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A. Overview

In this supplementary document, we provide additional im-
plementation details (Appendix B) and further insights into
the importance of design choices in VolumetricSMPL (Ap-
pendix C). We also include additional information regarding
the downstream applications of our model (Appendix D).

Next, we illustrate our easy-to-use Python interface,
which seamlessly integrates with the widely used SMPL-X
package (Appendix F). Finally, we discuss the limitations
of VolumetricSMPL and outline potential future research
directions (Appendix E).

B. Implementation Details and Comparisons

B.1. Network Architectures

The VolumetricSMPL architecture consists of two primary
neural components: a shared PointNet [51] encoder for
all body parts and an MLP decoder, implemented using
weights predicted by the Neural Blend Weights (NBW) gen-
erator (Fig. 3).

VolumetricSMPL Encoder. After a forward pass
through the SMPL-based body model, the posed skin mesh
is partitioned into 15 (K = 15) body parts based on the
kinematic chain of the human body, following [42]. Each
body part is then normalized according to its respective
bone transformation G. The local mesh of each part is
resampled as a point cloud with 1k points and encoded us-
ing a shared PointNet encoder, ensuring memory-efficient
alignment across all body parts.

The shared encoder follows a 128-neuron MLP PointNet
architecture, interleaved with ReLLU activations. It consists
of an input linear layer, four ResNet blocks, and an output
layer. Each ResNet block contains two linear layers with
a skip connection, facilitating effective feature propagation.
The output layer produces a 128-dimensional latent code
zj., which conditions the decoder. This structure allows for
efficient encoding of local shape variations while maintain-
ing compact memory usage and fast inference speed.

VolumetricSMPL Decoder. The MLP decoder is a
compact 7-layer network with 64 neurons per layer and a
skip connection on the 3rd layer, interleaved with ReLU
activations. This lightweight architecture ensures efficient
computation while maintaining high expressivity, as the

Table B.1. Comparison of Canonical SMPL-based vs. Flex-
ible Direct Modeling. We evaluate the impact of conditioning
VolumetricSMPL on an explicit mesh prior versus learning a vol-
umetric representation directly in observation space using only
low-dimensional shape and pose coefficients (3, €) as in [2]. Both
methods are trained under the same protocol (Sec. 3.4). Surf. and
Unif. denote IoU scores computed for points sampled near the
surface and uniformly in space, respectively. Results show that
incorporating explicit mesh priors significantly improves IoU and
reduces SDF prediction error, demonstrating the benefits of our
canonical compositional modeling approach. The experimental
setup follows Tab. 1.

IoU [%] MSE |
mean  surf.  unif. SDF |SDF|
Direct Modeling [2] | 39.64 32.28 47.01 | 2.5 x 1072 3.5 x 107*
VolumetricSMPL 94.67 94.25 9510 | 3.7 x107° 3.5 x 107°

Neural Blend Weights (NBW) framework enables a large
number of learnable parameters to be utilized effectively.

In addition to being conditioned on the latent code, the
MLP decoder also takes a local query point as input x;. To
enhance spatial encoding, the query point is positionally en-
coded [44] using only two frequency levels, providing better
representation capacity for fine-scale details. Utilizing even
higher frequency signals as input severely hampers the pre-
diction accuracy and makes the training unstable.

B.2. Volumetric Bodies

VolumetricSMPL is trained following the procedure out-
lined in Sec. 3.4 of the main paper. For baseline com-
parisons, we use the publicly released COAP [42] and
LEAP [43] models, which are also trained on the AMASS
subsets, for the respective SMPL [38, 49] body.

B.3. Additional Comparisons

Volumetric models such as VolumetricSMPL, LEAP [43],
and COAP [42] are designed to share the same learning
space as their underlying mesh-based parametric models
[38, 49]. This ensures seamless integration with methods
operating in the SMPL parameter space [56], as demon-
strated in the applications section (Sec. 4.2).

In contrast, models such as NASA [11] and imGHUM
[2] do not rely on explicit SMPL priors. Instead, they



learn volumetric representations directly from scans, body
meshes, or a combination of both. While this increases flex-
ibility, it tends to be computationally expensive—NASA re-
quires per-subject training, while imGHUM relies on a sig-
nificantly larger architecture and proprietary private human
scans for training.

Specifically, imGHUM requires propagating a query
point through a deep stack of MLPs: an 8-layer 512-
dimensional MLP, an 8-layer 256-dimensional MLP, and
two 4-layer 256-dimensional MLPs, being 86% slower for
inference compared to VolumetricSMPL. In contrast, our
MLP decoder is significantly more lightweight, using a 7-
layer 64-dimensional MLP for partitioned body parts.

Impact of Excluding SMPL Priors. To evaluate the
role of explicit SMPL conditioning, we re-implement the
imGHUM architecture under our training setup (Sec. 3.4).
This adaptation removes the PointNet encoder that pro-
cesses SMPL-derived point samples, replacing it with a
large SDF decoder MLP that directly conditions on SMPL
parameters (3, #). This results in a volumetric model oper-
ating in observation space, without part-wise canonicaliza-
tion.

We train both models and evaluate them following
Sec. 4.1. Results in Tab. B.1 show that excluding the
explicit SMPL prior significantly degrades generalization
when training data is limited. Notably, our method requires
training samples only within bounding boxes 5, leverag-
ing an analytic SDF for the outer volume. Hence a model
trained only with samples within 3 can produce floater arti-
facts in outside regions, leading to large errors.

Direct comparison with the released pre-trained
imGHUM model is infeasible, as it learns a different
human shape space from proprietary data. Additionally,
an additional key advantage of compositional volumetric
models (e.g., COAP and VolumetricSMPL) is their ability
to resolve self-intersections (Sec. 4.2.4), unlike LEAP and
imGHUM.

Performance Breakdown. To better isolate the contri-
butions of each component in our efficient querying pipeline
(Sec. 3.2), we evaluated the impact of the coarse analytic
SDF acceleration. In Tab. 1 and Tab. 2, removing the coarse
acceleration increases the runtime from 15 ms to 25 ms and
memory usage from 3.1 GB to 5.0 GB—showing a ~1.7x
speedup and ~1.6x memory reduction attributable to the
analytic term.

C. Ablation studies
C.1. Impact of the Point Cloud Sampling

As described in the method section, VolumetricSMPL ap-
plies kinematic-based mesh partitioning [42] to the SMPL
body mesh and normalization of each mesh part according
to its respective bone transformation Gj.. Each local mesh

Table C.1. Impact of the Point Cloud Sampling. The num-
ber of point samples per-body part has moderate impact on the
model performance and computational resources (inference speed
and GPU memory). 1k samples is the default configuration in
the main paper (denoted 1,000%). The models are trained for 10
epochs. The default setup strikes a good balance between accu-
racy and resource consumption.

Point Resources IoU [%] 1 MSE x1073 |
Samples | t[ms] | GPU |  mean surf. unif A SDF |SDF|
250 15 2.6 87.47 84.94 90.01 | 6.37 7.15
500 15 2.7 90.71 87.87 9355|634  6.96
750 15 2.9 91.31 8845 94.16 | 6.40  6.91
1,000%* 15 3.1 91.43 88.49 9438 | 6.47 6.96
1,250 15 32 91.45 8851 9438|652 697
1,500 15 34 91.40 88.50 9430 | 6.56  7.00
1,750 15 35 91.33 88.44 9421|657  17.00
2,000 15 3.7 91.33 8842 9424|659  7.06

Table C.2. Impact of the Bounding Box Size. We evaluate how
different bounding box sizes Bj, affect SDF accuracy. Larger
boxes degrade SDF predictions, as the neural network becomes
less precise further from the iso-surface, making analytic SDF esti-
mation preferable in these regions. The optimal padding of 12.5%
(denoted by *) achieves the lowest mean SDF error and is used in
the final model. Reported values are scaled by x1075.

Bounding Box By, Size (%)
MSE | 5 7.5 10 12.5% 15 20 30 40 50 60 70 80 90 100

SDF |13.7 116 90 65 63 62 6.0 6.1 64 68 73 79 84 9.0
JSDF\ 63 65 67 7.0 7.3 8.0 10.1 13.8 19.5 27.9 39.9 56.0 77.7 104.9

mean |10.0 9.1 79 6.7 6.8 7.1 8.1 10.0 12.9 17.4 23.6 32.0 43.0 57.0

is then resampled into a point cloud with 1k points, which
is subsequently encoded using a shared PointNet encoder to
ensure efficient memory alignment across all body parts.

To evaluate the impact of the number of sampled points
on both model performance and computational efficiency,
we conduct an ablation study, summarized in Tab. C.1. The
reported results correspond to VolumetricSMPL trained for
10 epochs under the experimental setup outlined in the main
paper. The findings indicate that the default setting of 1k
points achieves a good balance between accuracy and re-
source efficiency, making it a suitable choice for practical
deployment.

C.2. Impact of the Bounding Box Size

We evaluate how the bounding box size Bj, affects model
performance. While varying the padding level does not
meaningfully affect occupancy/sign evaluation, it does in-
fluence signed distance accuracy.

To analyze this effect, we ablate padding levels from
5% to 100%, with results summarized in Tab. C.2. As
shown, larger bounding boxes degrade SDF predictions, as
the neural network becomes less precise further from the
iso-surface, making analytic SDF estimation preferable in



Table C.3. Impact of MLP Size on Efficiency and Accuracy.
We evaluate the effect of reducing the MLP decoder size by com-
paring architectures with 32, 40, 50, and 64 neurons (default). As
shown, smaller MLPs significantly reduce computational cost: us-
ing 32 neurons instead of 64 reduces inference time by 33.3% (15
ms — to 10 ms) and GPU memory usage by 35.5% (3.1 GB —
2.0 GB). However, this comes at the cost of increased SDF er-
ror (|]SDF)| rising by ~50%) and decreased IoU. The 64-neuron
configuration achieves a good balance between computational ef-
ficiency and reconstruction accuracy, making it the optimal choice
for resource-intensive downstream tasks.

Resources IoU [%] 1 MSE [x107%] |
Neurons | t[ms] | GPU | #param , mean surf. unif. SDF [SDF|
32 10 2.0G 1.7M | 94.12 93.73 94.50| 4.5 52
40 11 2.2G 2.1IM [94.02 93.60 94.45| 4.6 5.2
50 12 2.4G 2.8M |94.54 9425 94.82| 5.3 5.5
64 | 15 31G 40M |94.67 9425 9510| 37 35

these regions.
The optimal padding of 12.5% achieves the lowest mean
SDF error which is adopted as the final model parameter.

C.3. Even smaller MLPs: Impact on Efficiency and
Accuracy

We further analyze the impact of reducing the MLP decoder
size by comparing architectures with 32, 40, and 50 neurons
with the default setting of 64 neurons. Results are summa-
rized in Tab. C.3.

As shown in Tab. C.3, smaller MLPs reduce computa-
tional costs. Using 32 neurons instead of 64 reduces com-
putation time by 33.3% (15 ms — 10 ms) and GPU memory
usage by 35.5% (3.1 GB — 2.0 GB). However, this comes
at the cost of substantially lower accuracy, with |SDF| errors
increasing by 50%. The 64-neuron setup achieves a good
trade-off between computational efficiency and reconstruc-
tion accuracy while being useful for many resource inten-
sive downstream tasks.

C.4. Alternative Architectures

We also experimented with alternative MLP architectures,
including SIREN [54], HyperNetworks [16], and FiLM-
based conditionings [7]. However, due to the weak supervi-
sion signal in our model—where only the global SDF pre-
diction (after the min operation) is supervised—these ap-
proaches failed to converge in a feed-forward setting.

C.5. Comparison with Classic Techniques

We further compare our method against traditional tech-
niques such as winding numbers [22], which have been
used in human contact modeling [12, 45]. However, wind-
ing numbers are not differentiable and do not generalize
well to applications that require differentiable collision loss
terms [35, 59, 68, 69], unlike VolumetricSMPL.

Table C.4. Comparison of occupancy checks using winding
numbers and VolumetricSMPL. We evaluate inference time and
GPU memory usage to check whether SMPL-X vertices are inside
another SMPL-X body. VolumetricSMPL achieves over 40x faster
inference and reduces GPU memory usage by 50x, making it sig-
nificantly more efficient for large-scale learning tasks.

Resources
Inference Time | GPU Memory |
Winding Numbers [22, 45] 464.41 ms 15.58 GB
VolumetricSMPL 11.06 ms 0.27 GB

To quantify the efficiency gap, we evaluate inference
time and GPU memory usage for occupancy checks be-
tween two SMPL-X bodies by determining whether one
body’s vertices reside inside another. We adopt the imple-
mentation from [45] and report the results in Tab. C.4.

As shown in Tab. C.4, winding numbers introduce sig-
nificant computational overhead, making them impractical
for learning-based tasks requiring large batch sizes with-
out down-sampling human meshes. In contrast, Volumet-
ricSMPL is over 40x faster and consumes 50x less GPU
memory, enabling efficient large-scale training and infer-
ence.

D. Downstream Tasks

In the following, we provide further implementation details
for the downstream tasks illustrated in Fig. 1.

D.1. Reconstructing Human-Object Interactions
from Images in the Wild

Following the two-stage methodology proposed by Wang
et al. [59] and PHOSA [68], we first independently recon-
struct humans and objects from the input image. In the sec-
ond stage, a joint optimization step refines their contacts and
spatial arrangements.

Unlike [59], which uses a time-consuming collision loss
based on mesh-triangle intersections, we replace this step
with an efficient alternative by transforming the body mesh
into signed distance fields. Specifically, we use Volumet-
ricSMPL to compute penetration loss efficiently, signifi-
cantly improving computational speed while maintaining
accuracy.

Initial Body Poses and Shapes Estimation. We use
PARE [31] to predict the pose 6 and shape [ parameters of
the SMPL [38] parametric body model. Next, we leverage
MMPose [9] to detect 2D body joint keypoints Jzp. Fi-
nally, we refine the predicted SMPL body model by fitting
it to the detected 2D keypoints using SMPLify [5].

The optimization objective for SMPLIify is formulated
as:

E(B,0) = HH(js’D)—J,@DHZ—i—Ee—i—Eﬁ, (D.1)
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Run time per frame:

Figure C.1. Human Mesh Recovery in 3D Scenes. Given an egocentric image and the 3D scene mesh as input, EgoHMR with Volumet-
ricSMPL (in blue) achieves fewer human-scene collisions than with COAP (in yellow) while being substantially faster (2.08s vs. 0.61s).
The collisions are denoted by the red circles.

Figure C.2. Reconstructing Human-Object Interactions from Images in the Wild. Here we demonstrate how VolumetricSMPL can be
integrated to reconstruct human-object interactions from images in the wild [59, 68]. VolumetricSMPL achieves comparable reconstruction
quality while being significantly faster than calculating human mesh SDF. See more details in 4.2.1.



where )y and Eg are pose and shape prior terms, Jsp rep-
resents the estimated 3D body joints, and II is the perspec-
tive projection operator.

Initial Object Pose and Shape Estimation. We formu-
late object pose and shape estimation as a rendered shape-
matching problem. First, we select an object mesh from a
set of template meshes for each object category, choosing
the one that best matches the corresponding 2D image.

Next, we use PointRend [30] to detect objects in the im-
age, extracting their bounding boxes, segmentation masks,
and semantic labels. Finally, we refine the 6-DoF ob-
ject pose of the selected mesh using a differentiable ren-
derer [25]. For further details, refer to PHOSA [68].

Human-Object Joint Optimization. The joint opti-
mization process refines human and object scales, transla-
tions, and rotations by minimizing the following objective
function:

L= )\1 Econtact + )\2£normal + A3 Epen + >\4£scale ; (Dz)

where Lg.qie penalizes deviations between the current hu-
man/object scale s/, and the prior scale 3. obtained from
large language models:

['scale = ||8/c - ch . (D.3)

The contact 1oss L.ontqct €ncourages plausible human-
object interactions by minimizing the one-way Chamfer dis-
tance between contact pairs:

Econtact = Z ]l(n'P}iLy n'pg )dCD (P]Zw 7)3) (D4)
(i,9)€T

The surface normal consistency 1oss L,,ormaq; €nforces
alignment between interacting human and object surfaces:

£normal = Z ]l(l’lfpi s 1’173(]))(1 + dcos(nPi ) npg))?
(4,J)€ET
(D.5)

where deos(a,b) = I:\‘It‘)sl is the cosine similarity between

two normal vectors.
The penetration loss L., prevents object vertices from
penetrating the body mesh:

1 Vol.SMPL h
Lpen = @ Z’UGO RCLU(ff@ (U/Sg |07 /8))’

(D.6)
where represents the VolumetricSMPL body
model, and O denotes the object mesh. The object ver-
tex v is rescaled with ﬁ, where s’ch is the current human
scale. Since VolumetricSMPL predicts a scale-invariant
signed distance field, we apply this rescaling when querying
the signed distance.

In our experiments, we set A1, 4 = [le5, 1e3, le4, 1e3].
When using SDF-based optimization [59], we adjust A3 =

,fg()l .SMPL

le3 instead of 1e4 . The joint optimization runs for 1k steps.
The number of object vertices varies from 1k to 20k, de-
pending on the object category. We use the Adam optimizer
with a learning rate of 2e — 3.

Additional visual results are displayed in Fig. C.2

D.2. Human Mesh Recovery in 3D Scenes

Given an egocentric image Z containing a truncated human
body and a corresponding 3D scene point cloud P € RV*3
in the camera coordinate system, where N is the number
of scene points, EgoHMR aims to model the conditional
distribution of human body poses p(6|Z,P). The goal is
to generate body poses that naturally interact with the 3D
scene while aligning with the image observations. The body
translation « and shape parameters 3 are modeled deter-
ministically. During diffusion inference, at each sampling
step ¢, the denoiser D predicts the clean body pose 0 from
the sampled noisy pose 6; at timestep ¢:

0o = D(0,,t,T,P). (D.7)

For qurther architecture details, refer to [69]. The predicted
pose 6g is then noised back to 6;_; using the DDPM sam-
pler [21]:

Or_1 ~ N (110, 00) + aXeVI(6y), y), (D.8)

where 1,0y, 90) is a linear combination of 6, and 6, and
3¢ is a scheduled Gaussian distribution [21]. The sampling
process is guided by the gradient of a collision score J(6),
which mitigates human-scene interpenetrations. The guid-
ance is modulated by X; and a scale factor a.

For EgoHMR with COAP (corresponding to the experi-
ment setup w. COAP in Tab. 4 of the main paper), the col-
lision score is computed by checking whether each scene
vertex is inside the human volume, using COAP [42]:

1 COQ
J(0) = P qup o(fe P (al9)Lpmw(gigy>0,  (D.9)

where fo stands for the COAP body model, and o(-)
stands for the sigmoid function.

For EgoHMR with VolumetricSMPL (corresponding to
the experiment setup w. Ours in Tab. 4 of the main paper),
the collision score is computed using the signed distance
field predicted by VolumetricSMPL for each scene vertex:

— L __ g VolumetricSMPL
JO) = 7 2 ep RELU(-F (419)),

(D.10)
where faolumetricSMPL - denotes the proposed Volumetric-
SMPL body model.

Experiment Details. In Eq. (D.8), we set the scale factor
a to 0.4 for EgoHMR with COAP and 30 for EgoHMR with
VolumetricSMPL. The diffusion sampling process consists



of 50 steps, with collision score guidance applied only dur-
ing the last 10 steps. In the final 5 denoising steps, we scale
VJ(6;) by a only, omitting ; to prevent the collision guid-
ance from diminishing too early in the process.

To ensure a fair comparison between COAP and Volu-
metricSMPL, we compute collision scores in Eq. (D.8) us-
ing 20k scene vertices sampled within a 2x2m cube cen-
tered around the human body.

For evaluation, we use the official checkpoint from [69]
to perform diffusion sampling and evaluate on the EgoB-
ody [71] test set, which consists of 62,140 frames. For
the further details about the evaluation metrics we refer the
reader to [69].

Additional visual results are displayed in Fig. C.1.

D.3. Scene-Constrained Human Motion Synthesis

We use DartControl [78] to generate scene-constrained nav-
igation motion in 15 scanned scenes from the Egobody [71]
dataset. Given the starting location and goal location in
a 3D scene, we initialize the human with a standing pose
and use the optimization-based motion synthesis method of
DartControl to drive the human to reach the goal location
while avoiding scene obstacles. The 3D scenes are repre-
sented as point clouds for collision evaluation, with each
point cloud containing 16384 points sampled from the orig-
inal scan using farthest point sampling. The motion se-
quences vary in length, ranging from 80 to 120 frames. We
condition the locomotion style of all sequences using the
text prompt “walk”. The optimization objective for scene-
constrained motion synthesis encourages the body pelvis of
the last frame to reach the goal location and penalizes all
detected human-scene collisions as follows:

‘C:‘F(pag)+w*£coll; (Dll)

where p denotes the last frame body pelvis, g denotes the
goal location, F denotes the smooth L1 loss [14], w is a
tunable weight for collisions, and L. is the scene colli-
sion term that we separately implement using COAP and
VolumetricSMPL following prior task (Sec. 4.2.2).

We use a collision weight of w = 1 for the Volumetric-
SMPL collision term and conduct experiments with varying
collision weights for the COAP baseline. Our observations
reveal that the COAP baseline struggles to effectively bal-
ance accurate goal-reaching and collision avoidance, lead-
ing to performance that is inferior to VolumetricSMPL, as
demonstrated in Tab. D.1. Notably, applying a large col-
lision weight w = 1 for COAP disrupts the optimization
process, leading to a failure to resolve collisions and caus-
ing deviations from the intended goal location.

Table D.1. Comparison of indoor navigation motion synthe-
sis using COAP-based collision term with different weights and
VolumetricSMPL-based collision term.

Per-Frame | Motion Quality |
Memory  Time | Collision Goal Dist.
w. COAP (w = 0.01) | 444 GB 2648 ms | 492cm  0.02m
w. COAP (w =0.1) |444GB 2653ms| 2.78cm  0.16 m
w. COAP (w =1.0) |444GB 2677ms| 492cm  0.57m
“w. Ours (w =1.0) [0.19GB 3.78ms | 0.24cm 0.01m

D.4. Self-Intersection Handling with Volumetric-
SMPL via Volumetric Constraints

When resolving self-intersections using volumetric con-
straints (Sec. 4.2.4), the model first detects potential col-
lisions by enclosing each body part within a 3D bounding
box G. For every pair of intersecting boxes, the overlapping
volume is identified, and 300 points are uniformly sampled
within this region. These points are further refined by re-
taining only those that reside inside at least two body parts,
as determined through part-wise SDF evaluations. The fi-
nal set of valid intersection points is denoted as S, and the
self-intersection loss is computed according to Eq. (8).

In this experiment, we minimize the final loss term
(Eq. 8) using the SGD optimizer to iteratively refine the
pose parameters and resolve intersections effectively. The
computational resources reported in Tab. 6 are estimated on
an NVIDIA RTX 3090 GPU card.

E. Limitations and Future Work

While VolumetricSMPL achieves a 10x speedup and 6x
lower memory usage compared to prior work [42], further
optimizations remain an important direction. Currently, it
supports batch sizes up to 80 for human-scene interaction
tasks (Sec. 4.2.3) on a 24GB GPU, but this remains a bottle-
neck when modeling longer human motion sequences. Fu-
ture work could explore memory-efficient architectures to
further scale motion synthesis.

Additionally, similar to other volumetric body mod-
els [42, 43], VolumetricSMPL does not explicitly model
detailed hand articulation, primarily due to limitations in
available training data. A potential extension involves de-
veloping a specialized volumetric hand model and integrat-
ing it into our framework, enabling more precise hand-
object interactions, particularly in fine-grained manipula-
tion tasks.

Beyond human modeling, our NBW formulation is in-
herently generic and can be applied to non-human shapes.
Exploring its potential for learning articulated animal mod-
els, robotic structures, or generic deformable objects could
extend its applicability beyond human-centric tasks. We
leave this exploration for future work.



By addressing these limitations, VolumetricSMPL could
further improve efficiency, extend its scope to finer inter-
actions, and generalize beyond human body modeling to
broader applications in graphics, robotics, and virtual en-
vironments.

Broader Impact. Beyond the immediate applications
explored in this work, VolumetricSMPL has the potential to
serve as a valuable tool for the broader research commu-
nity. Its efficiency, scalability, and ease of integration make
it suitable for a wide range of interaction tasks. By pro-
viding an open-source implementation, we aim to facilitate
further research into volumetric representations, encourage
new applications in dynamic human-scene interactions, and
inspire extensions to non-human shapes.

We hope that VolumetricSMPL will enable researchers
and practitioners to advance human body modeling research
and its downstream applications.

F. Seamless SMPL Code Integration

VolumetricSMPL is a lightweight and user-friendly add-on
module for SMPL-based body models, enabling seamless
volumetric extension.

With just a single line of code, users can extend SMPL
models with volumetric functionalities. After completing
the forward pass, they gain access to key volumetric func-
tionalities, including SDF queries, self-intersection loss,
and collision penalties. This implementation maintains full
compatibility with existing SMPL-based reconstruction and
perception applications.

The following code snippet demonstrates how to install
VolumetricSMPL and integrate it with an SMPL model to
utilize its volumetric functionalities:

pip install VolumetricSMPL

Listing 1. VolumetricSMPL Installation via PyPi

import smplx
from VolumetricSMPL import attach_volume

# Create an SMPL body

model = smplx.create (xxsmpl_parameters)
attach_volume (model) # extend with VolumetricSMPL
# SMPL forward pass

smpl_output = model (x*smpl_data)

# Acc ric functionalities

# 1) Query SDF for gix

S C ven polnts
model.volume.query (smpl_output, scan_points)

# 2) Compute self-intersection loss
model.volume.selfpen_loss (smpl_output)

# 3) Compute collision oss
model.volume.collision_loss (smpl_output, points)

Listing 2. Integrating VolumetricSMPL with SMPL.

The attach_volume () function seamlessly extends
any SMPL, SMPL-H, or SMPL-X model with volumetric
capabilities. Once the full forward pass is completed, users
can efficiently compute signed distance field (SDF) queries,
self-penetration loss, and collision penalties for physically
plausible human interactions.

VolumetricSMPL is released under the MIT license and
will be publicly available to the research community.
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