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A. Detailed Evaluation Protocol and Metrics
This section provides a detailed discussion of the proposed
evaluation protocol and metrics for the DuIOD task. Ta-
ble S1 outlines the training sequence that is followed for
four different DuIOD experiments, along with the detailed
evaluation protocol that is used to comprehensively evalu-
ate the performance of different object detectors on the re-
spective DuIOD setting. Unlike existing metrics [1, 21, 24]
that focus only on catastrophic forgetting, we used the
Retention-Adaptability Index (RAI), which balances both
knowledge retention and generalisation to unseen categories
across evolving domains. We define RAI as the mean of the
Average Retention Index (Avg RI) and Average Generali-
sation Index (Avg GI), which are discussed in the sections
below.

RAI =
Avg RI + Avg GI

2
(1)

A.1. Average Retention Index
For each domain Di corresponding to task Ti where i ∈
{1, . . . , T − 1}, we define the Retention Index RIDi

as:

RIDi =
mAPTT

old (Di[Ci])
mAPTi

new(Di[Ci])
(2)

Here, mAPTT

old (Di[Ci]) denotes the mean Average Precision
(mAP) at IoU threshold = 0.5 of the object detector at the
final task TT on the classes Ci which were learned from do-
main Di, and mAPTi

new(Di[Ci]) is the mAP when classes Ci
from domain Di were first encountered and learned, at task
Ti. The Avg RI is then calculated as:

Avg RI =
1

T − 1

T−1∑
i=1

RIDi
. (3)

To illustrate this, consider the multi-phase experiment (Ta-
ble S1) with training sequence: Night Sunny [1:2] → Day-
time Sunny [3:4] → Daytime Foggy [5:7]. The Avg RI is
computed as the mean of the Retention Index values for
Night Sunny (NS) and Daytime Sunny (DS) domains at the
final task T3 as follows:

RINS =
mAPT3

old (NS[1:2])

mAPT1
new(NS[1:2])

RIDS =
mAPT3

old (DS[3:4])

mAPT2
new(DS[3:4])

(4)

Avg RI =
RINS +RIDS
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Hence, in this case, a higher Avg RI indicates how effec-
tively the object detector has retained past knowledge from

old Night Sunny and Daytime Sunny domains in the fi-
nal task T3. Conversely, a lower value indicates significant
catastrophic forgetting.

A.2. Average Generalization Index
The Generalisation Index (GIDi,Tj

) quantifies how well the
model detects unseen classes from domain Di at task Tj .
These classes were not part of the training set for task Tj ,
meaning the model is required to generalise beyond its ex-
plicitly trained classes (see Table S1). For a given domain
Di at task Tj , the Generalization Index is computed as:

GIDi,Tj
=

mAPTj
unseen(Di[Cunseen])

mAPref(Di[Cunseen])
(6)

Here, mAPTj
unseen(Di[Cunseen]) is the mAP of the model at

task Tj on the unseen classes Cunseen from domain Di, and
mAPref(Di[Cunseen]) is the reference mAP obtained by train-
ing the object detector solely on these unseen classes on do-
main Di. The Average Generalisation Index (Avg GI) over
all relevant domain-task pairs is then computed as:

Avg GI =
1

N
∑

(Di,Tj)

GIDi,Tj
(7)

where N is the total number of unseen-class domain-task
pairs considered in the evaluation.

Continuing with the same example, the Avg GI is com-
puted as the mean of the Generalization Index values for un-
seen classes across the Night Sunny (NS), Daytime Sunny
(DS), and Daytime Foggy (DF) domains for a total of five
domain-task pairs- two from task T2 and three from T3:

GINS,T2
= mAPT2

unseen(NS[3:4])
mAPref(NS[3:4]) GIDS,T2

= mAPT2
unseen(DS[1:2])

mAPref(DS[1:2]) (8)

GINS,T3
= mAPT3

unseen(NS[3:4])
mAPref(NS[3:4]) GIDS,T3

= mAPT3
unseen(DS[1:2])

mAPref(DS[1:2])

GIDF,T3 =
mAPT3

unseen(DF[1 : 4])

mAPref(DF[1 : 4])
(9)

Avg GI = GINS,T2
+GIDS,T2

+GINS,T3
+GIDS,T3

+GIDF,T3

5 (10)

Hence, in this case, a higher Avg GI indicates better zero-
shot generalisation to unseen categories: NS [3:4], DS
[1:2], and DF [1:4] across incremental training. Conversely,
a lower value suggests that the model is overfitting to seen
classes and fails to generalise.



Table S1. Training Sequence & Evaluation Protocol for different DuIOD experiments.

DuIOD
Experiment

Training Sequence Evaluation Protocol
Task Class IDs New Classes Old Classes Unseen Classes

Pascal Series Datasets

Two Phase
VOC [1:10] →
Clipart [11:20]

T1 1-10 from VOC mAPT1
new(VOC[1 : 10]) — —

T2 11-20 from Clipart mAPT2
new(Clipart[11 : 20]) mAPT2

old(VOC[1 : 10])
mAPT2

unseen(VOC[11 : 20])

mAPT2
unseen(Clipart[1 : 10])

Multi Phase
Watercolor [1:3]
→ Comic [4:6]
→ Clipart [7:13]
→ VOC [14:20]

T1 1-3 from Watercolor mAPT1
new(Watercolor[1 : 3]) — —

T2 4-6 from Comic mAPT2
new(Comic[4 : 6]) mAPT2

old(Watercolor[1 : 3])
mAPT2

unseen(Watercolor[4 : 6])

mAPT2
unseen(Comic[1 : 3])

T3 7-13 from Clipart mAPT3
new(Clipart[7 : 13])

mAPT3

old(Watercolor[1 : 3])

mAPT3

old(Comic[4 : 6])

mAPT3
unseen(Watercolor[4 : 6])

mAPT3
unseen(Comic[1 : 3])

mAPT3
unseen(Clipart[1 : 6])

T4 14-20 from VOC mAPT4
new(VOC[14 : 20])

mAPT4

old(Watercolor[1 : 3])

mAPT4

old(Comic[4 : 6])

mAPT4

old(Clipart[7 : 13])

mAPT4
unseen(Watercolor[4 : 6])

mAPT4
unseen(Comic[1 : 3])

mAPT4
unseen(Clipart[1 : 6])

mAPT4
unseen(VOC[1 : 13])

Diverse Weather Series Datasets

Two Phase
Daytime Sunny [1:4]
→ Night Sunny [5:7]

T1 1-4 from Daytime Sunny mAPT1
new(Daytime Sunny[1 : 4]) — —

T2 5-7 from Night Sunny mAPT2
new(Night Sunny[5 : 7]) mAPT2

old(Daytime Sunny[1 : 4])
mAPT2

unseen(Daytime Sunny[5 : 7])

mAPT2
unseen(Night Sunny[1 : 4])

Multi Phase
Night Sunny [1:2]

→ Daytime Sunny [3:4]
→ Daytime Foggy [5:7]

T1 1-2 from Night Sunny mAPT1
new(Night Sunny[1 : 2]) — —

T2 3-4 from Daytime Sunny mAPT2
new(Daytime Sunny[3 : 4]) mAPT2

old(Night Sunny[1 : 2])
mAPT2

unseen(Night Sunny[3 : 4])

mAPT2
unseen(Daytime Sunny[1 : 2])

T3 5-7 from Daytime Foggy mAPT3
new(Daytime Foggy[5 : 7])

mAPT3

old(Night Sunny[1 : 2])

mAPT3

old(Daytime Sunny[3 : 4])

mAPT3
unseen(Night Sunny[3 : 4])

mAPT3
unseen(Daytime Sunny[1 : 2])

mAPT3
unseen(Daytime Foggy[1 : 4])

B. Loss Function Formulation
To ensure effective incremental learning in case of DuIOD,
we employ a combination of standard detector loss LDetector,
a modified distillation loss L∗

Distill (discussed below), and the
Directional Consistency Loss LDC (discussed in main paper
Section 3.5). This section details the formulation of
Ltotal using these loss components.

Knowledge distillation plays a crucial role in mitigating
catastrophic forgetting during incremental learning. In our
approach, we extend the standard distillation loss (LDistill)
for incremental learning [13] by incorporating a dynamic
thresholding mechanism that filters low-confidence classifi-
cation outputs and high-variance bounding box predictions
from the old (previous task) model.

Let Mθt−1 represent the previous task model, and Mθt

be the current model being trained on Tt. Given input data
for the current task Xt, the classification outputs and pre-
dicted bounding boxes from both models will be:

zcurr = Mθt(x), zold = Mθt−1
(x) (11)

where z = (c,b), with c being classification logits and b
the predicted bounding box coordinates.

The classification distillation loss is computed as:

L∗
Distillcls

=
1

|M∗
cls|

∑
i∈M∗

∥∥∥c(i)curr − c
(i)
old

∥∥∥2 (12)

where M∗
cls is the dynamically selected mask that excludes

predictions with low confidence scores in cold:

M∗
cls = {i | max(c

(i)
old) ≥ τcls} (13)

where τcls is an adaptive threshold computed as the 75th
percentile of max(cold) values.

Similarly, the bounding box regression distillation loss
is computed by computing the KL divergence between the
softmax of bounding box outputs from the current and old
models:

L∗
Distillbbox

= 1
|M∗

bbox|
∑

j∈M∗
bbox

DKL

(
Softmax(b(j)

curr)
∣∣∣∣∣∣Softmax(b(j)

old )
)

(14)

where M∗
bbox filters out bounding boxes with high variance

in bold:

M∗
bbox = {j | Var(b(j)

old ) ≤ τbbox} (15)

where τbbox is an adaptive threshold computed as the 75th
percentile of bounding box variance values.

The final modified distillation loss becomes:

L∗
Distill = L∗

Distillcls
+ L∗

Distillbbox
(16)

LDetector depends on the object detector used. In our
framework, we augment the detector losses of YOLO11
[10] and RT-DETR [18] object detectors with L∗

Distill and
LDC on the Ultralytics [10] pipeline. In the case of
YOLO11, the detection loss consists of classification loss,
bounding box regression loss, and Distribution Focal Loss



[10], while in the case of RT-DETR, the detection loss fol-
lows a Hungarian matching strategy, consisting of classifi-
cation, bounding box, and Generalized IoU (GIoU) losses
[18].

Hence, the total loss for incremental tasks (t ≥ 2) is
computed as:

LTotal = LDetector + λDistillL∗
Distill + λDCLDC (17)

where λDistill and λDC are scaling coefficients that control
the impact of distillation and directional consistency losses,
respectively.

C. Extended Ablation Studies
C.1. Impact of Loss Components

Table S2. Performance comparison of different model-merging al-
gorithms on VOC [1:10]→ Clipart [11:20] depicting the impact of
LDC, with YOLO11n [10] as the base detector. Among columns,
best in bold, second best underlined.

Model-merging
algorithm LDC

Avg RI
(%)

Avg GI
(%)

RAI
(%)

Fisher-Merging [20] ✗ 20.27 17.15 18.71
Fisher-Merging [20] ✓ 21.64 24 22.82 (+ 4.11)

MagMax [19] ✗ 65.05 28.09 46.57
MagMax [19] ✓ 66.79 28.28 47.54 (+ 0.97)

Weight-Averaging [8] ✗ 66.42 31.42 48.92
Weight-Averaging [8] ✓ 76.12 37.53 56.83 (+ 7.91)

EMR-Merging [7] ✗ 67.66 34.4 51.03
EMR-Merging [7] ✓ 68.03 36.46 52.25 (+ 1.22)

DuET (Ours) ✗ 87.06 37.75 62.41
DuET (Ours) ✓ 87.44 44.54 65.99 (+ 3.58)

Figure S1. Impact of LDC in (a) reducing L2 Distance and (b)
improving cosine similarity. These results are obtained on the
VOC [1:10] → Clipart [11:20] experiment using YOLO11n [10]
as the base detector with Incremental Head and Sequential Fine-
tuning.

Impact of LDC . Continuing the ablations from the main
paper (Section 6), in this section, we further investigate the
role of LDC . In Table S2, we compare the performance

of different model-merging algorithms, with and without
LDC . The results show that LDC consistently improves
the RAI across all methods, with an average RAI improve-
ment of +3.56% among all merging methods, with DuET
achieving the best performance. Moreover, the bar charts in
Figure S1 compare the L2 distance and cosine similarity be-
tween the merged model weights with both old and current
model weights across different model-merging algorithms.
The results show that LDC significantly reduces L2 distance
by 43.46% averaged across all methods, with DuET achiev-
ing the lowest values. Lower L2 distance suggests that af-
ter incorporating LDC , the merged model lies closer to the
original models, ensuring effective knowledge integration
from both. Similarly, incorporation of LDC consistently
improves cosine similarity across all methods by 0.23% av-
erage, with DuET achieving the highest values. Higher co-
sine similarity suggests that LDC helps the merged model
better align with the original models.

Table S3. Ablation studies of different loss components aug-
mented with detector loss (LDetector).

Loss Component Avg RI (%) Avg GI (%) RAI (%)
LDetector + LDistill 72.64 33.74 53.19
LDetector + L∗

Distill 87.06 37.75 62.41
LDetector + L∗

Distill + LDC 87.44 44.54 65.99

Impact of L∗
Distill. Table S3 presents the ablation stud-

ies of different loss components augmented with detector
loss (LDetector). We observe that the inclusion of L∗

Distill in-
stead of LDistill significantly improves all metrics, with a
+14.42% increase in Avg RI, +4.01% increase in Avg GI,
and +9.22% increase in RAI. The addition of LDC brings in
additional improvements, leading to the best performance
across all metrics.

C.2. Sensitivity Analysis for key hyper-parameters
Figure S2 shows the sensitivity analysis for key hyperpa-
rameters used in the DuET approach. Base scaling coeffi-
cient αbase (Figure S2a) effectively controls the contribu-
tions from the old (prior task) model and current model;
hence, a value of 0.5 ensures a balanced trade-off between
past knowledge retention and new adaptation, while ex-
treme values (αbase < 0.3 or αbase > 0.7) significantly de-
grade RAI. The limiting factor γ (Figure S2b) impacts task-
merging, with γ = 0.1 giving optimal results for both Pas-
cal Series and Diverse Weather Series datasets. The scaling
coefficients λDistill and λDC (Figures S2c and S2d) con-
trol the impact of Distillation and Directional Consistency
losses, respectively. We observe that, for both of them, a
value of 0.01 gives the best results and effectively helps
in mitigating catastrophic forgetting by improving retention
while preventing sign conflicts; deviations from these val-
ues lead to reduced adaptability and degraded performance



(a) (b)

(c) (d)

Figure S2. Sensitivity analysis of DuET approach to key hyperparameters. (a) shows the effect of varying base scaling coefficient
αbase. (b) illustrates the impact of the limiting factor γ on RAI. (c) and (d) depicts the effect of varying scaling coefficients λDistill and
λDC on RAI respectively.

on both series of datasets.

Table S4. Influence of random domain and class permutations
across three incremental tasks on the Diverse Weather Series
dataset.

T1 T2 T3 Avg RI Avg GI RAI
Night Sunny [5:7] Daytime Sunny [1:2] Daytime Foggy [3:4] 83.49 51.01 67.25
Night Sunny [3:4] Daytime Sunny [5:7] Daytime Foggy [1:2] 80.39 51.76 66.08
Night Sunny [1:2] Daytime Sunny [3:4] Daytime Foggy [5:7] 88.57 41.92 65.25

Daytime Foggy [1:2] Night Sunny [3:4] Daytime Sunny [5:7] 78.34 50.54 64.44
Daytime Sunny [1:2] Daytime Foggy [3:4] Night Sunny [5:7] 88.33 35.97 62.15

Standard Deviation 4.12 6.26 1.72

C.3. Influence of random class-domain order
In real-world incremental learning scenarios, the sequence
in which new classes and domains are introduced can in-
fluence knowledge retention and generalisation. To check
the sensitivity of the proposed DuET approach to such vari-
ations, we conducted experiments with shuffled class or-
ders while keeping the same domain progression (top three
rows in Table S4) and shuffled domain orders while keep-
ing the same class sets (bottom three rows). We observe

that Avg RI remains consistently high across all permuta-
tions (> 78%), and there are minor variations in RAI and
Avg RI with standard deviations of 1.72 and 4.12, respec-
tively. However, the slight variation in Avg GI, with a stan-
dard deviation of 6.26, stems from domain shifts affecting
generalisation. This indicates that the proposed DuET ap-
proach maintains a consistent performance irrespective of
the randomness in class-domain orders.

C.4. Complexity Analysis

Table S11 presents a detailed complexity analysis of vari-
ous methods evaluated in the multi-phase experiment: Wa-
tercolour [1:3] → Comic [4:6] → Clipart [7:13] → VOC
[14:20]. Table S11 compares computational complexity in
terms of GFLOPs, trainable parameters (in millions), aver-
age inference speed (in milliseconds), and average memory
footprint (in gigabytes) across all incremental tasks. While
training time (in hours) as evaluated on a single NVIDIA
A100-PCIE-40GB on Daytime Sunny [1:4] → Night Rainy
[5:7] experiment is reported in Table S14. The results



demonstrate that DuET retains the real-time detection ca-
pabilities of YOLO11n [10], effectively transforming it into
a robust real-time incremental object detector with only a
minimal increase in memory footprint (0.244 GB) com-
pared to its unaltered counterpart, Sequential FT (0.235
GB). Furthermore, since the proposed DuET approach does
not modify the base detector architecture, it preserves the
same GFLOPs and the number of trainable parameters.

In contrast to other model-merging algorithms [7, 8, 19,
20], which require storing task vectors—and consequently,
model weights—for every task, our approach is designed to
be more efficient and scalable. DuET maintains only two
shared task vectors at any given task: τold (derived from the
previous phase’s model weights) and τcurr (derived from the
current phase’s model weights), along with the pre-trained
model weights. This design utilizes the fact that knowledge
from earlier tasks, T1, T2, . . . , Tt−2, is already encapsulated
within the previous phase’s weights, θst−1. Consequently,
DuET avoids the overhead of maintaining a complete his-
tory of task vectors, resulting in a consistent memory foot-
print across all incremental tasks (Tt, t ≥ 2), while in case
of other TA approaches, the memory footprint grows lin-
early with the number of tasks (Figure S3).

D. Implementation Details
Our implementation is primarily based on the Ultralytics
framework1(v8.3.9), with YOLO11n [10] primarily serv-
ing as the base detector, also extending to other variants of
YOLO11 and RT-DETR [18]. Following the default config-
uration provided by Ultralytics, we used AdamW [17] opti-
miser with auto lr find and OneCycleLR scheduler, keeping
a batch size of 64. For every task, we trained the detec-
tor for 100 epochs, keeping five warm-up epochs with a
higher initial learning rate by a factor of 10. For the base
task (t = 1), we use the default weight decay of 0.0005,
while for incremental tasks (t ≥ 2), we slightly increase it
to 0.001 to prevent overfitting to new tasks and help prevent
catastrophic forgetting. The same protocol is used while
preparing other baselines for a fair comparison. Moreover,
unlike LDB [22] and CL-DETR [16], we keep all layers
trainable during incremental training to ensure that shared
task vectors effectively capture the shift in shared knowl-
edge across incremental tasks.

E. Comprehensive Results
E.1. Detailed analysis of Quantitative Results:
Tables S7 to S14 present the comprehensive results of var-
ious methods on different DuIOD experiments across mul-
tiple base detectors. We conducted a total of seven DuIOD
experiments—five two-phase and two multi-phase experi-

1https://github.com/ultralytics/ultralytics

ments—three from the Pascal Series and the remaining four
from the Diverse Weather Series datasets.

We provide detailed results for the five two-phase exper-
iments: VOC[1:10] → Clipart[11:20] (Table S7), Clipart
[1:10] → VOC [11:20] (Table S8), Daytime Sunny [1:4]
→ Night Sunny [5:7] (Table S12), Night Sunny [1:4] →
Daytime Sunny [5:7] (Table S9) and Daytime Sunny [1:4]
→ Night Rainy [5:7] (Table S14). Meanwhile, the results
for the two multi-phase experiments—Watercolor [1:3] →
Comic [4:6] → Clipart [7:13] → VOC [14:20] and Night
Sunny [1:2] → Daytime Sunny [3:4] → Daytime Foggy
[5:7]—are presented in Tables S10 and S13, respectively.

We evaluate DuET across all DuIOD experiments us-
ing five detection backbones: DeformableDETR [26],
YOLO11n & YOLO11x [10], and RTDETR-l & RTDETR-
x [18]. Our results show that DuET consistently out-
performs the baselines in nearly all DuIOD experiments,
demonstrating its effectiveness in addressing the DuIOD
task. Notably, DuET outperforms both CL-DETR [16]
& LDB [22] on their respective backbones (Deformable
DETR [26] & ViTDet [12]) with a +5.97% and +11.98%
RAI gain, preserving 80.3% vs. 66.85% and 50.99% vs.
41.74% Avg RI respectively (refer Tables S7 to S14). This
indicates that gains are method-specific and not back-
bone dependent.

E.2. Qualitative Visualizations

In Figure S4, we present qualitative visualisations for var-
ious methods on the task sequence: Watercolour [1:3] →
Comic [4:6] → Clipart [7:13] → VOC [14:20]. The detec-
tion results are shown for unseen classes: Watercolour [4:6],
Comic [1:3], Clipart [1:6], and VOC [1:13] in the final task,
T4. Our observations indicate that DuET consistently out-
performs other methods by accurately detecting most ob-
jects across different domains and classes. Notably, in the
second row (Comic [1:3]), the bicycle class, which was
learned in T1 (Watercolor [1:3]), and the person class, in-
troduced in T2 (Comic [4:6]), are examined. We observe
that only DuET successfully retains the knowledge from
T1 and correctly detects the bicycle class in the unseen
Comic [1:3] domain. A similar trend is observed in the
fourth row (VOC [1:13]). Additionally, in the third row, the
car class, introduced in T1, is not detected by other meth-
ods in the unseen Clipart [1:6] domain, whereas DuET con-
sistently identifies it. These qualitative results further em-
phasise DuET’s effectiveness in adapting to unseen classes
across different domains in the DuIOD task. A similar
trend is observed in the Diverse Weather Series (Figure S5),
where DuET consistently outperforms other methods by ac-
curately detecting most objects across various domains and
classes.



Figure S3. Comparison of allocated memory footprint (in GB) for
various model-merging approaches on the multi-phase experiment
with four tasks: Watercolor [1:3] (T1) → Comic [4:6] (T2) →
Clipart [7:13] (T3)→ VOC [14:20] (T4).

Table S5. Dataset Statistics: Class-wise distribution across dif-
ferent domains in Pascal Series datasets.

Class ID Class Name Watercolor [9] Comic [9] Clipart [9] VOC [4]
1 bicycle ✓ ✓ ✓ ✓

2 bird ✓ ✓ ✓ ✓

3 car ✓ ✓ ✓ ✓

4 cat ✓ ✓ ✓ ✓

5 dog ✓ ✓ ✓ ✓

6 person ✓ ✓ ✓ ✓

7 aeroplane ✓ ✓

8 boat ✓ ✓

9 bottle ✓ ✓

10 bus ✓ ✓

11 chair ✓ ✓

12 cow ✓ ✓

13 diningtable ✓ ✓

14 horse ✓ ✓

15 motorbike ✓ ✓

16 pottedplant ✓ ✓

17 sheep ✓ ✓

18 sofa ✓ ✓

19 train ✓ ✓

20 tvmonitor ✓ ✓

Total Classes 6 6 20 20
Train Images 1000 1000 500 16551
Val Images 1000 1000 500 4952

Table S6. Dataset Statistics: Class-wise distribution across dif-
ferent weather conditions in Diverse Weather Series datasets.

Class ID Class Name Daytime Sunny [25] Night Sunny [25] Daytime Foggy [2, 6]
1 bike ✓ ✓ ✓

2 bus ✓ ✓ ✓

3 car ✓ ✓ ✓

4 motor ✓ ✓ ✓

5 person ✓ ✓ ✓

6 rider ✓ ✓ ✓

7 truck ✓ ✓ ✓

Total Classes 7 7 7
Train Images 19317 25868 1829
Val Images 8289 7756 688

F. Background Shift
Background shift is a major issue in IOD scenarios [15, 21],
where previously learned object categories, if unannotated

in subsequent tasks, are treated as background. DuET miti-
gates this shift by explicitly decomposing model parameters
into shared and task-specific components, and then merging
these through TA with dynamic, layer-wise retention and
adaptation weights (see Section 3.4). This strategy ensures
that parameters crucial for previously learned object repre-
sentations remain stable, thus preventing catastrophic for-
getting and minimising the likelihood of previously learned
objects being erroneously classified as background when
they become unlabeled in subsequent tasks.

G. Dataset Statistics
Following prior works [3, 11, 22, 23], we evaluate the
DuET approach on two dataset series: the Pascal Series and
the Diverse Weather Series, which cover diverse environ-
mental conditions and domain variations, respectively. Ta-
ble S5 presents the class-wise distribution, capturing cross-
domain variations across four different domains: Water-
colour, Comic, Clipart, and VOC. Following [11, 14], we
combined the PASCAL VOC 2007 and 2012 [4] datasets
to form the VOC domain, while the Watercolour, Comic,
and Clipart domains were taken from [9]. Watercolour and
Comic domains consist of six object categories, forming
a subset of the 20 object categories present in Clipart and
VOC. We used class splits of 10+10 and 3+3+7+7 with
Class IDs as mentioned in Table S5 to conduct two-phase
and multi-phase DuIOD experiments on the Pascal Series
datasets, respectively. Similarly, Table S6 presents the
class-wise distribution across three different weather con-
ditions: Daytime Sunny, Night Sunny, and Daytime Foggy.
Following [11, 22], the datasets are taken from BDD100k
[25], Foggy Cityscapes [2], and Adverse Weather [6]. Since
each domain contains a common set of seven classes, we
used class splits of 4 + 3 and 2 + 2 + 3, with Class IDs
sorted in alphabetical order (as shown in Table S6), to per-
form two-phase and multi-phase DuIOD experiments on the
Diverse Weather Series datasets, respectively.

H. Limitations and future works
Since DuET is a task vector-based model-merging ap-
proach, it inherits the limitations of existing task vector-
based methods, and hence it cannot be generalised to mod-
els trained from scratch and requires access to pre-trained
object detectors to calculate shared task vectors at each
incremental task. This is a common limitation of task
vector-based methods. Moreover, DuET merges shared
task vectors through a weighted linear interpolation mech-
anism, which may be suboptimal for highly heterogeneous
class shifts or extreme domain variations across incremen-
tal tasks. Future work could explore more sophisticated
non-linear merging approaches to better capture the shared
knowledge across tasks.



Table S7. Results of various methods on VOC [1:10] → Clipart [11:20] with different base detectors. Among columns, best in bold,
second best underlined.

Method Base Detector
T1

VOC
[1:10]

T2: Clipart [11:20]
Avg RI

(%)
Avg GI

(%)
RAI
(%)Old New Unseen

VOC [1:10] Clipart [11:20] Clipart [1:10] VOC [11:20]
LDB [22] ViTDet 74.9±0.7 50.10±0.5 22.30±0.8 8.90±0.4 9.60±0.6 66.89±0.5 18.76±0.3 42.83±0.4

DuET (Ours) ViTDet 74.9±0.2 54.20±0.4 17.60±0.2 17.90±0.3 11.80±0.4 72.36±0.2 32.63±0.3 52.50±0.2

CL-DETR [16] Deformable DETR 56.1±0.6 38.29±0.7 9.04±0.5 9.22±0.8 3.02±0.4 68.29±0.3 40.72±0.4 54.51±0.3

DuET (Ours) Deformable DETR 56.1±0.6 42.32±0.3 4.10±0.2 15.63±0.4 1.68±0.4 75.48±0.6 72.37±0.3 73.93±0.5

Sequential FT RTDETR-l 87.1±0.6 0.00±0.0 55.00±0.7 0.00±0.0 32.20±0.5 0.00±0.0 18.85±0.6 9.43±0.4

LwF [13] RTDETR-l 87.1±0.6 3.13±0.2 25.90±0.8 1.30±0.3 18.50±0.4 3.59±0.7 12.30±0.5 7.95±0.6

ERD [5] RTDETR-l 87.1±0.6 1.74±0.3 56.00±0.8 1.42±0.2 37.80±0.5 2.00±0.1 23.74±0.6 12.87±0.8

DuET (Ours) RTDETR-l 87.1±0.6 46.10±0.1 68.00±0.2 28.10±0.4 62.20±0.4 52.93±0.7 68.20±0.5 60.57±0.6

Sequential FT RTDETR-x 89.2±0.5 0.00±0.0 56.52±0.7 0.33±0.2 30.43±0.6 0.00±0.0 17.66±0.4 8.83±0.3

LwF [13] RTDETR-x 89.2±0.5 20.40±0.5 28.80±0.3 17.00±0.7 17.90±0.4 22.87±0.6 28.27±0.5 25.57±0.2

ERD [5] RTDETR-x 89.2±0.5 22.60±0.7 55.20±0.8 3.83±0.3 32.80±0.4 25.34±0.5 22.73±0.1 24.04±0.8

DuET (Ours) RTDETR-x 89.2±0.5 60.50±0.5 26.80±0.4 49.00±0.3 22.50±0.2 67.83±0.4 64.93±0.6 66.38±0.7

Sequential FT YOLO11n 80.4±0.3 0.60±0.1 36.70±0.8 1.02±0.3 17.40±0.4 0.75±0.2 12.86±0.4 6.81±0.3

LwF [13] YOLO11n 80.4±0.3 58.40±0.8 3.96±0.3 28.60±0.7 5.00±0.2 72.64±0.3 33.74±0.5 53.19±0.4

ERD [5] YOLO11n 80.4±0.3 55.20±0.4 20.60±0.7 30.50±0.5 16.70±0.8 68.66±0.4 43.68±0.3 56.17±0.6

DuET (Ours) YOLO11n 80.4±0.3 70.30±0.3 8.45±0.3 33.80±0.3 12.80±0.3 87.44±0.2 44.54±0.1 65.99±0.3

Sequential FT YOLO11x 88.4±0.5 0.00±0.0 43.50±0.8 0.00±0.0 16.10±0.6 0.00±0.0 10.13±0.7 5.07±0.4

LwF [13] YOLO11x 88.4±0.5 57.30±0.5 38.00±0.3 40.30±0.7 30.30±0.4 64.82±0.6 74.57±0.2 69.70±0.3

ERD [5] YOLO11x 88.4±0.5 23.70±0.7 46.80±0.8 26.00±0.5 23.60±0.3 26.81±0.4 50.66±0.2 38.74±0.8

DuET (Ours) YOLO11x 88.4±0.5 74.30±0.3 52.40±0.2 44.50±0.1 46.80±0.1 84.05±0.5 90.73±0.3 87.39±0.6

Table S8. Results of various methods on Clipart [1:10] → VOC [11:20] with different base detectors. Among columns, best in bold,
second best underlined.

Method Base Detector
T1

Clipart
[1:10]

T2: VOC [11:20]
Avg RI

(%)
Avg GI

(%)
RAI
(%)Old New Unseen

Clipart [1:10] VOC [11:20] VOC [1:10] Clipart [11:20]
LDB [22] ViTDet 36.4±0.4 16.30±0.3 23.80±0.5 7.10±0.2 9.10±0.6 44.78±0.7 15.81±0.4 30.30±0.8

DuET (Ours) ViTDet 36.4±0.2 31.20±0.3 34.50±0.3 24.40±0.3 1.60±0.1 85.71±0.1 18.23±0.2 51.97±0.3

CL-DETR [16] Deformable DETR 10.5±0.6 8.88±0.7 27.02±0.4 3.88±0.3 10.33±0.8 84.57±0.5 54.35±0.2 69.46±0.7

DuET (Ours) Deformable DETR 10.5±0.2 9.54±0.1 20.08±0.1 3.17±0.2 10.23±0.2 90.86±0.1 53.22±0.2 72.04±0.2

Sequential FT RTDETR-l 44.2±0.5 0.00±0.0 81.50±0.7 0.00±0.0 30.80±0.6 0.00±0.0 29.79±0.8 14.90±0.4

LwF [13] RTDETR-l 44.2±0.4 2.81±0.2 66.00±0.7 0.73±0.3 37.20±0.5 6.36±0.6 36.39±0.4 21.38±0.8

ERD [5] RTDETR-l 44.2±0.5 0.37±0.3 81.20±0.6 2.81±0.4 27.50±0.7 0.84±0.2 28.21±0.8 14.53±0.5

DuET (Ours) RTDETR-l 44.2±0.1 37.80±0.2 8.17±0.1 29.40±0.2 13.20±0.2 85.52±0.1 29.64±0.2 57.58±0.1

Sequential FT RTDETR-x 47.0±0.6 0.00±0.0 81.60±0.7 0.00±0.0 35.70±0.5 0.00±0.0 37.27±0.8 18.64±0.3

LwF [13] RTDETR-x 47.0±0.5 2.42±0.3 64.30±0.6 1.25±0.2 35.70±0.8 5.15±0.4 37.97±0.7 21.56±0.5

ERD [5] RTDETR-x 47.0±0.4 0.67±0.2 82.00±0.7 0.93±0.3 34.40±0.6 1.43±0.5 36.43±0.8 18.93±0.4

DuET (Ours) RTDETR-x 47.0±0.2 41.10±0.2 4.64±0.2 21.30±0.1 5.27±0.2 87.45±0.2 17.44±0.2 52.45±0.2

Sequential FT YOLO11n 47.1±0.7 0.00±0.0 73.60±0.6 0.00±0.0 29.10±0.5 0.00±0.0 30.12±0.8 15.06±0.4

LwF [13] YOLO11n 47.1±0.6 31.40±0.7 4.00±0.5 20.30±0.3 5.36±0.8 66.67±0.4 18.17±0.2 42.42±0.7

ERD [5] YOLO11n 47.1±0.5 33.20±0.3 0.72±0.6 20.70±0.4 0.63±0.7 70.49±0.2 13.53±0.8 42.01±0.5

DuET (Ours) YOLO11n 47.1±0.2 32.70±0.1 44.00±0.2 21.70±0.2 26.10±0.1 69.43±0.2 40.51±0.2 54.97±0.1

Sequential FT YOLO11x 36.3±0.5 0.00±0.0 77.50±0.6 0.00±0.0 33.50±0.8 0.00±0.0 38.15±0.7 19.08±0.4

LwF [13] YOLO11x 36.3±0.4 25.10±0.3 0.96±0.8 13.00±0.5 1.59±0.6 69.15±0.4 9.16±0.7 39.16±0.3

ERD [5] YOLO11x 36.3±0.5 29.40±0.7 0.52±0.3 12.90±0.6 0.68±0.2 80.99±0.8 8.07±0.4 44.53±0.5

DuET (Ours) YOLO11x 36.3±0.2 19.30±0.1 1.25±0.2 6.06±0.2 3.03±0.1 53.17±0.2 6.88±0.1 30.03±0.2



Table S9. Results of various methods on Daytime Sunny [1:4]→ Night Sunny [5:7] with different base detectors. Among columns, best
in bold, second best underlined.

Method Base Detector

T1
Daytime
Sunny
[1:4]

T2: Night Sunny [5:7]
Avg RI

(%)
Avg GI

(%)
RAI
(%)

Old New Unseen
Daytime

Sunny [1:4]
Night

Sunny [5:7]
Night

Sunny [1:4]
Daytime

Sunny [5:7]
LDB [22] VitDet 45.3±0.6 0.50±0.3 15.10±0.4 0.30±0.5 16.90±0.7 1.10±0.2 22.41±0.3 11.76±0.6

DuET (Ours) VitDet 45.3±0.2 12.48±0.3 11.60±0.3 4.33±0.2 9.60±0.2 27.55±0.2 28.22±0.1 27.89±0.2

CL-DETR [16] Deformable DETR 46.3±0.4 27.41±0.5 31.94±0.6 19.85±0.3 32.55±0.4 59.20±0.2 54.96±0.5 57.08±0.4

DuET (Ours) Deformable DETR 46.3±0.2 39.1±0.1 15.06±0.2 28.17±0.2 4.33±0.1 84.45±0.2 33.45±0.1 58.95±0.2

Sequential FT RTDETR-l 57.2±0.5 0.00±0.0 77.40±0.7 2.52±0.3 39.80±0.6 0.00±0.0 35.36±0.8 17.68±0.4

LwF [13] RTDETR-l 57.2±0.4 0.15±0.2 76.40±0.7 0.03±0.1 41.50±0.5 0.26±0.2 35.01±0.8 17.64±0.4

ERD [5] RTDETR-l 57.2±0.5 0.09±0.1 80.50±0.7 0.04±0.1 39.80±0.6 0.16±0.2 33.59±0.8 16.88±0.4

DuET (Ours) RTDETR-l 57.2±0.2 27.30±0.1 8.63±0.2 20.10±0.2 7.88±0.1 47.73±0.2 21.00±0.1 34.37±0.2

Sequential FT RTDETR-x 61.0±0.6 0.00±0.0 84.80±0.7 0.00±0.0 40.80±0.5 0.00±0.0 33.77±0.8 16.89±0.3

LwF [13] RTDETR-x 61.0±0.5 0.57±0.2 79.10±0.7 0.61±0.3 40.60±0.6 0.93±0.2 34.03±0.8 17.48±0.4

ERD [5] RTDETR-x 61.0±0.4 0.81±0.2 84.80±0.7 0.98±0.3 38.90±0.6 1.33±0.2 32.87±0.8 17.10±0.4

DuET (Ours) RTDETR-x 61.0±0.2 34.40±0.1 6.51±0.2 28.10±0.2 6.02±0.1 56.39±0.2 24.15±0.1 40.27±0.2

Sequential FT YOLO11n 49.4±0.3 0.00±0.0 62.20±0.5 12.60±0.4 35.90±0.3 0.00±0.0 45.88±0.6 22.94±0.3

LwF [13] YOLO11n 49.4±0.2 27.60±0.4 0.34±0.6 21.30±0.3 0.67±0.5 55.87±0.3 21.88±0.7 38.88±0.6

ERD [5] YOLO11n 49.4±0.5 33.00±0.4 34.00±0.3 26.10±0.6 29.10±0.7 66.80±0.5 53.04±0.3 59.92±0.4

DuET (Ours) YOLO11n 49.4±0.2 43.50±0.1 22.20±0.3 31.60±0.2 27.40±0.1 88.06±0.2 56.95±0.1 72.51±0.2

Sequential FT YOLO11x 64.2±0.6 12.50±0.4 68.60±0.7 18.80±0.3 46.00±0.8 19.47±0.2 47.60±0.5 33.54±0.4

LwF [13] YOLO11x 64.2±0.7 62.10±0.6 0.04±0.2 42.40±0.8 0.01±0.1 96.73±0.5 27.79±0.4 62.26±0.8

ERD [5] YOLO11x 64.2±0.6 62.20±0.7 0.06±0.2 42.70±0.8 0.07±0.1 95.95±0.5 28.04±0.4 62.46±0.8

DuET (Ours) YOLO11x 64.2±0.2 61.60±0.1 12.90±0.2 44.70±0.2 17.10±0.1 96.88±0.2 42.41±0.1 69.18±0.2

Table S10. Results of various methods on Night Sunny [1:4]→ Daytime Sunny [5:7] with different base detectors. Among columns, best
in bold, second best underlined.

Method Base Detector

T1
Night
Sunny
[1:4]

T2: Daytime Sunny [5:7]
Avg RI

(%)
Avg GI

(%)
RAI
(%)

Old New Unseen
Night

Sunny [1:4]
Daytime

Sunny [5:7]
Daytime

Sunny [1:4]
Night

Sunny [5:7]
LDB [22] ViTDet 37.0±0.6 0.40±0.4 18.30±0.7 0.10±0.2 14.30±0.5 1.08±0.3 20.66±0.7 10.87±0.8

DuET (Ours) VitDet 37.0±0.2 5.50±0.1 18.33±0.1 3.33±0.5 14.70±0.2 14.86±0.1 24.80±0.2 19.83±0.1

CL-DETR [16] Deformable DETR 48.8±0.7 25.90±0.8 45.70±0.5 19.88±0.6 41.33±0.2 53.04±0.7 55.64±0.3 54.34±0.8

DuET (Ours) Deformable DETR 48.8±0.2 38.81±0.1 4.24±0.2 29.09±0.1 7.59±0.2 79.48±0.1 37.69±0.2 58.59±0.2

Sequential FT RTDETR-l 70.0±0.6 0.00±0.0 58.90±0.7 0.00±0.0 40.80±0.5 0.00±0.0 24.64±0.8 12.32±0.3

LwF [13] RTDETR-l 70.0±0.7 8.73±0.8 21.80±0.5 6.00±0.6 8.37±0.4 12.47±0.7 10.30±0.3 11.39±0.8

ERD [5] RTDETR-l 70.0±0.6 1.09±0.7 57.60±0.5 1.86±0.8 43.10±0.4 1.56±0.7 27.65±0.6 14.61±0.3

DuET (Ours) RTDETR-l 70.0±0.2 48.70±0.2 1.86±0.1 43.80±0.2 1.03±0.1 69.57±0.2 38.91±0.2 54.24±0.2

Sequential FT RTDETR-x 73.3±0.7 0.00±0.0 58.80±0.8 0.00±0.0 44.10±0.6 0.00±0.0 24.39±0.7 12.20±0.3

LwF [13] RTDETR-x 73.3±0.6 10.70±0.7 9.25±0.5 6.02±0.6 7.66±0.4 14.60±0.7 9.17±0.3 11.89±0.8

ERD [5] RTDETR-x 73.3±0.7 7.03±0.8 57.00±0.5 0.93±0.6 42.50±0.4 9.59±0.7 24.27±0.8 16.93±0.3

DuET (Ours) RTDETR-x 73.3±0.2 66.30±0.2 6.40±0.1 58.90±0.2 5.26±0.1 90.45±0.2 51.19±0.2 70.82±0.2

Sequential FT YOLO11n 50.1±0.7 0.12±0.8 37.60±0.5 0.25±0.6 25.8±0.4 0.24±0.7 19.48±0.8 9.86±0.3

LwF [13] YOLO11n 50.1±0.6 39.00±0.7 0.29±0.2 33.90±0.8 1.51±0.3 77.84±0.5 35.44±0.7 56.64±0.4

ERD [5] YOLO11n 50.1±0.7 39.60±0.6 0.06±0.2 34.20±0.8 0.04±0.1 79.04±0.5 34.65±0.7 56.85±0.4

DuET (Ours) YOLO11n 50.1±0.2 47.10±0.2 20.10±0.1 41.30±0.2 19.10±0.1 94.01±0.2 56.03±0.2 75.02±0.2

Sequential FT YOLO11x 76.3±0.7 0.33±0.8 50.20±0.5 2.62±0.6 44.60±0.4 0.43±0.7 28.51±0.8 14.47±0.3

LwF [13] YOLO11x 76.3±0.8 67.50±0.7 0.66±0.2 50.10±0.8 0.23±0.1 88.47±0.5 39.16±0.7 63.82±0.4

ERD [5] YOLO11x 76.3±0.7 67.70±0.8 0.46±0.2 51.30±0.8 0.25±0.1 88.73±0.5 40.10±0.7 64.42±0.4

DuET (Ours) YOLO11x 76.3±0.2 22.60±0.1 43.70±0.2 21.60±0.2 40.00±0.1 29.62±0.2 40.58±0.2 35.10±0.2



Table S11. Computational complexity analysis of various methods evaluated on the multi-phase experiment: Watercolor [1:3]→ Comic
[4:6]→ Clipart [7:13]→ VOC [14:20]. The inference speed and memory footprint are averaged across all incremental tasks.

Method Base Detector GFLOPs Trainable
Params (M)

Avg. Inference
Speed (ms)

Avg. Memory
Footprint (GB)

Sequential FT YOLO11n [10] 6.3 2.58 9.150 0.235
LwF [13] YOLO11n [10] 6.3 2.58 9.125 0.261
ERD [5] YOLO11n [10] 6.3 2.58 9.075 0.257

LDB [22] ViTDet [12] 1829.61 110.52 137.92 1.818
CL-DETR [16] Deformable DETR [26] 11.77 39.85 39.075 0.789
DuET (Ours) YOLO11n [10] 6.3 2.58 4.4 0.244

Figure S4. Qualitative comparisons on Pascal Series multi-phase experiment: Watercolour [1:3]→ Comic [4:6]→ Clipart [7:13]→ VOC
[14:20] for different methods on the DuIOD task. The four rows display detection results on unseen classes: Watercolour [4:6], Comic
[1:3], Clipart [1:6], and VOC [1:13] on the final task T4. (zoomed in for best view).

Figure S5. Qualitative comparisons on Diverse Series multi-phase experiment: Night Sunny [1:2] → Daytime Sunny [3:4] → Daytime
Foggy [5:7] for different methods on the DuIOD task. The four rows display detection results on unseen classes: Night Sunny [3:4],
Daytime Sunny [1:2], and Daytime Foggy [1:4] on the final task T3. (zoomed-in for best view).



Table S12. Results of various methods on Watercolor [1:3] →
Comic [4:6]→ Clipart [7:13]→ VOC [14:20] with different base
detectors. Among columns, best in bold, second best underlined.

Method Base Detector Avg RI (%) Avg GI (%) RAI (%)

LDB [22] ViTDet 86.08±0.6 19.57±0.5 52.83±0.4

DuET (Ours) ViTDet 65.57±0.2 40.44±0.1 53.01±0.2

CL-DETR [16] Deformable DETR 71.73±0.5 36.63±0.6 54.18±0.4

DuET (Ours) Deformable DETR 88.54±0.2 34.81±0.1 61.68±0.2

Sequential FT RTDETR-l 0.00±0.0 7.76±0.4 3.88±0.3

LwF [13] RTDETR-l 0.40±0.2 13.47±0.7 6.94±0.5

ERD [5] RTDETR-l 1.05±0.4 17.91±0.6 9.48±0.3

DuET (Ours) RTDETR-l 24.75±0.2 22.89±0.2 23.82±0.1

Sequential FT RTDETR-x 0.00±0.0 6.35±0.4 3.18±0.2

LwF [13] RTDETR-x 65.51±0.8 16.69±0.3 41.10±0.7

ERD [5] RTDETR-x 0.05±0.1 10.42±0.2 5.24±0.3

DuET (Ours) RTDETR-x 40.80±0.2 18.88±0.2 29.84±0.1

Sequential FT YOLO11n 0.00±0.0 11.05±0.5 5.53±0.3

LwF [13] YOLO11n 52.66±0.6 17.01±0.4 34.84±0.3

ERD [5] YOLO11n 54.76±0.5 41.13±0.4 47.95±0.7

DuET (Ours) YOLO11n 89.30±0.2 42.60±0.1 65.95±0.2

Sequential FT YOLO11x 0.00±0.0 10.21±0.4 5.11±0.3

LwF [13] YOLO11x 10.56±0.3 17.46±0.5 14.01±0.2

ERD [5] YOLO11x 54.19±0.6 8.49±0.2 31.34±0.8

DuET (Ours) YOLO11x 96.72±0.2 26.49±0.1 61.61±0.2

Table S13. Results of various methods on Night Sunny [1:2] →
Daytime Sunny [3:4]→ Daytime Foggy [5:7] with different base
detectors. Among columns, best in bold, second best underlined.

Method Base Detector Avg RI (%) Avg GI (%) RAI (%)

LDB [22] ViTDet 50.50±0.6 5.42±0.7 27.96±0.5

DuET (Ours) VitDet 39.87±0.2 17.12±0.1 28.50±0.2

CL-DETR [16] Deformable DETR 64.26±0.3 43.46±0.5 53.86±0.6

DuET (Ours) Deformable DETR 62.99±0.2 45.11±0.1 54.05±0.2

Sequential FT RTDETR-l 0.00±0.0 14.97±0.4 7.49±0.3

LwF [13] RTDETR-l 14.76±0.2 1.24±0.3 8.00±0.5

ERD [5] RTDETR-l 5.40±0.4 15.83±0.6 10.62±0.3

DuET (Ours) RTDETR-l 20.76±0.2 10.55±0.2 15.66±0.1

Sequential FT RTDETR-x 0.00±0.0 22.74±0.4 11.37±0.3

LwF [13] RTDETR-x 7.62±0.3 8.86±0.2 8.24±0.4

ERD [5] RTDETR-x 3.02±0.2 19.16±0.3 11.09±0.2

DuET (Ours) RTDETR-x 27.39±0.2 23.65±0.1 25.52±0.2

Sequential FT YOLO11n 0.00±0.0 30.51±0.6 15.26±0.5

LwF [13] YOLO11n 27.94±0.7 23.78±0.5 25.86±0.6

ERD [5] YOLO11n 44.60±0.6 39.40±0.5 42.00±0.3

DuET (Ours) YOLO11n 88.57±0.2 41.92±0.1 65.25±0.2

Sequential FT YOLO11x 0.00±0.0 18.16±0.4 9.08±0.3

LwF [13] YOLO11x 19.57±0.3 28.44±0.5 24.01±0.2

ERD [5] YOLO11x 45.85±0.6 37.38±0.2 41.62±0.8

DuET (Ours) YOLO11x 43.46±0.2 38.37±0.1 40.92±0.2

Algorithm 1: DuET Training Algorithm
Input: Pre-trained model weights: θ0, Sequence of tasks:

{T1, T2, . . . , TT }.
Output: Final model weights: θT .

1 Initialize model with pre-trained weights: θ0;
2 for t = 1, 2, . . . , T do
3 if t = 1 then
4 Train model on task T1 using LDetector;
5 Update weights: θ1 ← θ0 − η · ∇θLDetector;
6 Decompose weights:
7 θ0 → [θs0 , θτ0 ], θ1 → [θs1 , θτ1 ];
8 Compute shared task vector: τs1 = θs1 − θs0 ;
9 Compute task-specific task vector: ττ1 ← θτ1 ;

10 else
11 Initialize: θt ← θt−1 ;
12 Train model on task Tt using LTotal;
13 Update weights: θt ← θt−1 − η · ∇θLTotal;
14 Decompose weights:
15 θt−1 → [θst−1 , θτt−1 ], θt → [θst , θτt ];
16 Compute shared task vectors:
17 τold = τst−1 = θst−1 − θs0 ;
18 τcurr = τst = θst − θs0 ;
19 Compute task-specific task vectors:
20 τtold = θτt−1 , τtcurr = θτt ;
21 Update shared weights using DuET:

(θst)incre ← DuET(τcurr, τold, θs0);
22 Update task-specific weights:

(θτt)incre ← [τtold , τtcurr ];
23 Load new updated weights:

θt ← [(θst)incre, (θτt)incre];
24 end
25 end
26 return θT ;

Algorithm 2: DuET Task Arithmetic Algorithm
Input: Parameters: Shared pre-trained weights: θs0 , Old

Task Vector: τold, Current Task Vector: τcurr

Hyperparameters: Limiting Factor: γ, Base
Scaling Coefficient: αbase, Numerical Stability
constant: ϵ

Output: Updated inremental shared weights: θincre
st

1 for Model Layer: l = 1, 2, . . . , L do
2 pl =

∥τl
old∥−∥τl

curr∥
∥τl

old+τl
curr∥+ϵ

,

3 δl = γ · tanh(pl)
4 αl = αbase + clamp (δl,−γ, γ)
5 βl = 1− αl

6 (θlst)incre = θls0 + αl · τ l
old + βl · τ l

curr

7 end
8 (θst)incre = {(θlst)incre}Ll=1

9 return (θst)incre



Table S14. Results of various methods on Daytime Sunny [1:4]→ Night Rainy [5:7] with different base detectors. Among columns, best
in bold, second best underlined. Training time is reported on single NVIDIA A100-PCIE-40GB.

Method Base Detector

Training
Time

(T1 + T2)
(hours)

T1
Daytime
Sunny
[1:4]

T2: Night Rainy [5:7]
Avg RI

(%)
Avg GI

(%)
RAI
(%)

Old New Unseen
Daytime

Sunny [1:4]
Night

Rainy [5:7]
Night

Rainy [1:4]
Daytime

Sunny [5:7]
LDB [22] VitDet 23.73 45.3±0.6 1.40±0.3 8.10±0.4 0.02±0.5 16.10±0.7 3.09±0.2 21.02±0.3 12.05±0.6

DuET (Ours) VitDet 24.13 45.3±0.2 2.02±0.3 16.10±0.1 1.58±0.3 15.20±0.2 4.46±0.2 22.47±0.1 13.47±0.2

CL-DETR [16] Deformable DETR 91.96 46.3±0.4 26.26±0.4 9.75±0.5 7.41±0.6 14.88±0.3 56.72±0.4 53.93±0.2 55.33±0.5

DuET (Ours) Deformable DETR 92.63 46.3±0.2 26.75±0.1 3.33±0.2 7.98±0.2 13.9±0.1 57.78±0.2 54.58±0.1 56.18±0.2

CL-DETR [16] RT-DETR-l 33.87 57.2±0.4 5.11±0.5 28.1±0.6 5.04±0.3 14.3±0.4 8.93±0.2 20.82±0.5 14.88±0.4

DuET (Ours) RT-DETR-l 33.89 57.2±0.4 11.8±0.1 14.90±0.2 12.50±0.2 17.30±0.1 20.63±0.2 36.50±0.1 28.57±0.2

LwF [13] YOLO11n 11.01 49.4±0.2 21.50±0.4 0.17±0.6 9.36±0.3 0.55±0.5 43.52±0.3 17.78±0.7 30.65±0.6

ERD [5] YOLO11n 11.50 49.4±0.2 25.60±0.4 16.70±0.3 12.20±0.6 17.60±0.7 51.82±0.5 38.96±0.3 45.39±0.4

DuET (Ours) YOLO11n 11.02 49.4±0.2 43.30±0.1 2.67±0.3 14.00±0.2 8.93±0.1 87.65±0.2 34.18±0.1 60.92±0.2
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and Sebastian Cygert. Magmax: Leveraging model merging
for seamless continual learning. In European Conference on
Computer Vision, pages 379–395. Springer, 2025. 3, 5

[20] Michael S Matena and Colin A Raffel. Merging models with
fisher-weighted averaging. Advances in Neural Information
Processing Systems, 35:17703–17716, 2022. 3, 5

[21] Angelo G Menezes, Gustavo de Moura, Cézanne Alves, and
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