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7. Algorithm Block

Algorithm 1 Trigger Reconstruction and Trojan Detection via Diffusion Guidance

Inputs: Classifier f under test, pretrained diffusion model with denoising functions µθ(·) and Σθ(·), hyperparameters λ1, λ2,
candidate label sets Y src (source) and Y tar (target) with ysrc ̸= ytar, number of diffusion steps T , and (optional) clean
source data X src for hybrid conditioning.

Outputs: Decision (Trojaned / Clean) and, if Trojaned, the corresponding trigger δtar
src.

1: for each label pair (ysrc, ytar) with ysrc ̸= ytar do
2: repeat
3: Initialize: Sample xT ∼ N (0, I).
4: for t = T downto 1 do
5: Compute gradient:
6: if clean source data X src is provided then
7: Compute hybrid gradient:

gt ← ∇xt
log

f(ytar | X src ⊕ xt)

f(ysrc | X src ⊕ xt)

8: else
9: Compute standard gradient:

gt ← ∇xt
log

f(ytar | xt)

f(ysrc | xt)

10: Sample uniform noise: ηt ∼ λ1 · t · U(0, 1).
11: Compute modified mean:

µ̃θ(xt, t, y
tar, ysrc) = µθ(xt, t) + Σθ(xt, t) gt + ηt.

12: Sample xt−1 ∼ N
(
µ̃θ(xt, t, y

tar, ysrc), Σθ(xt, t)
)

.

13: Set the generated trigger candidate: δtar
src ← x0.

14: until softmax[f(δtar
src)]ytar ≥ 0.9

15: Compute trigger strength:

S(ysrc, ytar)← Ex′∼X ′src

[
softmax

(
f(x′ + δtar

src)
)
ytar − softmax

(
f(x′ + δtar

src)
)
ysrc

]
.

16: Identify the pair with maximum trigger strength:

(ysrc*, ytar*)← arg max
(ysrc,ytar)

S(ysrc, ytar).

17: if S(ysrc*, ytar*) ≥ λ2 then
18: return Trojaned, δtar*

src*.
19: else
20: return Clean.



8. Additional Technical Background
Denoising Diffusion Probabilistic Models (DDPMs).
DDPMs have emerged as a promising approach for gener-
ating high-quality data across various domains, particularly
in image and video synthesis. They operate by reversing a
forward process that gradually adds Gaussian noise to the
data over T steps. Formally, the forward process is:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
, (8)

where {βt}Tt=1 controls the noise schedule. The corre-
sponding reverse process is learned to iteratively denoise:

pθ(xt−1 | xt) = N
(
µθ(xt, t),Σθ(xt, t)

)
. (9)

A neural network ϵθ is then trained to predict the added
noise using the following objective:

Lsimple = Et, x0, ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
. (10)

Subsequent research has introduced conditioning and
guidance mechanisms, enabling the model to produce out-
puts with specific attributes (e.g., guided by text prompts).

9. Visualization of the Generated Backdoor
Trigger

Figure 4 presents the trigger patterns generated by DIS-
TIL when applied to clean models across multiple rounds
(Rounds 1, 2, 3, 4, and 11). As expected, these patterns ap-
pear noisy and lack coherent structure, demonstrating that
DISTIL does not erroneously extract trigger-like features
from benign systems. In contrast, Figure 5 illustrates the
trigger pattern reconstructed by DISTIL on the CIFAR-10
dataset under the BadNets attack scenario. In this setting,
our latent diffusion-based approach consistently recovers
clear and interpretable trigger patterns that capture the dis-
tinct characteristics of the BadNets attack. Together, these
visualizations underscore DISTIL’s robustness and its dis-
criminative power in distinguishing Trojaned models from
clean ones.

10. Additional Experimental Results
See Tables 5, and 6.

11. Details of Evaluation and Experimental
Setup Implementation

Details for the Backdoor Attacks
This section offers comprehensive explanations of the back-
door attacks utilized in our research.

BadNet [1] introduces a hidden pattern into datasets dur-
ing training, often a compact and noticeable visual element.

This marker is crafted to blend into the background, avoid-
ing suspicion while still training the AI to incorrectly label
any data containing this subtle cue.

Blended [2] merges a faint, almost invisible signal into
training visuals, keeping its presence undetectable to casual
observation or basic scanning tools. By gradually linking
these barely noticeable alterations to wrong predictions, the
model learns to produce errors when triggered.

SIG [3] modifies training images by adding wave-like
distortions without adjusting their categorizations. This
covert strategy bypasses traditional defenses that monitor
mismatched labels, allowing the hidden flaw to persist un-
noticed.

BPP [7] employs data compression techniques and ad-
versarial training to insert triggers directly into the numeric
values of individual pixels. These microscopic changes are
nearly impossible to visually identify or computationally
trace, hiding attacks within the image’s core structure.

Input-aware attacks [4] create adaptive triggers that
morph depending on the unique characteristics of each data
sample. The backdoor remains dormant until specific input
criteria—predefined by the attacker—are met, enhancing its
ability to evade discovery.

WaNet [5] applies barely detectable geometric distor-
tions to images, bending their spatial features in subtle
ways. These warped elements serve as invisible keys that
bypass human vision while reliably tricking the model.

SSBA [8] generates unique, undetectable markers for ev-
ery training sample by weaving triggers into the image’s in-
herent textures and patterns. This individualized approach
complicates large-scale detection efforts that rely on univer-
sal trigger signatures.

Color [6] manipulates hue and saturation channels in im-
ages to create chromatic triggers. These alterations fly un-
der the radar of standard visual audits but condition models
to recognize and act on specific color shifts.

Label Consistency Attack (LC)[54] embeds triggers
into training samples without disrupting their apparent class
labels, ensuring poisoned data remains label-consistent.
This is achieved by designing triggers that minimally al-
ter features relevant to the true class while conditioning the
model to associate the trigger with the attacker’s desired
output.

TrojanNN [55] preprocesses triggers to maximize acti-
vation of specific neurons critical to the model’s decision-
making. By embedding these optimized triggers, the attack
ensures misclassification of triggered inputs while main-
taining high accuracy on clean data. The triggers exploit the
neural network’s internal structure, making them difficult to
detect or reverse-engineer through standard methods.

Label Flipping (LF) [56] manipulates the labels of
training samples containing a specific trigger, causing the
model to associate the trigger with an incorrect class. This
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Figure 4. DISTIL Performance on Clean Models. This figure displays the noisy, random trigger patterns generated by DISTIL when
applied to clean models across multiple rounds (Rounds 1, 2, 3, 4, and 11). As hypothesized, these triggers lack coherent structure
and exhibit minimal transferability, aligning with expectations for non-Trojaned systems. The absence of consistent patterns underscores
DISTIL’s specificity to compromised models, reinforcing its discriminative power in distinguishing benign systems from Trojaned ones, as
validated by the proposed method and experimental results.
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Figure 5. DISTIL Performance on CIFAR10 with BadNets Trigger. This figure illustrates the trigger pattern reconstruction achieved by
DISTIL on the CIFAR10 dataset under a BadNets attack scenario. The extracted trigger patterns clearly reflect the characteristic artifacts of
the BadNets trigger, showcasing DISTIL’s capability to accurately recover and highlight Trojan signatures even in challenging poisoning
conditions.

attack ensures normal behavior on clean inputs while mis-
classifying triggered inputs, maintaining stealth by using
inconspicuous triggers (e.g., clapping sounds in audio sys-
tems) that blend naturally with the data.

11.1. Metrics

We primarily use ACC to present our results, aligning with
its widespread adoption for method comparison in the exist-
ing literature. Detailed explanations of all the metrics used
are provided below.

ACC. Accuracy is a fundamental metric used to evaluate
the performance of classification models, representing the
proportion of correctly predicted instances out of the total
number of instances. It is calculated as the ratio of true pos-
itives (correctly predicted positive instances) and true neg-
atives (correctly predicted negative instances) to the sum of
all predictions, including false positives and false negatives.

11.2. Time Complexity
Table 8 presents the time complexity of DISTIL on the Tro-
jAI dataset. Experiments were performed using an RTX
A5000 GPU.

12. Previous Trojan Scanning methods
Review of the Methods
Trigger estimation plays several roles in defense strategies
against Trojan attacks. The most important is determining
whether a model is benign or Trojaned, a task that closely
resembles out-of-distribution detection [57–67]. In the fol-
lowing, we provide a brief review of related work.

NC NC Neural Cleanse [23] is a technique designed to
scan models by reverse engineering potential triggers and
detecting outlier perturbations. NC suffers from significant
computational overhead, is highly sensitive to trigger com-
plexity, and may result in false positives. Additionally, its
design is optimized primarily for handling all-in-one attack



Table 5. Evaluation of our model’s performance across various architectures using the BackdoorBench dataset.

Architecture

Method Pre-act Resnet18 VGG-19 BN VIT B 16 ConvNeXt Tiny

DISTIL 88.5 89.3 92.8 87.6

Table 6. Performance evaluation of our method across diverse attack scenarios in an all-to-all setting.

Attack Methods

Method BadNets Blended BPP InputAware LC LF LIRA SIG SSBA TrojanNN WaNet

DISTIL 90.8 89.3 84.4 89.6 86.5 87.3 86.9 89.0 84.6 81.3 82

scenarios.
Pixel Better Trigger Inversion Optimization [39] in

Backdoor Scanning introduces an improved approach for
reverse-engineering backdoor triggers by refining the op-
timization process. Unlike previous methods that strug-
gle with fragmented or overly complex perturbation pat-
terns, this technique optimizes trigger inversion by lever-
aging structured constraints to enhance efficiency and ac-
curacy. By incorporating a refined objective function and
optimization strategy, it reduces computational overhead
while achieving higher fidelity in reconstructing backdoor
triggers. However, the method may still face challenges in
handling highly adaptive or distributed trigger patterns and
could require careful parameter tuning for different attack
scenarios.

BTI-DBF BTI-DBF [41] presents a backdoor defense
strategy by decoupling benign features to isolate backdoor
triggers, contrasting traditional methods that directly ap-
proximate backdoor patterns. The approach involves two
steps: optimizing the model to rely exclusively on be-
nign features for accurate predictions on clean samples
while rendering residual (backdoor) features ineffective
and training a generator to align benign features between
clean and poisoned samples while amplifying differences in
backdoor-related features. Leveraging this decoupling, the
proposed BTI module facilitates backdoor removal through
fine-tuning with relabeled poisoned data and input purifica-
tion by approximating the inverse of the backdoor genera-
tion process. Both defenses are iteratively refined by up-
dating their generators based on the performance of their
respective outputs.

TRODO TRODO [53] leverages the concept of “blind
spots,” which are regions where Trojaned classifiers erro-
neously identify out-of-distribution (OOD) samples as in-
distribution (ID). The methodology involves adversarially
shifting OOD samples toward the in-distribution and ob-
serving the model’s classification behavior. An increased
likelihood of perturbed OOD samples being classified as ID
serves as a signature for Trojan detection. This approach

does not require knowledge of the specific Trojan attack
method or the label mapping, making it both Trojan and
label mapping agnostic. However, this method is not with-
out its limitations. Its effectiveness depends heavily on the
quality and diversity of out-of-distribution (OOD) samples;
poor or unrepresentative samples may result in undetected
Trojans. Furthermore, the success of Trojan detection relies
on the chosen perturbation technique, and weak or ill-suited
methods could fail to expose Trojan behavior.

SmoothInv The paper introduces SmoothInv [68], a
backdoor inversion method designed to recover backdoor
patterns in neural networks using only a single clean im-
age. The method transforms a backdoored classifier into
a robust smoothed classifier by applying random Gaussian
perturbations to the input image, optionally followed by
diffusion-based denoising. Using projected gradient de-
scent, SmoothInv synthesizes a perturbation guided by gra-
dients from this robust classifier to reconstruct the hidden
backdoor pattern effectively. Unlike traditional inversion
methods that require numerous images and complex regu-
larizations, SmoothInv simplifies optimization and achieves
high accuracy and visual fidelity to the original backdoor
patterns. However, the main limitation of this approach is
its ineffectiveness against advanced or subtle backdoors be-
yond simple patch-based attacks, such as image warping,
adaptive imperceptible perturbations, or Instagram filter-
based triggers.

FeatureRE Rethinking the Reverse-engineering of
Trojan Triggers [27] is a method that reexamines traditional
trigger reverse-engineering by shifting the focus from static
input-space constraints to the exploitation of feature space
properties. This approach leverages the insight that both
input-space and feature-space Trojans manifest as hyper-
planes in the model’s feature space. By incorporating fea-
ture space constraints into the reverse-engineering process,
the method can reconstruct dynamic, input-dependent trig-
gers. This method comes with several limitations. First,
similar to many reverse-engineering approaches, it requires
access to a small set of clean samples, which may not al-



Table 7. Mean ± standard deviation of AUCROC over ten independent runs for the DISTIL method on each round of the TrojAI dataset.

Method Dataset

Round 0 Round 1 Round 2 Round 3 Round 4 Round 11

DISTIL 83.1±1.2 82.9±0.9 79.5±0.5 78.4±1.3 84.6±0.8 80.4±0.2

Table 8. Average time complexity (hours) of DISTIL-Fast and DISTIL on TrojAI models.

Method Dataset

Round 0 Round 1 Round 2 Round 3 Round 4 Round 11

DISTIL-Fast 0.01 0.01 0.04 0.03 0.07 0.2
DISTIL 0.06 0.06 0.5 0.6 2.1 14.4

ways be available in practical scenarios. Second, the op-
timization process involves multiple hyperparameters that
require careful tuning.

THTP Trigger Hunting with a Topological Prior [24]
for Trojan Detection is a method that integrates topological
data analysis into the reverse-engineering of Trojan triggers.
The approach leverages global topological features to cap-
ture and differentiate anomalous triggers. By enforcing a
topological prior, the method enhances the detection of both
static and dynamic (input-dependent) triggers. However,
the integration of topological computations introduces ad-
ditional computational overhead and increases sensitivity to
hyperparameter settings. Moreover, while the approach im-
proves robustness against irregular trigger patterns, it may
face scalability challenges in models with complex or mul-
tiple overlapping Trojan patterns.

UNICORN Trigger Inversion Framework [28] pro-
poses a generalized backdoor detection approach by for-
malizing triggers as perturbations in transformable input
spaces via an invertible function. Unlike existing meth-
ods, it jointly optimizes trigger parameters (mask, pattern)
and invertible function to identify optimal injection spaces,
exploiting disentangled compromised and benign activation
vectors. However, the framework’s computational overhead
from multi-space optimization and reliance on activation
disentanglement assumptions may limit scalability and ro-
bustness against advanced multi-trigger attacks.

MM-BD Maximum Margin Backdoor Detection [38]
is a technique aimed at identifying backdoor attacks in neu-
ral networks, irrespective of the type of backdoor pattern
used. The approach works by calculating a maximum mar-
gin statistic for each class using gradient ascent from vari-
ous random starting points, all without requiring clean data
samples. These statistics are then applied within an unsu-
pervised anomaly detection system to pinpoint backdoor at-
tacks. However, the method has notable limitations: it tends
to produce a high rate of false positives when dealing with
datasets containing few classes, and it has difficulty detect-

ing attacks involving multiple target labels, where differ-
ent source classes may correspond to distinct target classes.
Furthermore, MM-BD’s performance is considerably weak-
ened when faced with an adaptive attacker who alters the
learning process.

ABS Artificial Brain Stimulation [51] identifies back-
doors in neural networks by activating specific neurons and
measuring how their stimulation alters model predictions.
Suspect neurons that disproportionately influence a target
class are flagged, and corresponding input patterns are re-
constructed to verify malicious activity. While effective in
controlled settings, the approach demands extensive com-
putational resources and relies on assumptions about trig-
ger characteristics. Its efficacy diminishes with sophisti-
cated attacks, particularly those beyond single-target sce-
narios. False alarms may arise when legitimate neurons ex-
hibit strong class correlations, reducing reliability in diverse
applications.

TABOR TABOR [69] detects Trojans in DNNs by
treating trigger identification as a constrained optimiza-
tion task. It employs a loss function augmented with
interpretability-driven penalties to narrow down plausible
trigger candidates. Although this structured approach en-
hances precision for geometric or symbolic triggers, com-
putational costs remain prohibitive. Irregular or non-
traditional trigger patterns may evade detection, as the
method’s design prioritizes simplicity over adaptability.

PT-RED PT-RED [70] uncovers backdoors post-
training by generating subtle input alterations that force
misclassifications. The technique prioritizes small, local-
ized trigger patterns linked to a single target class. How-
ever, the iterative optimization required to synthesize these
perturbations is resource-intensive. Its narrow focus on ba-
sic attack types limits applicability to complex, multi-class
scenarios, and scalability becomes problematic with larger
models.

K-ARM K-ARM [40] adopts a trial-and-error strategy,
dynamically prioritizing class labels for trigger exploration



using principles from resource allocation theory. This adap-
tive sampling reduces redundant computations compared
to brute-force methods. Nevertheless, processing overhead
persists, and the approach falters when attacks involve mul-
tiple targets or intricate trigger designs, restricting its utility
to simpler threat models.

UMD Unsupervised Model Detection [22] targets
multi-class backdoor attacks by crafting input perturbations
for every possible class pairing. It quantifies cross-pattern
consistency (e.g., whether a trigger for one class pair affects
others) and applies statistical anomaly detection to identify
compromises. While effective for single-trigger threats, the
method’s reliance on exhaustive trigger synthesis and pair-
wise analysis strains computational resources. Scalability
wanes with large-scale models or datasets, and its accuracy
degrades if multiple distinct triggers coexist.

13. Details about the Benchmarks and Datasets
We provide a brief explanation of the datasets we used.

BackdoorBench Benchmark. BackdoorBench [49] is a
comprehensive benchmark for backdoor learning, providing
a standardized platform for evaluating backdoor attacks and
defenses. It consists of four modules: input, attack, defense,
and evaluation and analysis. The attack module offers sub-
modules for implementing data poisoning and training con-
trollable attacks, while the defense module provides sub-
modules for implementing backdoor defenses. Backdoor-
Bench has been widely used in evaluating various backdoor
defense methods and has been used as a reference in several
papers.

TrojAI Benchmark. TrojAI Benchmark [50] is a ded-
icated dataset curated for evaluating the resilience of neu-
ral network models against Trojan attacks. It comprises
a diverse collection of pre-trained models, including both
clean and Trojaned networks. The benchmark spans vari-
ous network architectures and incorporates multiple Trojan
injection strategies, thereby simulating a wide range of real-
world attack scenarios. Below is an overview of the details
for each round of the TrojAI benchmark for the classifica-
tion task.

Round 0 (Dry Run). This initial round is designed as
a preliminary test. It consists of 200 CNN models trained
on human-level image classification on synthetic traffic sign
data (with 5 classes), where half of the models are poisoned
with an embedded trigger, which causes misclassification of
the images when the trigger is present.

Round 1. This round comprised 1,000 CNN models,
specifically Inception-v3, DenseNet-121 and ResNet50 ar-
chitectures, trained to classify synthetic street signs super-
imposed on road backgrounds with 50% containing hid-
den Trojans triggered by polygon-based patterns of uniform
color and varying shapes/sizes (2- 25% of the surface area
of the target object). This round covers all-to-one types of

triggers. The test dataset consists of 100 models.
Round 2 Round 2 of the TrojAI benchmark featured

1,104 image-classification models trained on synthetic traf-
fic sign data. Key complexities included an increased num-
ber of classes (ranging from 5 to 25), a variety of trigger
types (both polygonal shapes and Instagram-like filters), se-
lective poisoning of source classes (affecting 1, 2, or all
classes), and a diverse set of 23 model architectures. The
test dataset consists of 144 models.

Round 3. Round 3 experimental design is identical to
Round2 with the addition of Adversarial Training. Two dif-
ferent Adversarial Training approaches: PGD and FBF [71]
are used. The test dataset consists of 288 models.

Round 4. Round 4 introduces more complex triggers
with increased difficulty, including multiple concurrent trig-
gers and conditional firing. Triggers are one-to-one map-
pings, with up to two per model, and can have spatial, spec-
tral, or class-based conditions. These conditions determine
whether a trigger activates based on location, color, or the
class it is applied to, allowing for more nuanced misclassifi-
cation scenarios. This round comprised 1,008 CNN models
with half (50%) of the models have been poisoned with an
embedded trigger. The test dataset consists of 288 models.

Round 11. This dataset builds on Round 4, featuring
models with up to 130 classes and 0, 1, 2, or 4 triggers
per model, including Polygon and Instagram filter types.
Triggers can have spatial, spectral, or texture condition-
als, requiring specific location, color, or texture to activate
misclassification. The round also introduces more spurious
triggers (inactive or in clean models) to make actual triggers
more targeted and specific. The training dataset consists of
288 models, the test dataset consists of 216 models, and the
holdout dataset consists of 216 models.

CIFAR-10. Introduced in 2009, the CIFAR-10 [72] col-
lection comprises 50,000 images for model training and
10,000 for evaluation. Every sample is a 32x32-pixel RGB
image (3 channels) categorized into ten distinct groups,
such as animals, vehicles, and everyday objects. This
dataset is widely utilized for benchmarking classification al-
gorithms in machine learning.

GTSRB. The German Traffic Sign Recognition Bench-
mark (GTSRB) [73], released in 2013, focuses on identify-
ing 43 types of road signs. With 39,209 training images and
12,630 test images, the dataset exhibits class imbalance, as
certain sign categories appear more frequently than others.
To standardize inputs, all images are adjusted to 32x32 pix-
els across three color channels, matching the dimensions of
other datasets commonly used in similar research.

ImageNet. A widely recognized resource in computer
vision, ImageNet [74] includes millions of labeled images
spanning thousands of categories. For practical experimen-
tation, a condensed version is often employed—here, 100
classes were chosen, each containing 500 training and 100



validation images. These high-resolution samples (224x224
pixels, three channels) enable testing models on more com-
plex visual data compared to smaller datasets like CIFAR-
10. The full ImageNet repository remains a cornerstone for
training deep neural networks.
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