rich semantic information and diverse an-
notations found in COCO. Our experiments have demon-
strated that our synthetic data performs well in zero-shot
transfer, giving us confidence in leveraging this dataset to
enhance 3D object detection and recognition. It is partic-
ularly worth mentioning that our dataset includes a large
number of scenes involving people, with especially abun-
dant data in the “person” category. This makes our dataset
more realistic when addressing human-related tasks. Pre-
training on synthetic data followed by fine-tuning on real
data can, to some extent, alleviate the challenges posed by
the scarcity of real data.

Compare with Other 3D Datasets Compared to tradi-
tional databases Sec. | (such as ShapeNet [6], ModelNet
[20], 3D-Future [11] that mainly focus on single objects,
ScanNet [9], Matterport3D [5] that are limited to small-
scale scenes), or SUN-RGBD [17] and Omni3D [4] only
include monocular 3D representation datasets of indoor
scenes, our COCO-3D and object365-v2-3D datasets are
significantly ahead in terms of the number of scenes and
categories. Specifically, COCO-3D contains 122K scene in-
stances and 81 categories, while object365-v2-3D has 2M
scene instances and 365 categories. Our dataset includes
indoor and outdoor scenes. Although the data is synthetic,
rich experimental results prove that it has zero shot capa-
bilities and can be generalized to other datasets, providing
sufficient data support for tasks such as 3D perception.

Discussion with SpatialVLM Spatial VLM [7] improves
the spatial QA performance of VLM by converting 2D im-
ages into 3D point clouds and generating many spatial QA
pairs. However, it does not calibrate the point cloud’s ge-
ometric accuracy or camera parameters, nor does it carry
out systematic validation on low-level 3D vision tasks such

Dataset Number Categories Class Scenes/Objects
ShapeNet [6] 51k 55 - Objects
ModelNet [20] 12k 40 - Objects
3D-Future [11] 16k 34 - Objects
ABO [8] 8k 63 - Objects
Toys4K [18] 4k 105 - Objects
CO3D V1/V2[15] 19 / 40k 50 - Objects
ScanObjectNN [19] 15k 15 - Objects
GSO [10] 1k 17 - Objects
AKB-48 [13] 2k 48 - Objects
OmniObject3D [21] 6k 190 - Objects
LLFF [14] 35 - - Scenes
DTU [1] 124 - - Scenes
BlendedMVS [22] 133 - - Scenes
ScanNet [9] 1509 - 20 Scenes
Matterport3D [5] 90 - 21 Scenes
Tanks and Temples [12] 21 - - Scenes
ETH3D [16] 25 - - Scenes
ARK:itScenes [3] 1004 - - Scenes
ScanNet++ [23] 460 - 100 Scenes
S3DIS [2] 271 - 13 Scenes
Structured3D [24] 3500 - 25 Scenes
COCO-3D 122K - 81 Scenes
object365-v2-3D M - 365 Scenes

Table 1. A comparison between COCO-3D, Object365-v2-3D,
and other commonly-used 3D scenes/object datasets.

as segmentation, etc. It only addresses QA tasks about rel-
ative positions and sizes of objects. In contrast, our work
builds a full 3D representation, of which the point cloud
is only one part. For each scene, we calibrate gravity di-
rection, camera parameters, and metric scale. Moreover,
our experiments cover a range of spatial reasoning tasks,
from low-level (semantic segmentation, instance segmen-
tation, few-shot learning, zero-shot learning) to high-level
(QA, captioning, and referring segmentation).

More Visualization In Fig. 4 and Fig. 5, we provide more
visualization results of the zero-shot experiments on Scan-
Net for Uni3D.

Data Quality Assurance In the process of constructing
the dataset from 2D images to 3D representations, we im-
plemented a series of data quality assurance mechanisms to
ensure that the generated data meets high standards in terms
of authenticity, accuracy, and consistency. First, through
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Figure 2. Statistic of COCO-3D. The number of instances for each category.
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Figure 3. Statistic of COCO-3D. The percentage distribution of number points across various categories.

depth estimation and camera parameter prediction, we use
an automatic filtering algorithm after generating a prelimi-
nary 3D representation to remove edge areas, undefined ar-
eas, and predicted abnormal points, and calculate the scale
factor based on the relative depth and quantized depth dis-
tribution in the valid point set to achieve an effective fu-
sion of depth information and absolute scale. Next, we se-
lect some samples and use Open3D visualization for man-
ual verification to verify the consistency between the orig-
inal 2D annotations and the generated 3D annotations, and
check the correspondence between the 3D representation
and the original 2D image, so as to promptly discover and
correct possible errors in the automatic process. Finally,
we further ensure the rationality of the data in scale and
structure by statistically analyzing the size distribution of
each category and comparing it with the actual physical

size.
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