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In this document, we provide additional experiments, vi-
sualizations, analysis, and details of our work on zero-shot
gaze target prediction using GLAM and GLAD. The spe-
cific sections of this document are listed below.
• We present empirical evidence of CLIP [12]-based con-

trastive learning being ineffective when used to train
GLAM instead of GLAD (Section 1).

• We detail our procedure of prompting a large language
model (LLM) to generate visual search process descrip-
tions for object categories (Section 2).

• We examine how our method predicts target categories for
scanpaths using only a certain percentage of initial fixa-
tions, despite being trained on only complete scanpaths
(Section 3).

• We provide additional metrics for the quantitative experi-
ments discussed in the main text (Section 4).

• We provide additional implementation and design details
for GLAM and GLAD (Section 5).

• We discuss the insights guiding our design of GLAD’s
pre-training stage (Section 6).

• We analyze the effects of parafoveal information on the
gaze target prediction capability of GLAM (Section 7).

• We investigate the category-distinguishability of scan-
paths in COCO-Search18. (Section 8)

1. Inefficacy of CLIP’s contrastive learning
strategy for Gaze-Language Alignment

CLIP [12]’s contrastive learning strategy treats similarity
as binary, i.e. “positive pairs” are perfectly similar to
each other, while “negative pairs” are completely dissimi-
lar. When naively applied to our method, CLIP’s contrastive
learning strategy assumes that Fgaze and Flang for the same
batch sample are completely similar, while being entirely
dissimilar to representations from other batch samples. We
empirically show how this formulation of CLIP is incom-
patible with the Gaze Target Prediction problem. We sub-
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Training
Strategy

Target Prediction Acc. (%) Presence Prediction
Zero-Shot Fully Supervised Acc. (%)

CLIP [12] 8.39 13.72 83.12
CWCL [13] 23.82 52.95 84.46

GLAD 30.17 58.22 83.48

Table 1. A comparison of training strategies for GLAM along
with LLM-generated prompts in terms of target prediction and tar-
get presence prediction accuracies. While our proposed strategy,
GLAD, significantly outperforms the other two strategies in terms
of target prediction, CLIP [12] performs the worst by a consider-
able margin.

stitute our novel strategy, GLAD, with CLIP-style training
in the “GLAM + GLAD + LLM-Generated Prompts” vari-
ant. Specifically, the pre-training step is discarded and the
training loss Lalign defined in Equations 4-6 in the main
text is modified as follows:

Lalign =− 1

N
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l=1 SIM(F
(i)
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(l)
lang)

(1)

where SIM(a, b) = exp(⟨a, b⟩/τ ′) (2)

Here, τ ′ is a learnable temperature parameter and N is
the batch size. The results for this ablation are in Table 1.
As observed, GLAM’s target prediction performance de-
clines in both Zero-Shot and Fully-Supervised setups when
trained with CLIP’s contrastive learning strategy, perform-
ing worse than CWCL [13], and far worse than our GLAD
training strategy. We attribute this to the fact that COCO-
Search18 [3] contains 18 target categories, which is smaller
than typical batch sizes. This leads to multiple batch el-
ements sharing the same Language Encoder prompt due to
their association with the same ground truth object category,
contradicting CLIP’s assumption that each language prompt
(or text input) in a batch is unique.
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Figure 1. Evaluation of “GLAM + GLAD + LLM-Generated
Prompts” model variant in terms of target prediction accuracy,
across different evaluation conditions: combination of both target-
present and target-absent scanpaths (TP+TA), only target-present
scanpaths (TP), and only target-absent scanpaths (TA). This evalu-
ation was performed using varying percentages of initial fixations
included in the scanpath input to the model.

2. Details of LLM Prompting
We prompted the LLM using a text prompt to generate
JSON objects for each of the 2,456 object categories used in
GLAD pre-training, including the 18 COCO-Search18 cat-
egories used in GLAD training. An example prompt to the
LLM for category “bottle”:

Describe how I would search for
"bottle" in a scene in terms of
appearance, and contextual cues.
Respond in JSON format without
mentioning the name of the object.

These JSON objects were processed to form search pro-
cess descriptions describing the visual search process using
the following template: Object Name:[category

name]. Appearance:[appearance info].

Contextual Cues:[contextual info].These text
strings form the visual search descriptions that are used as
input to GLAM’s Language Encoder.

3. GLAM’s predictions for incomplete scan-
paths

We investigated how GLAM (specifically, the “GLAM +
GLAD + LLM-Generated Prompts” variant) predicted tar-
get categories for scanpaths, but instead of including all
fixations as input to GLAM, we provided only a certain
percentage of fixations from the beginning. This percent-
age ranged from 10% to 100%. This ablation probed the
model’s ability to predict the target category for incomplete
scanpaths despite being trained on only complete scanpaths,
and was performed in the Fully Supervised setting. Plots
showing the trends in change of target prediction accuracy

with varying percentages of fixations included in scanpath
from the beginning are in Fig. 1. It was observed that for
target absent scanpaths, the model’s performance increased
substantially to approximately 30% after the first 20% fix-
ations, indicating that the model picks up on contextual
cues early in the scanpath. Since target-present scanpaths
are shorter than target-absent scanpaths (average length of
target-present test scanpaths is 2.89 whereas average length
of target-absent test scanpaths is 5.85), target-present scan-
paths required at least 90% fixations (i.e. 2-3 fixations on
average) for the model to predict the correct category.

4. Additional metrics for Experimental Results
In the Zero-Shot setting, where we evaluate zero-shot target
prediction on each COCO-Search18 category in an N-fold
cross-validation manner, we report average recall across
all categories, referred to as “Recall”, along with the ac-
curacy metric. In the fully-supervised setting, we evalu-
ate target prediction and target presence prediction by re-
porting precision (P), recall (R), and F1 score (F1). These
metrics are averaged across 18 target categories for target
prediction and across the two possibilities (present/absent)
for target presence prediction, and reported alongside the
previously reported accuracy metrics. We report the afore-
mentioned additional metrics for the results in Table 1 of
the main text in Table 2. We observe that the trends in
Table 1 are repeated for the additional metrics. Specifi-
cally, “GLAM+GLAD+LLM-Generated Prompts” variant
outperforms other variants in almost every metric for tar-
get prediction, whereas “GLAM+GLAD+Category-Label
based prompts” variant achieves the best metrics for tar-
get presence prediction. Note that the aforementioned ad-
ditional metrics for COCO-Search18 have not been re-
ported previously for baselines GST [11], GazeGNN [14]
and BoVW [1]. Since implementations of GST [11],
GazeGNN [14] (specifically, Nishiyasu et al.’s implemen-
tation1 adapted for COCO-Seach18) and BoVW [1] are not
publicly available, we are unable to report the aforemen-
tioned additional metrics for these baselines.

5. Implementation Details
In this section, we provide additional implementation de-
tails of GLAM and GLAD.

GLAM. A dropout of 0.3 is applied to the Gaze Encoder
layers while a dropout of 0.2 is applied to Fimage and Ffix

prior to input to the gaze encoder. Patch size p for Fimage

1Our implementation of GazeGNN for COCO-Search18 yielded poor
performance, i.e. 30.28% (compared to 38.77% as reported by Nishiyasu
et al.) for target prediction accuracy, and 63.13% (compared to 73.28%
as reported by Nishiyasu et al.) for target presence prediction accuracy.
Hence, to avoid confusion, we refrain from reporting the results of our
implementation in the tables of this document.



Target Prediction Presence Prediction
Zero-Shot Fully-Supervised Fully-Supervised

Architecture
Training
Strategy

Prompts
Acc.
(%)

Recall
Acc.
(%)

P R F1 Acc.
(%)

P R F1

Random N/A N/A 5.16 0.05 5.16 0.051 0.051 0.050 50.23 0.502 0.502 0.502
GLAM Gaze Encoder Classification N/A N/A N/A 58.19 0.623 0.551 0.566 84.25 0.848 0.843 0.842

GLAM CWCL [13] Category Label 22.34 0.226 57.95 0.575 0.585 0.576 85.07 0.851 0.851 0.851
GLAM CWCL [13] LLM-Generated 23.82 0.241 52.95 0.508 0.503 0.507 84.46 0.845 0.846 0.845
GLAM GLAD LLM-Generated 30.17 0.316 58.22 0.573 0.586 0.577 83.48 0.838 0.835 0.836

Table 2. Additional metrics – Precision (P), Recall (R), F1 score (F1) – are added to the accuracy metrics (denoted here as “Acc. (%)”)
reported in Table 1 of the main text for comparing different methods for target prediction and target presence prediction (excluding methods
without any public implementation or published metrics) on a combination of both target-present and target-absent scanpaths of the COCO-
Search18 test set. Both Zero-Shot and Fully Supervised setups are used for evaluation. Bold indicates the methods proposed in this research,
and bold italics highlight the best prediction metric in each evaluation setup.

Model variant No. of
parameters

Training latency Inference latency
(sec/batch) (sec/sample)

GLAM Gaze Encoder + Classification 37M 1.1 0.091
GLAM + CWCL + Category Label 147M 1.6 0.115

GLAM+CWCL+LLM-Generated Prompts 147M 2.0 0.147
GLAM+GLAD+LLM-Generated Prompts 147M 1.9 0.132

Table 3. Model complexity and latency metrics for all GLAM variants. All model variants except the classification variant contains an
MP-Net language encoder which contributes to 110M parameters. All variants are trained with a batch size of 256. During inference, we
process one sample (image-scanpath pair) at a time.“GLAM+GLAD+LLM-Generated Prompts” variant is the main proposed model of our
paper.

is 16, and is used in the fixation encoder to obtain patch em-
beddings of fixation patches. Output dimension of the Lan-
guage Encoder dlang is 768. The output embedding from
the attentional pooling layer fattpool having dimensionality
dlang = 768 gets projected by f

(1)
lang to Fsearch ∈ Rd where

d = 256. f (2)lang subsequently projects Fsearch to another d-
dimensional embedding, which is then added with Fsearch

and normalized to yield Fgaze ∈ Rd. The two FFN layers
in gaze encoder sub-modules each consist of two fully con-
nected layers: the first layer projecting d-dimensional vec-
tors to dffn-dimensional vectors to which ReLU [9] activa-
tion is applied, followed by the second layer projecting the
resultant dffn-dimensional vectors to d-dimensional vec-
tors. The hyperparameter dffn was set to 512.

GLAD Pre-training. For optimization during the pre-
training stage of GLAD, we used an AdamW [6] optimizer
with a learning rate of 1e-4 and weight decay of 0.01. The
pre-training process was performed for 500 epochs with a
batch size of 128. The learnable temperature parameters τ
and τC were initialized to 0.07. Note that the CLIP text en-
codings used in this stage have a dimensionality of 512, and
these are projected by fcat and subsequently normalized to
yield Fcat ∈ Rd where d = 256. In this stage, Fsearch

generated by f
(1)
lang is also normalized.

GLAD Training. For optimization during the training stage
of GLAD, we used an AdamW [6] optimizer with a learn-
ing rate of 1e-4 and weight decay of 0.01. All variants of
GLAM were trained for a maximum of 30 epochs with a
batch size of 256. The learnable temperature parameters τ ′

and τ ′C were initialized to 0.07. Our fixation-based masking
strategy creates higher number of unique training samples
than images, thereby allowing us to train both visual and
language encoders with a limited number of images with-
out overfitting.

Model Complexity. The model complexity metrics for all
GLAM variants are in Table 3. The “GLAM Gaze Encoder
+ Classification” variant contains 37M parameters. Other
GLAM variants share the same 147M-parameter architec-
ture with 110M parameters coming from MP-Net.

Latency Analysis. The model latency metrics for all
GLAM variants are in Table 3. We train all vari-
ants of GLAM with a batch size of 256, and for a
realistic inference setting, process one sample (image-
scanpath pair) at a time. Time metrics are similar
for the “GLAM+CWCL+LLM-Generated Prompts” (train-
ing latency:2s/batch, inference latency:147ms/sample) and
“GLAD+GLAD+LLM-Generated Prompts” (training la-
tency: 1.9s/batch, inference latency: 132ms/sample)
variants. The “GLAM + CWCL + Category Label”



variant (training latency: 1.6s/batch, inference latency:
115ms/sample) and “GLAM Gaze Encoder + Classifica-
tion” variant (train latency: 1.1s/batch, inference latency:
91ms/sample) variants are faster due to shorter label-based
prompts and the absence of MP-Net, respectively.

6. Insights guiding the design of GLAD Pre-
training Phase

In this section, we discuss the insights guiding our design
of GLAD pre-training stage. We have shown empirically
in the main text (Sec. 4.1) that category label embeddings
are inadequate, potentially because existing pre-trained lan-
guage encoders encode generic object properties, not ex-
plicit human search behavior. In this regard, visual search
descriptions containing explicit cues used by humans for
search are more appropriate. However, it is essential for a
gaze target prediction model to know which cues are nec-
essary for category disambiguation (e.g. “bowl” vs. “bot-
tle”), especially for zero-shot inference. This necessitates
the pre-training stage of GLAD where GLAM learns to
focus on target-discriminative features in search descrip-
tions for search target categories that might even lack gaze
annotations. When encountering a scanpath originating
from search for a novel category lacking prior gaze an-
notations (i.e. during zero-shot inference), the GLAD pre-
training stage would therefore allow the model to lever-
age its pre-trained knowledge of the target-discriminative
features in the novel category’s search description embed-
ding to correlate with the gaze embedding of the scanpath
and consequently disambiguate the correct target category.
CWCL [13] used for learning during the pre-training stage
encourages the model to be aware of inter-category similar-
ities (e.g. that “chair” and “couch” are very similar).

7. Effects of Parafoveal Information on Gaze
Target Prediction

COCO-Search18 was collected with horizontal and ver-
tical visual angles of 54◦ and 35◦, respectively. Our
Gaze encoder views images as 32 horizontal patches and
20 vertical patches, so the optimal peripheral window of
size=1 (as shown in Sec. 4.3 of the main text), spanning
3 patches horizontally and vertically, covers visual angles
(3/32)×54◦=5.06◦ horizontally and (3/20)×35◦=5.25◦ ver-
tically – lower than parafovea’s anatomical span of ∼10◦

but greater than foveal span of ∼2◦. This suggests that
parafoveal cues aid search, but critical information comes
from within ∼5◦ visual angle – likely due to eccentricity
effects.

8. Category-distinguishability of Search Scan-
paths in COCO-Search18

A COCO-Search18 data sample consists of a scanpath S of
eye fixations made by a human instructed to search for a
target category C in an image I containing either a single
(Target-Present) or zero (Target-Absent) object belonging
to C. Hence, COCO-Search18 provides precise correspon-
dence of the real search target with the pair (S, I). However,
we analytically investigated whether scanpaths of a cate-
gory C in COCO-Search18 are indeed distinguishable from
scanpaths of other categories (i.e. not C).

Now, to validate our hypothesis that scanpaths of cate-
gory C are distinguishable from scanpaths of other search
categories within COCO-Search18, we show that for the
same visual stimulus (i.e. image I) and scanpaths from
multiple participants searching for categories C1, C2, ...,
Cn, intra-category scanpath similarity scores are statistically
significantly higher than inter-category scanpath similarity
scores. In other words, we show that scanpaths from mul-
tiple participants searching for the same target category in
the same image are more similar to each other than with
scanpaths from those participants searching for a different
target category in the same image. For every image-target
category pair, COCO-Search18 contains one scanpath from
each participant in the participant pool of 10 individuals,
enabling us to perform this analysis.

We selected images from both target-present and target-
absent scenarios for each of which scanpaths (from all
10 participants) for multiple categories were available in
COCO-Search18. We used Semantic Sequence Score
(SemSS) [15] metric, a non-parametric metric widely used
in the evaluation of state-of-the-art scanpath prediction
models [2, 8, 15]. SemSS computes similarities between
two scanpaths by converting those scanpaths into strings of
fixated objects in the scene, and consequently using a string
matching algorithm [10] to measure similarity between that
pair of strings. SemSS can be used both with and with-
out fixation duration component, similar to ScanMatch [4].
Higher SemSS score indicates greater similarity.

We conducted an analysis of SemSS similarity scores
for both Target-Present and Target-Absent scenarios (sep-
arately, not combined), comparing intra-category SemSS
similarity scores (scanpaths from multiple participants
searching for the same target category in the same im-
age) and inter-category SemSS similarity scores (for scan-
paths from multiple participants searching for two differ-
ent target categories in the same image) using the non-
parametric Mann-Whitney U test [7]. Results revealed that
for both Target-Present and Target-Absent scenarios (both
with and without the fixation duration component), intra-
category SemSS similarity scores are statistically signifi-
cantly larger (p < 0.05) than inter-category SemSS sim-



ilarity scores. This finding suggests that scanpaths corre-
sponding to a category are distinct from those of other cat-
egories and an ideal model will be able to discern an unam-
biguous target category for a given scanpath and an image.
We also conducted the same analysis using SemFED [8],
another non-parametric scanpath similarity metric based on
edit distances [5], instead of SemSS. With SemFED similar-
ity metric, we again found that a scanpath is statistically sig-
nificantly more similar to other scanpaths originating from
search for the same category, than it is to scanpaths origi-
nating from search for a different category.

However, please note that one cannot simply predict the
target category for a test scanpath using a scanpath similar-
ity metric like SemSS and SemFED, as this would also re-
quire scanpaths from other participants for the same search
category and image, which we usually do not have access
to in real-world application scenarios.
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