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This supplementary material includes additional experi-
mental results that complement the findings presented in the
main paper. Specifically, we provide:
• Detailed descriptions of the nine featurizers utilized in our

analyses, highlighting differences in training paradigms,
architectures, and datasets.

• Additional results on label overlap across nine featuriz-
ers for stable, accidental, and other viewpoints, evaluated
using pairwise Intersection over Union (IoU) heatmaps.

• Cluster samples from accidental and other viewpoints for
seven additional featurizers not included in the main pa-
per. These examples highlight consistent trends and in-
stabilities in viewpoint classification.

• Expanded qualitative examples of Visual Question An-
swering (VQA) using LLaVA-1.5, which demonstrate the
model’s strengths and limitations across stable, acciden-
tal, and other viewpoints.

• Additional single-view monocular 3D reconstruction re-
sults. These examples further illustrate the impact of
viewpoint instability on reconstruction accuracy, empha-
sizing the challenges posed by accidental and other view-
points.

1. Featurizer Descriptions
We conduct our analysis using nine different deep network
featurizers with different training data, training paradigms,
and application areas:

1. CLIP [12]: trained using contrastive learning on
400 million (image, text) pairs scraped from the Inter-
net. We used the default public ViT-B/32 architecture. 2.
DINO [2]: self-supervised framework based on student-
teacher knowledge distillation, pretrained on ImageNet
(without labels) [13]. We used the default public ViT vari-

ant with 85.8M parameters. 3. DINOv2 [11]: an improved
version of DINO that is trained on a curated dataset LVD-
142M [11] with 142M images. We used the public ViT vari-
ant with 88.6M parameters. 4. ConvNeXt [10]: CNN fam-
ily achieving comparable performance to vision transform-
ers. We used a public model fine-tuned on ImageNet-1k [5]
with 846.5M parameters. 5. Deit III [14]: an approach for
training vision transformers that includes techniques such
as using 3-Augment for data augmentation, simple random
cropping, and low resolutions. We used the image classifi-
cation variant with 86.6M paramters trained on Imagenet-
1k [5]. 6. DreamSim [7]: used to compute perceptual sim-
ilarity between a pair of images, trained on the NIGHTS [7]
dataset with 60k images with human perceptual evaluations.
We used the standard configuration with ViT-B/16 back-
bone and 266 million parameters. 7. Masked Autoencoder
(MAE) [8]: self-supervised model that reconstructs images
from partially masked inputs, pre-trained on ImageNet-1K.
We used the ViT variant with 630.8 million parameters. 8.
Sharpness-Aware Minimization (SAM) [3, 6]: an opti-
mization method that improves generalization and perfor-
mance of large vision transformers. We used a ViT model
with 88.2 million parameters. parameters. 9. SigLip [15]:
CLIP-based image-text model utilizing sigmoid loss, pre-
trained on the WebLI dataset [4], offering enhanced 0-shot
accuracy. We used the public model with 878 million pa-
rameters.

2. Featurizer Agreement on Viewpoint Labels
We present additional results on the level of agreement,
measured using Intersection over Union (IoU), across the
nine featurizers in identifying stable, accidental, and other
viewpoints. Specifically, we provide IoU heatmaps for each
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category across all nine featurizers (see Fig. 1). The re-
sults indicate consistent trends: all featurizers exhibit strong
agreement on stable viewpoints (IoU scores ranging from
0.98 to 1.00), moderate agreement on accidental viewpoints
(IoU scores between 0.34 and 0.83), and very little agree-
ment on other viewpoints (IoU scores ranging from 0.02
to 0.28). For accidental viewpoints, the moderate agree-
ment suggests that these challenging viewpoints are gen-
erally identified similarly across featurizers, demonstrating
some commonality in how models handle such instances. In
contrast, the lack of agreement for other viewpoints, with
many pairs of featurizers showing no overlap (IoU scores
under 0.1), highlights the model-specific nature of view-
point instability. This underscores the challenge of con-
structing datasets or methods that generalize viewpoint in-
variance across models. The results suggest that while acci-
dental viewpoint invariance may benefit from shared strate-
gies across models, other viewpoint invariance likely needs
to be tailored to specific featurizers rather than assuming a
universal approach.

3. Cluster Samples Across Additional Featur-
izers

We presents samples from accidental and other clusters for
the seven featurizers not included in the main paper: DeiT
III, SAM, SigLip, ConvNeXT, DINOv2, Dreamsim, and
MAE. As shown in Fig. 2. The observed trends are consis-
tent across featurizers. For accidental views, specific cam-
era orientations obscure an object’s true 3D structure, ef-
fectively reducing its perceived dimensionality by collaps-
ing one axis of depth or perspective. For other views, we
observe uncommon orientations, such as objects seen from
the back or upside down, as well as instabilities caused
by varying lighting conditions. The CO3D dataset, being
more complex, introduces additional sources of instability,
including occlusions and image blur.

4. Additional Visual Question Answering
(VQA) Examples

To complement the VQA analysis presented in the main pa-
per, we provide additional qualitative examples in Fig. 3.
These examples further highlight LLaVA’s capabilities in
generating descriptive captions across stable, accidental,
and other viewpoints. As in the main paper, we used
LLaVA-1.5 [9], which leverages CLIP as its backbone. For
stable viewpoints, the generated captions remain accurate
and closely align with the ground truth (GT) descriptions.
However, for accidental and other viewpoints, the cap-
tions frequently contain inaccuracies, including misinter-
pretations of objects and hallucinated details that are not
present in the image. For instance, the model might de-
scribe a black table as ”a laptop sitting on a table,” despite

the absence of a laptop, or misinterpret a light fixture as
an umbrella. We hypothesize that this occurs because the
pose of the light fixture in the image resembles a pose com-
monly associated with umbrellas in the training set, leading
the model to incorrectly associate the two objects. In the
case of accidental viewpoints, the 3D structure of objects
is often collapsed, making it difficult or even impossible to
accurately identify the object. This inherent ambiguity in
the viewpoint could be acknowledged by the VQA model,
which might express uncertainty about the object’s identity
rather than providing a confident but inaccurate description.
Incorporating mechanisms to quantify or communicate un-
certainty in such cases could improve the robustness and
reliability of VQA models under challenging viewing con-
ditions.

5. Additional Monocular 3D Reconstruction
Results

To complement the monocular 3D reconstruction analysis
presented in the main paper, we provide additional qual-
itative examples in Fig. 4. These examples further illus-
trate the significant impact of viewpoint instability on re-
construction accuracy, using Stable Fast 3D [1] with DI-
NOv2 [11] as the image featurizer. For stable viewpoints,
the model generates reconstructions with accurate geometry
and well-preserved details, aligning closely with the ground
truth. However, accidental viewpoints—characterized
by insufficient depth cues due to the camera’s orienta-
tion—result in collapsed or distorted reconstructions. This
highlights the challenge of reconstructing 3D shapes when
critical geometric information is unavailable. Other view-
points present additional difficulties, as the atypical and
rarely seen angles lead the model to misinterpret the object.
This results in substantial inaccuracies in the reconstructed
shape.
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Figure 1. Agreement levels on stable, accidental, and other viewpoints across nine featurizers, evaluated using Intersection over
Union (IoU). (i) The top-left heatmap shows the mean IoU scores across the nine featurizers for stable, accidental, and other viewpoints.
(ii) The top-right heatmap displays pairwise IoU scores among the nine featurizers for stable viewpoints, demonstrating strong agreement.
(iii) The bottom-left heatmap presents pairwise IoU scores for accidental viewpoints, indicating moderate agreement across featurizers. (iv)
The bottom-right heatmap highlights pairwise IoU scores for other viewpoints, showing minimal agreement, with many pairs of featurizers
exhibiting no overlap (IoU scores under 0.1).
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Figure 2. Examples of accidental and other viewpoints using ConvNeXT, DeiT III, DINOv2, Dreamsim, MAE, SAM, and SigLip
embeddings across the ABO and CO3D datasets. Similar to CLIP and DINO discussed in the main paper, accidental views obscure
an object’s true structure, effectively reducing its perceived dimensionality. Other views present uncommon orientations, such as objects
seen from the back or upside down, and are also affected by sudden lighting changes. The CO3D dataset, being more complex, introduces
additional sources of instability, including occlusions and abrupt changes in focus.
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The image features a 

wooden cabinet with a 
brown color.S
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The image features a large 
speaker or sound system, 

which is likely used for 
amplifying audio in a room.

Generated caption:
The image features a large, 
gray, and black couch with 

a tufted design.S
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l Generated caption:

The image features a 
close-up of a cell phone, 

with a focus on the cell 
phone's antenna.

Generated caption:
The image features a white 
ceiling accessory, which 

appears to be a light fixture 
or a decorative piece.
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The image features a white 
rocket or space shuttle, 
possibly a model or a toy, 
sitting on a white surface.

Generated caption:
The image features a 

close-up of a light fixture, 
showcasing its design and 

structure.S
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 Generated caption:

The image features a row of 
three silver umbrellas 

hanging from a metal pole.

Generated caption:
The image features a black 
table or countertop, which 

is the main focus of the 
scene.S
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 Generated caption:

The image features a black 
tablet or laptop computer, 
which is sitting on a table.

Generated caption:
The image features a black 

light fixture with a round 
light bulb, which is mounted 

on a wall.S
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Generated caption:
The image features a black 
microphone stand with a 

microphone attached to it. 

Figure 3. Examples of generated captions for stable, other, and accidental viewpoints using LLaVA-1.5 (CLIP backbone). Captions
for stable viewpoints are accurate, while those for accidental and other viewpoints frequently contain inaccuracies, often misinterpreting
objects or hallucinating details. For example, a black table might be described as ”a laptop sitting on a table,” despite no laptop being
present.
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Figure 4. Additional single-view reconstruction results for stable, accidental, and other viewpoints using Stable Fast 3D [1] with
DINOv2 [11] as the image featurizer. Stable viewpoints yield accurate reconstructions with well-preserved geometry. Accidental view-
points, lacking sufficient depth cues, result in collapsed or distorted reconstructions. Other viewpoints, due to atypical angles, often lead
to substantial inaccuracies.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without
supervision. arXiv preprint arXiv:2304.07193, 2023. 1, 2, 7

[12] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language
supervision. In International conference on machine
learning, pages 8748–8763. PMLR, 2021. 1

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252,
2015. 1

[14] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:
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