TESPEC: Temporally-Enhanced Self-Supervised Pretraining for Event Cameras

Supplementary Material

A. Additional Experimental Results

In this section, we provide further analysis to complement
the experimental results presented in the main paper. This
includes an expanded ablation study to show the effective-
ness of our improved intensity estimation video, qualitative
results that highlight the strengths of our approach through
visual examples, and a discussion of the trade-off involved
in choosing the temporal bin in Eq. (7).

A.1. Ablation Study

We present additional evidence to show the effectiveness
of our improved intensity video reconstruction method,
Eq. (7), compared to the naive approach from prior work,
Eq. (6). The performance of fine-tuned models on the
downstream DDD17 [1] semantic segmentation task is sum-
marized in Tab. 1. Using our intensity estimation as the
reconstruction target achieves improvements of 1.352% in
mloU and 2.691% in mAcc over the naive estimation.

A.2. Qualitative Results

We provide additional qualitative results to demonstrate
the performance of our model in both self-supervised pre-
training and downstream perception tasks.

Pre-training. The visualized sample in Fig. 1 shows
TESPEC reconstruction of the scene. This representation
includes static objects that were invisible in recent event
frames. This example highlights that the recurrent design of
TESPEC helps it to extract a rich representation of various
objects in the scene, beyond those that are actively moving.
Object Detection. Qualitative samples of object detection
on the Genl [2] dataset are presented in Fig. 2. The model
successfully detects cars in the scene, even when they are
barely visible in recent events.

Semantic Segmentation. Fig. 3 showcases examples from
the DSEC [7] and DDD17 [1] datasets. These results show
that our pre-trained model adapt effectively to downstream
datasets with varying resolutions. Notably, the model pre-
dicts accurate segmentation maps, even with sparse inputs.
Monocular Depth Estimation. Qualitative results in Fig. 4
show that the model accurately distinguishes between dif-
ferent objects and predicts precise depth maps.

A.3. Choosing the temporal bin in Eq. (7)

While using small temporal bins increases temporal resolu-
tion, it also increases the computational cost, as more iter-
ations are required to update the reconstruction target. In
addition, noises, such as hot pixels, might dominate some
of the pixels. On the other hand, large bins result in severe

information loss due to a large A. We find that a S5ms bin
size balances target precision and noise robustness.

B. Justification of MAE for sparse event data

Although the event input is sparse, TESPEC reconstructs
a dense pseudo gray-scale video as target. Therefore, re-
constructing masked patches of our target provides a strong
training signal. Moreover, masking a large portion of the
event input along the time requires the model to estimate
spatiotemporal information. This helps the model’s scene
understanding and leads to higher performance compared to
training with no masking (see Tab 4. in the main text). To
assess the impact of the pre-training objective, we replace
the MAE [22] loss in TESPEC with two alternative loss
functions: (i) Contrastive Predictive Coding (CPC) [11, 15],
which learns representations by predicting future latent fea-
tures using contrastive loss, and (ii) the contrastive loss in-
troduced in ECDDP [25]. Their downstream performance
on the semantic segmentation task on the DSEC dataset is
reported in Tab. 2. While both contrastive losses lead to im-
proved performance over the baseline recurrent architecture
without pre-training, MAE yields the highest accuracy. This
demonstrates the effectiveness of MAE as a pre-training ob-
jective in TESPEC.

C. Implementation Details

We describe the implementation settings used for TESPEC
and downstream tasks, including object detection, seman-
tic segmentation, and monocular depth estimation. Tab. 4
summarizes the settings and hyper-parameters.

Data Pre-processing. We adopt a unified event repre-
sentation across TESPEC and all downstream tasks. An
event stream is split into non-overlapping event segments
of length 7. Each segment is then converted into a 2D his-
togram with 10 bins for positive events and 10 bins for neg-
ative ones. Input values are clipped between 0 and 10 to
prevent the influence of hot pixels. The input resolution is
required to be divisible by 32 due to the characteristics of
the used architecture. For datasets with resolutions that do
not meet this requirement, zero-padding is applied to align
the input dimensions. Data augmentation is performed us-
ing flipping and scaling transformations. The probabilities
and parameters of transformations are detailed in Tab. 5.
Dataloading. During the training phase of recurrent mod-
els, we process multiple stages within a single training it-
eration. The total number of stages is determined by the
sequence length. To enable the model to handle long se-
quences in TESPEC and object detection, we adopt the dat-



(a) Input events. (b) Masked events.

(c) Estimated intensity video. (d) Prediction.

Figure 1. Qualitative pre-training results on 1Mpx [16]. TESPEC is able to reconstruct static objects that are invisible in recent events,
e.g., the car in front of the ego vehicle. This is beneficial to downstream perception tasks such as object detection.

(a) Ground-truth. (b) Prediction.

Recon. Target DDDI7

mloU 1 mAcc T
Eq. (6) 63.835 70.180
Eq. (7) 65.187 72.871

Table 1. Ablation on the reconstruction target. We report down-
stream performance on DDD17 [1] semantic segmentation.

Pre-training Objective DSEC

mloU 1 mAcc T
CPC [15] 59.921 67.486
ECDDP [25] 61.012 68.231
MAE [10] 62.774 70.612

Table 2. Ablation on the pre-training objective. We report
downstream performance on DSEC [7] semantic segmentation.

aloading mechanism from RVT [6]. This approach allows
the model to be trained on minute-long sequences.

Recurrent Backbone. Following recent work [25], we
choose the Swin Transformer [14] architecture with a win-
dow size of 7 (referred to as Swin-T/7) as the encoder for
both pre-training and downstream tasks. The implementa-
tion of this architecture is borrowed from Timm [23]. Since

(¢) Ground-truth.

(d) Prediction.
Figure 2. Qualitative object detection results on Genl [2]. Thanks to the long-term information learned during the self-supervised
pre-training stage, the model successfully detects cars, even when they are not clearly visible in the input data.

we employ a 2D histogram representation with 20 bins for
events, the first embedding layer of Swin-T/7 is modified to
accept 20 input channels instead of 3. For baselines where
pre-trained weights with a different representation are used,
the embedding layer’s weights are repeated to match the 20
channels. A ConvLSTM [18] layer is inserted after each
Swin Block to add recurrency into the backbone. The num-
ber of parameters for backbones and task-specific heads
used in this work are show in Tab. 3.

Optimization. We use the Adam [12] optimizer for pre-
training and all tasks, along with a learning rate scheduler.
The schedulers, learning rates, and warm-up steps are spec-
ified in Tab. 4. The initial and final learning rates are set to
the peak learning rate divided by c¢; and c2, respectively.

Evaluation. For evaluating feedforward models during test
time, an event segment is extracted for each label from the
corresponding event stream. As a result, the inputs for con-
secutive labels may overlap. In contrast, recurrent models
can process the events of an entire stream only once and
predict all labels for that stream. This approach requires
setting 7" based on the label frequency for each dataset in
downstream tasks. Since the time intervals between consec-
utive labels may vary slightly, all events occurring between
two labels are used as the input for the later label.



(a) Input events. (b) Ground-truth. (c) Prediction.
(d) Input events. (e) Ground-truth. (f) Prediction.

Figure 3. Qualitative semantic segmentation results on DSEC [7] and DDD17 [1]. Figures (a-c) are from the DSEC dataset, and figures
(d-f) are from the DDD17 dataset. Leveraging long-term information learned in the pre-training stage, the fine-tuned models achieve high
accuracy in predicting segmentation maps across datasets with varying resolutions and sparse event frames.

(a) Input events. (b) Ground-truth. (c) Prediction.

Figure 4. Qualitative monocular depth estimation results on MVSEC [27]. Thanks to the long-term information learned with TESPEC,
the model detects the surfaces of various objects and predicts accurate depth maps from sparse event frames.

C.1. TESPEC Pre-training pre-training. This dataset contains approximately 15 hours
of autonomous driving scenarios, captured during both day-
Our pre-training hyper-parameters are detailed in Tab. 4a. time and nighttime. The original resolution of the dataset

Dataset. We use the 1Mpx [16] dataset as the default for



Module Parameters (M)
Feedforward backbone 27.5
Recurrent backbone 33.8
TESPEC decoder head 3.7
Object Detection head 12.9
Semantic Segmentation head 11.2
Monocular Depth Estimation head 4.1

Table 3. Size of backbones and task-specific heads.

is 720 x 1280, but we downsample it by 2 to reduce com-
putational costs. Compared to other event camera datasets,
1Mpx features a higher resolution and a greater number of
moving objects, resulting in more diverse motion patterns.
Data Representation. We set 7" to 50ms for pre-training.
Masking. To perform the masking, each bin of the his-
tograms is divided into 32 x 32 non-overlapping patches.
Then, 50% of the patches are randomly masked. The
masked patches are replaced with a 32 x 32 learnable pa-
rameter. The same mask is applied across all bins within a
single training step following VideoMAE [22].
Architecture. We adopt an asymmetric design for the
encoder-decoder paradigm, where the decoder consists of
a single Swin Block with a window size of 7. The Swin
block is followed by a convolutional layer to match the re-
constructed output size with the input size.

Loss Function. We apply the Mean Squared Error (MSE)
loss only to the masked patches. The loss value is com-
puted between the predictions and the normalized ground-
truth patches following prior works [10, 21].

C.2. Object Detection

We fine-tune our models on the Genl [2] and 1Mpx [16]
datasets for object detection as one of the downstream tasks.
Datasets. The characteristics of the 1Mpx dataset are de-
scribed in Appendix C.1. Genl dataset is a dataset for de-
tecting objects from event cameras mounted on vehicles. It
contains 2,358 event sequences, each lasting 60 seconds (39
hours in total) with a resolution of 304 x 240 pixels.

Data Representation. We set 7' to 50ms for all models
following RVT [6].

Architecture. We adopt the RVT architecture design for
object detection, with one key difference: we replace their
recurrent backbone with our Swin-T/7 recurrent backbone.
Specifically, we use the YOLOX framework [4], which in-
cludes intersection over union (IoU) loss, classification loss,
and regression loss. These losses are averaged over both the
batch and sequence length for each optimization step.
Training. We fine-tune our models for 400,000 training
steps. Experimentally, we found that a learning rate of
1x10~* achieves the best performance on the 1 Mpx dataset
when pre-training is conducted on the same dataset. We hy-
pothesize that this is because the pre-trained model already

extracts informative representations of the data, which re-
duces the need for a larger learning rate during fine-tuning.
All other hyper-parameters are detailed in Tab. 4b.

C.3. Semantic Segmentation

We fine-tune our models on the DSEC [7] and DDD17 [1]
datasets for semantic segmentation.

Datasets. DSEC and DDD17 are both autonomous driving
datasets. The DSEC dataset has a resolution of 640 x 480
and contains 53 sequences. However, semantic maps are
available for only 11 of them. The DDDI17 dataset is rel-
atively longer, with a resolution of 346 x 260 and 40 se-
quences. Similar to DSEC, semantic maps for DDD17 are
provided for only 6 sequences.

Data Representation. DSEC and DDD17 labels are avail-
able at 20Hz and 33 Hz, respectively. Consequently, 1" is
set to 50 ms for DSEC and 30ms for DDD17 when using
recurrent models. For feedforward baselines, 7' is set to
100 ms to avoid extremely sparse inputs.

Architecture. We fine-tune the backbones with an attached
UperNet [24] decoder.

Loss Function. We use the sum of cross-entropy and Dice
loss [19] as the loss function, as suggested in [20].

C.4. Monocular Depth Estimation

We fine-tune our models on MVSEC [27] dataset for the
monocular depth estimation task.

Dataset. The MVSEC dataset consists of event data and
grayscale images recorded by a DAVIS event camera with
a resolution of 346 x 260 pixels, mounted on a driving car.
Ground-truth depth maps are recorded at 20 Hz by a LIDAR
sensor. The dataset contains several sequences captured
during daytime and nighttime. Following ECDDP [25], we
use the “outdoor_day2” sequence for fine-tuning and the
“outdoor_day1”, “outdoor_night1”, “outdoor_night2”, and
“outdoor_night3” sequences for evaluation.

Data Representation. 7" is set to 50 ms for recurrent mod-
els, based on the MVSEC label frequency (20Hz). For
feedforward models, 7T is set to 100 ms.

Architecture. We attach a depth prediction head from Mi-
DaS [17] to our backbone.

Loss Function. Following HMNet [9], we train the model
to predict the normalized log depth d, defined as:

~ 1

d= —log +1, €))
(67 dmax

where d is the metric depth, dy,.x is the maximum depth in

the dataset, and « is determined by the ratio between the

maximum depth dy,,x and the minimum depth dpy;y:

a = log (jlme_lx. 2)

For the MVSEC dataset, d,x and a equal to 80 and 3.7.




Architecture Recurrent Architecture Recurrent Feedforward
Datas«:?t i Rl Dataset Genl 1Mpx Genl 1Mpx
E?;ckci\é;i?;cgh;;;e 25_ 4 Effective Batch Size 8 24 64 32
c1, s 25. 1,000 Peak Learning Rate 2e-4 3.46e-4 2e-4 3.46e-4
Optimizer Adam €1, €2 25, 1,000
Scheduler Linear Optimizer Adam
Training Steps 400,000 Scheduler Linear
Warm Up Steps 2,000 Training Steps 400,000
T ST Warm Up Steps 2,000
Sequence Length 15
Masking Ratio 50% T S
N 5,000 Sequence Length 21 5 1
GPU 4x RTX6000 GPU 2x RTX6000 1x RTX6000
(a) TESPEC pre-training stage (b) Object Detection
Architecture Recurrent  Feedforward Architecture Recurrent Feedforward
Dataset MVSEC Dataset DSEC DDD17 DSEC DDDI7
Effective Batch Size 8 16 Effective Batch Size | 8 16 16
el lLeniing s o< Peak Learning Rate le-4
8,:2 . 254 ;,000 1. ¢ 25, 1,000
imizer am .
S(f)heduler Cosine Optimizer Ada'lm
Training Steps 20,000 Sch.e(?uler Cosine
Warm Up Steps 100 Training Steps 50,000
T i 100ms Warm Up Steps 250
Sequence Length 10 1 T S0ms 30ms 100ms
Amax, O 80, 3.7 Sequence Length 10 15 1
GPU 1x RTX6000 GPU 2x RTX6000 1x RTX6000
(c) Monocular Depth Estimation (d) Semantic Segmentation
Table 4. Implementation Settings. We report the implementation details for both pre-training and downstream tasks.
Augmentation Probability Magnitude ECDP ECDDP TESPEC
min max Runtime 45h 120h 135h
Horizontal Flip 0.5 - B Table 6. Runtime comparison of event-based SSL methods.
Apply Zoom 0.8 - - Each experiment is conducted on four RTX6000 GPUs.
Zoom In 0.8 1 1.5
Zoom Out 0.2 1 1.2 We train our models using the same loss function as in

(a) TESPEC, Object Detection, and Semantic Segmentation.

previous work [5]. We compute a weighted sum of the
scale-invariant loss [3] and the multi-scale scale-invariant

gradient matching loss [13] as the loss function. The

weights for the scale-invariant loss and the gradient match-

Augmentation Probability
Horizontal Flip 0.5
(b) Monocular Depth Estimation.

Table 5. Augmentation Transformations. Description of data

augmentations used during training

ing loss are set to 1 and 0.125, respectively.

C.5. Pre-training Runtime & Model Size Analysis

As shown in Tab. 6, TESPEC only adds a marginal overhead
in pre-training runtime. Accumulating events to estimated
intensity videos can be implemented efficiently on GPUs,
taking less than 1 ms at each step. Detailed training and in-



Semantic Seg. Depth Est. Object Det.

Recurrent

DSEC DDD17 MVSEC Genl 1Mpx
Training time (in hours). Training settings are in Tub. 4.
No 12.3 6.1 1.7 104.3 120.0
Yes 23.1 14.8 4.6 138.9 155.2
Inference time on 1x RTX6000 (in milli-seconds).
No 13.0 12.7 12.4 18.7 19.1
Yes 14.6 14.0 13.8 20.4 20.9

Table 7. Training and inference time for downstream datasets.

ference runtime on downstream tasks for both feed-forward
and recurrent backbones are provided in Tab. 7.

We report model size of our backbone and task-specific
heads in Tab. 3. Event-based SSL baselines such as
ECDP [26] and ECDDP [25] use the same backbone as
ours. However, the model size for their heads is not re-
ported in the papers, and their open-source codebase only
implements the semantic segmentation task. Thus, we only
know their segmentation head is 3 larger than ours.

D. Limitations and Future Work

Our approach demonstrates significant improvement across
several downstream tasks. However, the recurrent model
training requires processing of multiple stages in each iter-
ation, which increases the training time and memory con-
sumption. Nevertheless, our recurrent backbone only adds
lightweight recurrent modules over its feedforward counter-
part, resulting in comparable inference time.

One of the future directions is to explore alternative re-
current architectures that are better suited for event data.
Prior work [28] has demonstrated that state space mod-
els [8] can achieve strong performance with smaller archi-
tectures. These characteristics offer a promising direction to
reduce training time while maintaining competitive results.

Another potential direction is the use of more diverse
datasets. As shown in our experiments, the 1Mpx [16]
dataset proves to be a better candidate than the Genl [2]
dataset for pretraining. The 1Mpx dataset features a higher
resolution and greater number of moving objects, which re-
sult in more diverse motion patterns. However, the 1Mpx
dataset is limited to autonomous driving scenarios. We be-
lieve that a dataset containing a broader range of movement
scenarios could enable the model to extract more generaliz-
able representations from the environment.
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