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Figure 1. Selected pseudo-label examples demonstrate the model’s capability to produce diverse and rich relation labels. The blue relation
triplets indicate the pseudo labels generated by our model.

1. Details on OVSGTR
For further clarification on integrating RelGen with OVS-
GTR, we provide a formal description of OVSGTR, which
utilizes a pre-trained model. Specifically, OVSGTR first
pretrain a relation-aware model on large-scale image-
caption datasets. This pre-trained model is then employed
during training, where a knowledge distillation strategy is
implemented to preserve consistency within the learned se-
mantic space, and the distillation loss is defined as:
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where es and et refer to the student’s and teacher’s edge
features, respectively. Thus the total loss LV L for associate
visual and text features can be given as:

LV L = Ldistill + Lbce + λLcons. (2)

Besides, we use L1 regression loss and generalized IoU
to improve localization accuracy. Finally, our overall loss

function is given by

L = Ldistill + Lbce + λLcons

+GIOU(B,Bgt) + ||B−Bgt||1.
(3)

At inference, since OVSGTR uses a pre-trained model,
we directly generate the scene graph representation via the
visual relation feature, ensuring the preservation of relation-
aware knowledge from the pre-trained model.

2. Visualization of Pseudo-labels
To address the limitations of the SGG model trained on base
relation categories, we utilize pseudo-labels generated by
our model to supplement the relations in the images. Ex-
amples of these pseudo-labels are presented in Fig. 1. Our
method demonstrates the ability to generate more diverse
relation predicates while remaining consistent with the im-
age content. Compared to the limited annotations in the
base relation categories, pseudo-labels offer complemen-
tary annotations that encompass a broader range of objects
within the image.



Method Novel+Base Novel
R@100 mR@100 R@100 mR@100

w/o fitting 16.24 6.62 10.23 4.36
Balanced init 15.48 7.48 10.25 4.99
Background init 18.48 9.60 13.45 6.06

Table 1. Experimental results of different settings for bias initial-
ization.

Method Novel+base
R@50 R@100 mR@50 mR@100

PGSG [1] 26.0 28.9 14.9 18.1
OpenPSG* [4] 31.6 36.7 24.0 25.4
DSFormer [2] 23.2 27.0 17.2 18.1
Ours+DSFormer [2] 27.1 32.3 18.2 22.5

Table 2. Results on the SGDet task on PSG dataset.

3. Other Results

Ablation Study for Bias Initialization. We evaluated the
influence of constructing different values of the dynamic
prior r̂biasi0 in Tab. 3. “Balanced init” means we initial-
ize the bias with equal probabilities to each class, i.e.,
r̂biasi0 = 1/Nc. “Background init” means we initialize the
bias as “background”, i.e., r̂biasi0 = 0. As shown in Tab. 3,
initializing as “background” gains the best performance.

Results in panoptic scene graph generation: To
achieve a more comprehensive understanding of scenes,
PSG [3] is a dataset for panoptic scene graph generation,
which replaces bounding boxes with panoptic segmentation
masks to represent the objects. Since our method is built on
the detection framework, we take DSFormer [2] as the al-
ternative segmentation backbone on the PSG dataset. As
shown in Table 2, we can see that constructing the gen-
erative relation model also improves the performance on
the open-vocabulary panoptic scene graph generation task.
As for the gap in the performance compared to the SOTA
OpenPSG [4], we attribute it to the well-designed segmen-
tation head in OpenPSG.

Results under various VLM backbones: For a more
comprehensive evaluation, we report results with different
VLMs in Tab. 3, in which our method significantly outper-
forms others when using GroundingDINO, whereas we had
trouble reproducing for other baselines. Our method also
achieves the best performance on other backbones, except
R@50 on VG* with GLIP. We attribute this to the fact that
the generative pipeline requires more candidates to give full
play to its open-ended advantages under base relations, yet
our method still improves the performance on novel rela-
tions by at least 0.7% (14.2 v.s. 13.5) and up to 9.4% (9.7
v.s. 0.3).
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