
Supplementary Material
The Supplementary Material is organized as follows. In Ap-
pendix A, we derive the mathematical formulation at the
core of our method. In Appendix B, we provide a novel
analysis of the multiplicative factor γb→a used by BiNI [7]
and extended in our method, and provide important insights
on its effect on convergence. Appendix C provides addi-
tional insights on the positivity of the log term in our for-
mulation ((15) in the main paper), including a mathemati-
cal proof that this property is preserved throughout the op-
timization, and discusses corner cases. In Appendix D, we
study the impact of the choice of the ray direction vector
τm, that controls our local planarity assumption. In Ap-
pendix E, we study the effect of the discontinuity activation
term β

(t)
b→a in our formulation. Appendix F presents an ab-

lation on different pixel connectivity. Appendix G presents
an evaluation of the formulation accuracy with metrics in
addition to the one introduced in Sec. 4.2. Appendix H
provides results of our method under noisy input normals.
Appendix I provides an evaluation on the DiLiGenT-MV
dataset [25], which extends the DiLiGenT dataset. Finally,
Appendix J discusses the limitations of our method.

A. Derivation of our formulation
In the following Section, we provide a derivation of the co-
efficients (3) of our formulation (2). Rearranging the equa-
tions in the system (1) emerging from our local planarity
assumption and using xb = τxb

zb, yb = τyb
zb (by defini-

tion of τxb
, τyb

) yields the following linear system in the
variables dxma, dyma, dzma, dxmb, dymb, dzmb:

C ·


dxma

dyma

dzma

dxmb

dymb

dzmb

 = d, (17)

where

C =


0 0 0 1 0 −τxm

0 0 0 0 1 −τym

−1 0 τxa 1 0 −τxa

0 −1 τya
0 1 −τya

0 0 0 nbx nby nbz

nax nay naz 0 0 0

 , and

d =


(τxm

− τxb
)zb

(τym
− τyb

)zb
(τxa − τxb

)zb
(τya − τyb

)zb
0

−nazεb→a

 .

(18)

Solving (17) yields the following expressions for dzma

and dzmb:

dzma =
−naz

na
Tτa

· εb→a +

(naxτxa + nayτya − naxτxm − nayτym) · nb
Tτb

na
Tτa · nb

Tτm
· zb

=
−naz

na
Tτa

· εb→a +
(na

Tτa − na
Tτm) · nb

Tτb
na

Tτa · nb
Tτm

· zb,

dzmb =
nbxτxb + nbyτyb − nbxτxm − nbyτym

nb
Tτm

· zb

=
na

Tτa · (nb
Tτb − nb

Tτm)

na
Tτa · nb

Tτm
· zb.

(19)

The final step to obtain our formulation (2), (3) follows
from writing:

za =zb + dzmb − dzma

=
na

Tτa · nb
Tτm

na
Tτa · nb

Tτm
· zb +

na
Tτa · (nb

Tτb − nb
Tτm)

na
Tτa · nb

Tτm
· zb +

−(na
Tτa − na

Tτm) · nb
Tτb

na
Tτa · nb

Tτm
· zb +

naz

na
Tτa

· εb→a

=
naz

na
Tτa

· εb→a +
na

Tτm · nb
Tτb

na
Tτa · nb

Tτm
· zb.

(20)

Alternative derivation. An alternative, more concise
derivation1 can be obtained by noting that the perpendic-
ularity constraints encoded by the last two equations in (1)
can be more compactly expressed as

na
T(pm + εz − pa) = 0 (21)

nb
T(pm − pb) = 0, (22)

where εz := (0, 0, εb→a)
T. From (22) it follows that

nb
Tpb

nb
Tpm

= 1. (23)

Expanding (21) and multiplying its first term by 1 using the
equivalence (23) yields

na
Tpm · nb

Tpb

nb
Tpm

+ na
Tεz − na

Tpa = 0. (24)

Using pi = ziτi, i ∈ {a, b,m} (by definition) and the fact
that na

Tεz = naz · εb→a, (24) can be rewritten as

na
Tτm · nb

Tτb
nb

Tτm
zb + naz · εb→a − (na

Tτa)za = 0. (25)

Dividing all terms in (25) by na
Tτa and rearranging yields

our formulation (2), (3).
1We thank the anonymous reviewer NayZ for suggesting this alterna-

tive derivation.



B. Influence of the multiplicative factor γb→a

As noted in Sec. 2 of the Supplementary Material of
BiNI [9], the coefficient γb→a

2, which we extend in our
formulation, is crucial to achieving optimal convergence
during optimization. In particular, their formulation based
on the functional γb→a(z̃a − z̃b) = δb→a ((8) in the
main paper) performs significantly better than the one de-
rived from the equivalent equation z̃a − z̃b = δb→a/γb→a.
Similarly, we find that our formulation γb→a(z̃a − z̃b) =
γb→a log (ωb→a + ωεa · αb→a) ((11) in the main paper)
achieves significantly better convergence than the equiva-
lent z̃a − z̃b = log (ωb→a + ωεa · αb→a).

In the following, we provide below a novel analysis of
this phenomenon in light of our generic formulation based
on ray direction vectors, which allows rewriting γb→a as

γb→a = f · na
Tτa, (26)

where f is the (fixed) focal length, which we generalize
to the (pixel-pair specific) factor ∥ub − ua∥ / ∥τb − τa∥3.
All the supporting experiments in this Section are run on the
DiLiGenT benchmark, for 1200 iterations and for simplic-
ity using our version without αb→a computation.

We start by noting that, for each pixel pair (a, b), the
coefficient γb→a has two effects on the optimization:
• Effect 1 (weighting): On one side, it introduces a

quadratic factor γ2
b→a in the corresponding term of the

optimization cost function (Ãz̃−b̃)TW̃(Ãz̃−b̃) (cf . (5)
in the main paper), or equivalently in its associated nor-
mal equation ÃTW̃Ãz̃ = ÃTW̃b̃, since both the rows
of Ã and the corresponding elements of b̃ are scaled by a
factor γb→a (cf . (8) and (11) in the main paper). In other
words, the optimization cost function reads as

(Ãz̃−b̃)TW̃(Ãz̃−b̃) =
∑
(a,b)

wBiNI
b→a ·γ2

b→a ·(z̃a−z̃b−RHS)2,

(27)
where RHS is δb→a/γb→a for BiNI and
log (ωb→a + ωεa · αb→a) for Ours. Therefore, each
residual is effectively scaled by wBiNI

b→a · γ2
b→a rather than

only by wBiNI
b→a .

• Effect 2 (sharpness of the bilateral weights): On
the other side, it impacts the magnitude of the bilat-
eral weights wBiNI

b→a = σk(res
2
−b→a − res2b→a), where

resb→a := γb→a (z̃a − z̃b) (see also (10) in the main pa-
per). Since from (26) γb→a ≈ γ−b→a, with exact equality
when f is constant, it follows that

wBiNI
b→a = σk(γ

2
b→a · ((z̃a − z̃b)

2 − (z̃a − z̃−b)
2))

= σk·γ2
b→a

((z̃a − z̃b)
2 − (z̃a − z̃−b)

2),
(28)

2Denoted as ñz in [9].
3Note that for an ideal pinhole camera with f = fx = fy

one has ∥ub − ua∥ = ∥(ub − ua, vb − va)∥ and ∥τb − τa∥ =
∥((ub − ua)/f, (vb − va)/f, 0)∥ = ∥ub − ua∥/f , from which one
recovers ∥ub − ua∥ / ∥τb − τa∥ = f .

i.e., γ2
b→a can be subsumed into the parameter k of the

sigmoid σk. As a consequence, γb→a controls the conver-
gence of the bilateral weights, so that for fixed z̃a and z̃b,
a larger γ2

b→a causes smaller depth differences between
the two sides to be detected as a one-sided discontinuity,
and smaller values result in a less sharp convergence.
Crucially, we observe that the effects of the two terms f

and na
Tτa in (26) can be decoupled and summarized in the

following two Propositions:

Proposition 1: Effect of the term f

The term f acts as a constant (or near constant, in
the case of f = ∥ub − ua∥ / ∥τb − τa∥) that con-
trols the sharpness of the bilateral weights wBiNI

b→a .

Proposition 2: Effect of the term na
Tτa

The term na
Tτa introduces an active weighting

mechanism (in addition to wBiNI
b→a ) based on the

collinearity between surface normals and ray direc-
tions, reducing the influence of pixel pairs close to
a discontinuity.

We provide below arguments and empirical verifications
supporting the above Propositions.
Argument for Proposition 1. Since f is constant (or ap-
proximately constant), it can be factored out of each term
γ2
b→a in the optimization cost function (27). Since multi-

plying the cost function by a constant factor does not af-
fect its minimizing solution, it follows that the term f is not
an influencing factor for Effect 1 (weighting). We verify
this by running our method using γb→a = na

Tτa in our
cost function (27) and γb→a = f · na

Tτa in the bilateral
weights (28). As expected, up to minimal differences that
we attribute to machine precision, the results match those
obtained when using the full factor γb→a = f · na

Tτa in
the cost function (cf . first and second row in Tab. 3).

We verify that instead the term f does indeed contribute
to Effect 2 (sharpness of the bilateral weights) by varying
its value in the γb→a factor of the bilateral weights, while
maintaining a fixed γb→a = na

Tτa in our cost function.
Comparing rows 2 to 5 in Tab. 3 shows that indeed different
values of f result in different convergence; while the change
is object-specific, the main emerging trend appears to indi-
cate that worse convergence is obtained for lower values of
f , which correspond to a less sharp sigmoid.
Argument for Proposition 2. Since unlike f the term
na

Tτa is highly pixel specific, it is not possible to find a
single constant that can be absorbed into the parameter k
of the sigmoid. It is therefore not straightforward to draw
conclusions about its contribution to Effect 2 (sharpness of
the bilateral weights). We can however verify that the term



bear buddha cat cow harvest pot1 pot2 reading goblet

Figure 8. Visualization of the terms |na
Tτa|, DiLiGenT dataset [31]. The terms encode the degree of collinearity between the surface

normals and the ray direction vectors. Low values are attained at pixels where the ray direction vector is perpendicular to the surface
normal, a necessary condition for the corresponding point to lie on the object boundary.

Value of γb→a bear buddha cat cow harvest pot1 pot2 reading goblet
Cost function (27) wBiNI

b→a (28)

f · na
Tτa f · na

Tτa 0.07 0.26 0.06 0.08 5.54 0.49 0.13 0.11 6.33

na
Tτa f · na

Tτa 0.07 0.25 0.06 0.08 5.33 0.49 0.13 0.12 6.60
na

Tτa 3000 · na
Tτa 0.09 0.27 0.11 0.09 3.89 0.47 0.15 0.12 7.96

na
Tτa 2000 · na

Tτa 0.06 0.98 0.17 0.18 1.71 0.48 0.25 0.27 8.63
na

Tτa 1000 · na
Tτa 0.04 1.41 0.08 0.30 2.51 0.72 0.28 1.19 9.46

f f · na
Tτa 0.48 2.53 0.69 0.39 4.84 14.40 0.42 3.16 10.28

Table 3. Ablation on the terms in γb→a, DiLiGenT dataset [31]. For each experiment, we report the mean absolute depth error (MADE)
[mm]. All experiments are without αb→a computation, k = 2 for w(t)

b→a (as default), and are run for 1200 iterations. Where used, f
denotes ∥ub − ua∥ / ∥τb − τa∥. For reference, the values of fx and fy in the dataset are fx ≈ 3772.1 [px] and fy ≈ 3759.0 [px].

na
Tτa has a strong influence on Effect 1 (weighting), by re-

moving it from the γb→a factor of the cost function (which
is therefore set to f ), while maintaining it in γb→a in the
bilateral weights. Comparing the last and the first row of
Tab. 3 confirms that the accuracy of the reconstruction dra-
matically decreases when the term does not contribute to
the cost function, which indicates that it plays an active role
in determining the convergence of the optimization, by in-
troducing equation-specific weights. Interestingly, as we
previously observed in Sec. 3.1, the term na

Tτa strongly
correlates with surface discontinuities, with pixels close to
object boundaries or local discontinuities attaining a small
value for this term. More generally, as evident from its dot-
product definition, the term na

Tτa encodes the degree of
collinearity between surface normal and the ray direction
vector at each pixel (cf . Fig. 8 for a visualization). As a
consequence, its effect over the optimization is to balance
the influence of the residuals, decreasing the weight of er-
rors close to discontinuities, while increasing the influence
of residuals at points where the camera rays hit the surface
at a close-to-right angle.

C. Analysis of the positivity of the log term

In this Section we provide further insights on the positivity
of the log term in our formulation ((15) in the main paper).

We start by empirically verifying that, for our choice
τm = (τa + τb)/2, the terms na

Tτm and nb
Tτm are

both strictly positive for all but a single pixel (object pot1)
across all the objects in the DiLiGenT dataset, used for our
main experiments. Furthermore, also for this outlier pixel,

the effects of the two pixels cancel out and the correspond-
ing term ωb→a = (na

Tτm · nb
Tτb)/(na

Tτa · nb
Tτm) is

strictly positive, leading to a positive log term at all pixels
in the first iteration of our optimization.

We now briefly analyze under which conditions we can
expect an outlier, negative ωb→a term. Since, as noted
in Sec. 3.1, for physically meaningful normals (i.e., cor-
responding to observable surface points) the positivity of
ωb→a reduces to the positivity of na

Tτm and nb
Tτm, we

can focus on the case where the latter two terms have oppo-
site signs. Figure 9 provides an illustration of an instance in
which such a corner case may arise. In the depicted setting,
the surface has low inclination relative to the camera on the
side of point pa, but large inclination on the side of point
pb. As consequence, on the side of pa both the angles be-
tween na and τa and between na and τm are significantly
larger than 90◦, i.e. na

Tτa < 0 and na
Tτm < 0. On the

opposite side, however, the angle between nb and τb is only
slightly larger than 90◦ (hence nb

Tτb ≈ 0, but still nega-
tive), while the angle between nb and τm is smaller than
90◦, causing nb

Tτm to be positive and therefore ωb→a to be
negative. While such outlier cases might indeed arise, it is
possible to detect and handle them, for instance by exclud-
ing the corresponding equation from the optimization or by
choosing a different value of τm (cf . Appendix D). Further-
more, their occurrence is unlikely in practice, since the sign
flipping between nb

Tτb and nb
Tτm would need to occur

within a very limited angular space: as a reference, using
τm = (τa + τb)/2, the angle between τm and τb is ap-
proximately 1

2 arctan
(

1 px
3700 px

)
≈ 0.008◦ in the DiLiGenT



Figure 9. Visualization of a corner case in our local planarity
assumption in 3D. For the chosen configuration, the ray direction
vector τm forms an angle smaller than 90◦ with nb and larger
than 90◦ with na, resulting in na

Tτm < 0 and nb
Tτm > 0.

dataset, for which fx ≈ 3772.1 px and fy ≈ 3759.0 px.
Assuming ωb→a > 0, hence that the argument of the log

term in (15) is positive in the first optimization iteration, it
is straightforward to show that the argument also stays pos-
itive throughout the optimization, as we prove below.
From (14) in the main paper, ωb→a + ωεa · α

(t+1)
b→a =

exp
(
z̃
(t)
a − z̃

(t)
b

)
. Since the exponential function is bi-

jective and defined anywhere in R, it follows that for any
value of z̃

(t)
a and z̃

(t)
b a corresponding value for the term

ωb→a + ωεa · α
(t+1)
b→a can be found and thereby of α

(t+1)
b→a

(provided that ωεa ̸= 0, i.e., from (3) naz
̸= 0, which is

always the case because naz
= 0 corresponds to a surface

perpendicular to the image plane). Since the exponential
function has strictly positive codomain, it also follows that
for all t’s:

ωb→a + ωεa · α
(t+1)
b→a > 0. (29)

From ωb→a > 0 and (29) and since β
(t)
b→a ∈ [0, 1] by

design, it follows that ωb→a + ωεa · α
(t)
b→a · β

(t)
b→a > 0,

which proves the hypothesis. Indeed:

• If ωεa · α(t)
b→a ≥ 0, one has

ωεa · α(t)
b→a · β(t)

b→a ≥ 0
(
β
(t)
b→a ≥ 0

)
⇒ ωb→a + ωεa · α(t)

b→a · β(t)
b→a ≥ ωb→a (ωb→a ∈ R)

⇒ ωb→a + ωεa · α(t)
b→a · β(t)

b→a > 0; (ωb→a > 0)

• If ωεa · α(t)
b→a < 0, it follows that

ωεa · α(t)
b→a · β(t)

b→a ≥ ωεa · α(t)
b→a

(
β
(t)
b→a ∈ [0, 1]

)
⇒ ωb→a + ωεa · α(t)

b→a · β(t)
b→a ≥

ωb→a + ωεa · α(t)
b→a (ωb→a > 0)

⇒ ωb→a + ωεa · α(t)
b→a · β(t)

b→a > 0. (from (29))

Figure 10. Visualization of an adaptive strategy for τm. If the
surface has a large inclination relative to the camera on one of
the two sides (here the side of pb, hence |nb

Tτb| ≪ |na
Tτa|),

orienting τm closer to the latter side yields a smaller |εb→a|.

D. Impact of the choice of τm
In the following Section, we provide an ablation on the
choice of τm, which controls the planar assumption of our
method (cf . Fig. 9 and Fig. 2 in the main paper).

As mentioned in Sec. 3.1 in the main paper, τm can
be parametrized as interpolating between τa and τb, i.e.,
τm = τa + λm(τb − τa), with λm ∈ [0, 1]. A nat-
ural choice, which we adopt in our main experiments, is
to orient τm at an equal angular distance from τa and
τb, i.e. setting λm = 0.5 uniformly for all pixels. How-
ever, we note that in certain settings a pixel-pair-specific
choice λm,b→a : τm = τa + λm,b→a(τb − τa) might
be desirable. An argument in favor of this point is for in-
stance shown through a corner case similar to that consid-
ered in Appendix C (Fig. 10), in which on one of the two
sides (the side of pb in Fig. 10) the surface has a signifi-
cantly larger inclination relative to the camera. As a con-
sequence, as exemplified by Fig. 10, our planar assump-
tion holds more accurately if τm is oriented closer to the
side with the larger inclination, in which case a smaller dis-
continuity term |εb→a| is obtained. Since, as mentioned
in Appendix B, the quantity na

Tτa naturally encodes sur-
face orientation with respect to the camera, the condition
of unbalanced inclination between the two sides can also
be expressed as |nb

Tτb| ≪ |na
Tτa|. In this ablation, we

additionally consider the quantity naz , which similarly to
na

Tτa attains a low value in proximity to discontinuities.
We note that the interpolating function λm,b→a needs to

be such that τm intersects the same surface point pm both
in the direction b → a (i.e., when considering b a neigh-
bor of a) and in the direction a→ b (i.e., when considering
a a neighbor of b). This can be expressed mathematically
by the condition λm,b→a = 1 − λm,a→b. We note that
the sigmoid function naturally fulfills this condition when
composed with an even function, and we therefore set in
this ablation λm,b→a = σkm

(f(a, b)), with different val-



ues for km, and with f(a, b) either (na
Tτa)

2 − (nb
Tτb)

2,
n2
az − n2

bz , or (naz · na
Tτa)

2 − (nbz · nb
Tτb)

2.
Table 4 shows the results of this ablation, which we per-

form on the DiLiGenT dataset. For most objects, intro-
ducing a pixel-specific λm results generally in lower re-
construction accuracy using any of the functions f(a, b)
listed above; larger values of km (hence more sharply
weighting inclination differences between the two sides)
further decrease the performance. A noticeable exception
is represented by the two objects with larger discontinuities
(harvest and goblet), for which specific choices of pa-
rameters can lead to improved reconstruction accuracy.

Finally, we highlight that pixel-specific values of λm find
an additional, critical application in handling potential out-
liers in the input normal map. We discuss this important
aspect in detail in Appendix H.

E. Impact of the discontinuity activation term
In this Section, we provide an ablation analysis on the im-
pact of our discontinuity activation term β

(t)
b→a on the re-

construction accuracy. Table 5 reports the mean absolute
depth error on the DiLiGenT dataset as we vary the hyper-
parameters q and ρ (cf . (16) in the main paper), the effect
of which can be visualized in Fig. 11. For ρ = 0.25, the re-
sults show object-specific trends, with some objects achiev-
ing higher accuracy for sharper changes of β

(t)
b→a (larger

q, for instance harvest, pot1, reading) and others
favoring a smoother discontinuity activation term (smaller
q, for instance bear, pot2). For ρ = 0.5, the method
achieves worse accuracy, in most instances also lower than
the version without computation of αb→a (cf . Tab. 2 in the
main paper). This performance drop is expected, since for
ρ = 0.5 the discontinuity term significantly deviates from
its designed objective, namely that it should tend smoothly
to zero as wBiNI(t−1)

b→a → 0.5− and smoothly to one as
wBiNI(t−1)

b→a → 0+ (cf . Sec. 3.3 in the main paper for a de-
tailed explanation of this design choice).

F. Impact of the connectivity
Since our method allows using pixel connectivities not lim-
ited to standard 4-connectivity, in this Section we investi-
gate whether using alternative connectivities can yield im-
proved reconstruction accuracy. Table 6 shows the re-
sults of this ablation, where we test our method on the
DiLiGenT dataset using standard 4-connectivity (as in the
main paper), 4-connectivity defined along the diagonals
rather than the horizontal and vertical direction, and full
8-connectivity. While 4-connectivity along the diagonals,
with very limited exceptions, generally results in signifi-
cantly worse performance, we note that, interestingly, full
8-connectivity produces comparable or slightly better re-
constructions than standard 4-connectivity on some objects

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

wBiNI(t−1)

b→a

β
(t)
b→a

q = 2.5

q = 5.0

q = 10.0

q = 15.0

q = 25.0

q = 40.0

q = 50.0

q = 100.0

q = 1000.0

Figure 11. Discontinuity activation term (16) for ρ = 0.25 and
different values of q. For ρ = 0.5, the plots are shifted to the
right by 0.25 units along the wBiNI(t−1)

b→a axis. Cf . Tab. 5 for a
quantitative evaluation on the effect of the parameters ρ and q.

(e.g. cow, pot1, pot2). However, this improvement
is contrasted by reduced accuracy on other objects (e.g.
buddha, cat, reading) and reduced effect of the αb→a

computation, leaving standard 4-connectivity as the most
robust and balanced option.

G. Additional evaluations of the formulation
accuracy

In Tables 7 and Tab. 8, similarly to Tab. 1 in the main paper,
we provide metrics to evaluate how accurately our formula-
tion approximates the ground-truth relation between depth
and surface normals compared to previous methods. In par-
ticular, to complement the evaluation of the absolute accu-
racy from the main paper, we report here relative metrics,
specifically the residual |(z̃a−z̃b−RHS / γb→a) / z̃a| com-
puted on the ground-truth log-depth map (Tab. 7) and the
residual |(za − exp (RHS / γb→a) · zb) / za| computed on
the ground-truth depth map (Tab. 8), where RHS denotes
the right-hand side of (8) for BiNI and (11) for Ours.

The results confirm the findings from the main paper.
Namely, while for two objects our method has larger resid-
ual standard deviation than BiNI [7] (buddha and pot1),
it achieves lower mean residual error by one or two orders
of magnitude and lower standard deviation for most objects.

H. Results for noisy inputs

In this Section, we investigate the robustness of our method
to noise in the input normal map.

Similarly to previous methods [9], we simulate the pres-
ence of outlier normals by replacing the original normals
with randomly sampled unit vectors, with different percent-
ages of sampled pixels. Figure 12 shows that without pre-
processing the normal maps, our method can reconstruct



λm km bear buddha cat cow harvest pot1 pot2 reading goblet

0.5 N/A 0.07 0.26 0.06 0.08 4.83 0.50 0.13 0.12 6.56

σkm

(
(na

Tτa)
2 − (nb

Tτb)
2
) 1 0.15 0.33 0.09 0.12 5.12 0.52 0.17 0.19 5.73

2 0.22 0.72 0.13 0.16 2.45 0.53 0.22 0.29 6.23
3 0.29 1.40 0.16 0.19 3.66 0.56 0.30 0.38 6.11

σkm

(
n2
az − n2

bz

) 1 0.15 0.33 0.09 0.12 4.65 0.50 0.17 0.19 5.69
2 0.22 0.71 0.13 0.16 2.51 0.53 0.22 0.28 6.12
3 0.29 1.42 0.16 0.19 5.49 0.56 0.30 0.38 6.06

σkm

(
(naz · na

Tτa)
2 − (nbz · nb

Tτb)
2
) 1 0.11 0.25 0.08 0.11 4.95 0.51 0.16 0.15 5.38

2 0.15 0.45 0.10 0.13 2.73 0.52 0.20 0.20 5.40
3 0.19 1.03 0.13 0.16 2.74 0.55 0.24 0.39 5.61

Table 4. Mean absolute depth error (MADE) [mm] on the DiLiGenT benchmark [31] for different choices of λm, where τm =
τa + λm(τb − τa). All the experiments are run for 1200 iterations with αb→a = 0. σkm denotes the sigmoid function σkm(x) =
1/(1 + exp(−km · x)).

ρ q bear buddha cat cow harvest pot1 pot2 reading goblet

0.25

2.5 0.04 0.28 0.06 0.11 4.35 0.57 0.13 0.17 5.86
5.0 0.02 0.22 0.22 0.09 1.11 0.53 0.12 0.14 2.43
10.0 0.02 0.25 0.06 0.08 0.93 0.54 0.12 0.16 1.63
15.0 0.03 0.24 0.06 0.08 0.78 0.55 0.12 0.16 1.52
25.0 0.03 0.25 0.06 0.10 0.83 0.55 0.13 0.13 5.78
40.0 0.03 0.23 0.06 0.08 0.60 0.51 0.13 0.18 6.22
50.0 0.03 0.24 0.06 0.08 0.73 0.49 0.13 0.17 4.72
100.0 0.03 0.23 0.06 0.08 4.01 0.48 0.14 0.17 6.21
1000.0 0.03 0.23 0.08 0.08 0.64 0.48 0.14 0.10 6.10

0.50

2.5 0.08 0.39 0.06 0.12 2.20 0.62 0.14 0.20 5.98
5.0 0.09 0.47 0.09 0.12 3.40 0.64 0.13 0.52 6.25
10.0 0.09 0.52 0.09 0.12 1.88 0.58 0.13 0.54 6.18
15.0 0.09 0.57 0.08 0.12 2.52 0.64 0.18 0.55 6.14
25.0 0.09 0.67 0.08 0.12 1.10 0.63 0.17 0.73 4.62
40.0 0.09 0.40 0.11 0.12 2.13 0.69 0.16 0.59 6.96
50.0 0.09 0.70 0.12 0.12 2.21 0.61 0.17 0.45 7.23
100.0 0.10 0.83 0.11 0.11 2.03 0.60 0.16 0.46 7.26
1000.0 0.10 0.70 0.14 0.11 2.58 0.87 0.16 0.51 6.94

Table 5. Mean absolute depth error (MADE) [mm] on the DiLiGenT dataset [31] for ρ ∈ {0.25, 0.50} and different values of q. For
each object, bold denotes the best result across the experiments. All the experiments are run for 1200 iterations.

Method Connectivity bear buddha cat cow harvest pot1 pot2 reading goblet

Ours w/o αb→a computation
4-connectivity 0.07 0.26 0.06 0.08 4.83 0.50 0.13 0.12 6.56
4-connectivity (diagonal) 0.26 0.39 0.30 0.09 1.68 0.47 0.15 0.26 7.31
8-connectivity 0.06 0.35 0.29 0.09 2.56 0.36 0.12 0.39 4.44

Ours
4-connectivity 0.03 0.24 0.06 0.08 0.73 0.49 0.13 0.17 4.72
4-connectivity (diagonal) 0.12 0.69 0.28 0.09 1.76 0.50 0.14 0.42 5.56
8-connectivity 0.15 0.35 0.32 0.08 3.82 0.37 0.13 0.50 5.14

Table 6. Mean absolute depth error (MADE) [mm] on the DiLiGenT dataset [31] for different connectivities. For each object and
method, bold denotes the best result across the connectivities. All the experiments are run for 1200 iterations with τm = (τa + τb)/2.
Ours corresponds to the hyperparameter setting of our main experiments (q = 50.0 and ρ = 0.25 in (16)).

most of the underlying surface, but suffers from the pres-
ence of spike artifacts and non-smooth effects on the surface
(second block from the top in Fig. 12). We note, however,
that a large part of the outliers can and should be detected,
because they correspond to physically impossible normals.
In particular, as previously observed both in the main paper
and in Appendix B, a necessary condition for the surface to
be observable at one point pa is that the dot product na

Tτa
at the corresponding pixel a is negative. We observe that en-

forcing this condition by applying an averaging filter to the
normals at pixels where na

Tτa > 0 results in a reduction
of the amount of spike artifacts (third block from the top in
Fig. 12). We additionally note that the presence of outliers
can also be detected by inspecting the distribution of na

Tτa
or of its absolute value: while in a natural surface these
quantities vary continuously across the surface with the ex-
ception of boundary regions, for the perturbed normal maps
salt-and-pepper noise can be observed in correspondence to



the outliers (cf . second row in the top block of Fig. 12). We
verify that applying average filtering also to pixels where
|na

Tτa| deviates significantly from the mean value in its
neighborhood further mitigates the effect of the outliers, re-
moving spike artifacts and recovering the smoothness of the
surface (cf . lowermost block in Fig. 12).

While the above test effectively highlights the impact
of outliers on the reconstruction, we argue that it does not
fully accurately reflect the statistical characteristics of noise
emerging in real-world normal maps, in particular those
predicted by learning-based methods. To provide an ad-
ditional evaluation of the robustness of our method under
noise in the input normals, we perturb the surface normals
by rotating them around an axis that we randomly sample
for each pixel, with an angle of rotation that we sample
from a Gaussian distribution. Figure 13 shows the results
of this ablation, where we vary the standard deviation of the
Gaussian distribution between 1 and 10 degrees. Similarly
to the experiment with outliers, providing the raw normal
map as input to our method results in spike artifacts (sec-
ond block from the top in Fig. 13). Noticeably, however,
most of these artifacts can be corrected by average filtering
of the pixels with invalid normals alone (third block from
the top in Fig. 13), showing that physically impossible nor-
mals constitute the main factor behind these artifacts. As
in the case with outliers, additionally filtering pixels where
|na

Tτa| deviates largely from the mean value in the pixels’
neighborhood allows further reducing artifacts and remov-
ing spikes (lowermost block in Fig. 13).
Outlier filtering through τm. The spike artifacts resulting
from the outlier normals have been identified in the liter-
ature as consequences of a type of Gibbs phenomenon [6,
17]. A closer analysis of the terms of our formulation re-
veals that such artifacts arise at outlier pixels where the
terms ni

Tτj , for (i, j) ∈ {(a, a), (a,m), (b, b), (b,m)},
are either greater than 0 or have small magnitude, i.e.,
ni

Tτj > 0 or |ni
Tτj | ≈ 0. In the latter case, in partic-

ular, the term ωb→a, which depends on the multiplication
of two such terms both in its numerator and its denomina-
tor, can significantly deviate from 1. This, in turn, results in
za ≫ zb or za ≪ zb through (2) and thus introduces very
large discontinuities that imbalance the optimization.

Crucially, our method offers a natural way to handle
these outliers by controlling the ray direction τm = τa +
λm · (τb − τa) associated to the mid-point m (see Ap-
pendix D). We find that a simple strategy that results in
an effective reduction of the influence of the outliers is to:
(i) detect ωb→a terms that are outliers when λm = 0.5,
evaluated as | log(ωb→a)| > log(1 + ϵout), where ϵout is
a hyperparameter (for instance ϵ = 0.1, corresponds to a
depth variation larger than 10% between za and zb, cf . (2));
(ii) uniformly sample multiple values of λm ∈ [0, 1] for
these pixels and select the value of λm that yields the ωb→a

term closest to 1. As shown in the last row of Fig. 12 and
Fig. 13, applying this strategy (here with ϵout = 0.01) re-
sults in a significant reduction of the spike artifacts, with
complete removal of the artifacts in the case of rotational
noise (Fig. 13).

I. Additional evaluations

In this Section, we provide additional evaluations of our
method and of the baseline of BiNI [7] on the DiLiGenT-
MV dataset [31], which extends the DiLiGenT dataset for
a subset of 5 of its objects (bear, buddha, cow, pot2,
reading) by rendering a total of 20 views per object. The
dataset contains both ground-truth normals and normals
from photometric stereo, which therefore allows us to quan-
titatively evaluate the methods also on real normal maps.
We run all methods with the same settings as the main ex-
periments, using 1200 iterations, and apply the outlier filter-
ing strategy described in Appendix H for our method, set-
ting ϵout = 0.1.

Table 9 reports the mean absolute error (averaged across
the 20 object views) against ground-truth depth, which we
render with BlenderProc [10] using ground-truth meshes
and camera parameters. The results confirm that our method
performs better than BiNI also on normals from photomet-
ric stereo, with discontinuity estimation further increasing
our accuracy.

J. Limitations

Requirement for physically meaningful normals. While
effective strategies for the mitigation of outliers can be
designed, as described in Appendix H, our method re-
quires that the input normals are physically meaningful, i.e.,
na

Tτa < 0. As a consequence, an additional preprocess-
ing step on the input normals (cf . Appendix H for example
strategies) is required in the presence of outliers, to ensure
that the above condition is fulfilled.
Non-central camera models. Since it is based on ray direc-
tion vectors, our formulation does not allow handling cam-
era models that are non-central, i.e., that do not assume all
camera rays to originate from a single point (such as ax-
ial cameras [30]). A particular case of non-central cameras
are orthographic cameras, which assume the center of pro-
jection to be at an infinite distance from the scene. As a
consequence, in this model all ray direction vectors are par-
allel to each other and perpendicular to the image plane, i.e.,
τa = τb = τm = (0, 0, 1)T for all a, b,m. We note that
in this case our formulation (2) reduces to za = εb→a + zb,
which, while correct, does not depend on the surface nor-
mals and is thus not applicable to normal integration.
Run time and input size. Similarly to previous
optimization-based approaches [7, 24, 28], our method is
not compatible with real-time deployment, with optimiza-



Method bear buddha cat cow harvest pot1 pot2 reading goblet

BiNI [7] (2.37± 3.15)× 10−5 (3.18± 8.12)× 10−5 (0.35± 2.28)× 10−4 (2.65± 4.32)× 10−5 (0.38± 1.86)× 10−4 (2.89± 6.75)× 10−5 (2.59± 4.07)× 10−5 (0.36± 1.03)× 10−4 (0.32± 1.01)× 10−4

Ours (0.08± 1.25)× 10−5 (0.09± 1.47)× 10−4 (0.04± 2.48)× 10−4 (0.18± 2.64)× 10−5 (0.18± 1.77)× 10−4 (0.09± 6.52)× 10−4 (0.33± 3.03)× 10−5 (0.78± 8.88)× 10−5 (0.61± 9.10)× 10−5

Table 7. Relative formulation accuracy on the ground-truth log-depth map, DiLiGenT dataset [31]. For both methods, we report
mean and standard deviation across the pixels of the relative residual |(z̃a − z̃b − RHS / γb→a) / z̃a| computed on the ground-truth
log-depth map, where RHS denotes the right-hand side of (8) for BiNI and (11) for Ours. We use τm = (τa + τb)/2 and αb→a = 0 for
Ours.

Method bear buddha cat cow harvest pot1 pot2 reading goblet

BiNI [7] (2.46± 2.39)× 10−4 (2.45± 5.39)× 10−4 (3.30± 6.30)× 10−4 (2.35± 2.89)× 10−4 (0.29± 1.33)× 10−3 (2.17± 4.46)× 10−4 (1.89± 3.01)× 10−4 (3.59± 7.21)× 10−4 (2.37± 7.45)× 10−4

Ours (0.60± 9.13)× 10−5 (0.06± 1.10)× 10−3 (0.03± 1.87)× 10−3 (0.13± 1.94)× 10−4 (0.13± 1.30)× 10−3 (0.07± 8.46)× 10−3 (0.25± 2.22)× 10−4 (0.57± 6.51)× 10−4 (0.45± 6.66)× 10−4

Table 8. Relative formulation accuracy on the ground-truth depth map, DiLiGenT dataset [31]. For both methods, we report mean
and standard deviation across the pixels of the relative residual |(za − exp (RHS / γb→a) · zb) / za| computed on the ground-truth depth
map, where RHS denotes the right-hand side of (8) for BiNI and (11) for Ours. We use τm = (τa + τb)/2 and αb→a = 0 for Ours.

Method bear buddha cow pot2 reading

GT PS GT PS GT PS GT PS GT PS

BiNI [7] 0.30 0.45 2.33 1.14 0.26 0.29 0.72 0.90 0.89 1.30
Ours w/o αb→a 0.24 0.45 1.89 1.04 0.23 0.29 0.73 0.83 0.86 1.14
Ours 0.24 0.44 1.64 1.02 0.21 0.28 0.66 0.83 0.80 1.24

Table 9. Mean absolute depth error (MADE) [mm] on the DiLiGenT-MV dataset [25], averaged across the 20 object views. GT:
ground-truth normals, PS: normals from photometric stereo. All tests use 1200 iterations.

tion converging in a time frame in the order of several sec-
onds (50 to 120 seconds for input normal maps of size
512× 612). Additionally, like for previous approaches, our
system matrix A (cf . (1) in the main paper), albeit sparse,
has both a number of rows and a number of columns that
scale linearly with the number of valid pixels in the input
normal map. This leads to larger processing time and mem-
ory usage for large input sizes, making it currently unsuit-
able for high-resolution maps and highly complex scenes.
More optimized implementations could reduce runtime and
memory usage. Investigating more substantial modifica-
tions that could move away completely from the drawbacks
of optimization-based integration is an interesting direction,
but falls outside the scope of this study.
Hyperparameters. Our method depends on a number of
hyperparameters, namely the parameters q and ρ of our dis-
continuity activation term β

(t)
b→a (cf . (16) in the main pa-

per), the parameter k controlling the sharpness of the bi-
lateral weights wBiNI

b→a (cf . (10) in the main paper), and the
ray directions τm that control our planarity assumption (cf .
Sec. 3.1 in the main paper). While the default choices k = 2
and τm = (τa + τb)/2 consistently result in optimal re-
sults (cf . Tab. 3 and Appendix D), a certain degree of object
specificity can be observed in β

(t)
b→a, particularly in its pa-

rameter q (cf . Appendix E). Therefore, tuning the latter pa-
rameter might be desirable to achieve slight improvements
in performance.



Percentage of outliers, input normal maps, and |na
Tτa|

2% 4% 6% 8% 10% 12%

No correction

0.38 0.72 0.85 0.91 0.70 2.11
Normal averaging where na

Tτa > 0

0.36 0.50 0.42 0.81 1.17 0.70
Normal averaging where na

Tτa > 0 or relative change in |na
Tτa| > 75%

0.54 0.67 0.75 0.84 0.77 0.94
Normal averaging where na

Tτa > 0, outlier filtering through τm

0.32 0.29 0.39 0.54 0.99 0.59

Figure 12. Ablation on the effect of outliers, object harvest from the DiLiGenT [31] dataset. We introduce increasing amounts of
outliers, for which we replace the surface normal with a randomly sampled unit-norm vector. For each variant, we show the reconstructed
surface, the corresponding absolute depth error map, and its mean value (MADE, in mm).



σ of the noise (rotational angle), input normal maps, and |na
Tτa|

1◦ 2◦ 5◦ 10◦

No correction

0.37 0.31 0.20 0.51
Normal averaging where na

Tτa > 0

0.36 0.15 0.21 0.54
Normal averaging where na

Tτa > 0 or relative change in |na
Tτa| > 75%

0.49 0.44 0.55 0.47
Normal averaging where na

Tτa > 0, outlier filtering through τm

0.22 0.18 0.19 0.25

Figure 13. Ablation on the effect of rotational noise, object harvest from the DiLiGenT [31] dataset. We perturb the surface normals
at each pixel, rotating them around randomly sampled axes by angles sampled from Gaussian distributions with increasingly larger standard
deviations. For each variant, we show the reconstructed surface, the corresponding absolute depth error map, and its mean value (MADE,
in mm).


