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A. Additional Implementation Details

We provide implementation details omitted in the main text.
Our model and code will be publicly available.

A.1. Hyperparameters

Table S1 summarizes the hyperparameters used across the
models, including the baselines and our proposed TaxaDif-
fusion. All methods use the Stable Diffusion v1.5 [7] as the
base generator. We employ consistent settings, such as the
image resolution (512 x 512) and latent space dimensions
(z-shape: 64 x 64 x 4), to ensure comparability.

Unlike full fine-tuning, which requires updating all
859.52 million parameters of the model, our method,
TaxaDiffusion, trains only a subset of parameters — ac-
counting for just 6.5% of the total model size. This ap-
proach, utilizing 55.93 million trainable parameters, repre-
sents a significantly smaller fraction compared to full fine-
tuning. Despite this reduction, our progressive taxonomy
— based training strategy amplifies the impact of these up-
dates by leveraging hierarchical information from higher
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taxonomic levels. This enables our method to achieve su-
perior generative performance with a considerably smaller
training footprint, highlighting the efficiency and effective-
ness of our targeted approach.

We use a guidance scale of 6 across all models during
inference, balancing image fidelity and trait specificity (see
Section B.5 for more details). We set diffusion sampling
step to 250 for consistent evaluation across all approaches.

We use cross-attention for all models as the conditioning
mechanism and a batch size of 12 per GPU and a total batch
size of 192. We use a learning rate of 1 x 10~* for SD +
LoRA and 1 x 107° for SD + Full Finetuning. For our
method TaxaDiffusion, we use a learning rate of 1 x 1074
for the first step because of having LoRA, and then 1 x 10~°
for the rest of the steps.

A.2. Training Details

We leverage a progressive taxonomy-based approach,
where the model learns hierarchical information from
higher taxonomic levels, such as Family and Order,
before specializing in fine-grained traits at the Species
level. This progressive strategy ensures that shared charac-
teristics or traits at higher levels are effectively utilized, pro-
viding a strong foundation for generating accurate and se-
mantically aligned species-specific images. This approach
significantly enhances the model’s ability to capture fine-
grained details without the need for full model fine-tuning.

To efficiently train the model, we employ LoRA, which
introduces low-rank (4 in all experiments) updates targeted
specifically at key attention layers. These updates focus on
critical components of the cross-attention mechanism, such
as the queries, keys, and values. The LoRA configuration
balances the rank of the updates and their scaling factor
to ensure they effectively influence the model during train-
ing. By using LoRA and our hierarchical conditioning, we
only train 55.93 million parameters — approximately 6.5%
of the total model size — compared to the 859.52 million
parameters updated during full fine-tuning. This efficiency
enables us to achieve results comparable to full fine-tuning



Table S1. Hyperparameter setting. Training and inference stage hyperparameter details of all the baselines and TaxaDiffusion. {: We
use a learning rate of 1 x 10~* only for training the first level of TaxaDiffusion and the LoRA stage. *: TaxaDiffusion steps are mentioned

for each level training. SD: Stable Diffusion 1.5.

Parameter SD SD + LoRA SD + Full Finetuning TaxaDiffusion
Image resolution 512 x 512 512 x 512 512 x 512 512 x 512
z-shape 64 x 64 x 4 64 x 64 x 4 64 x 64 x 4 64 x 64 x 4
Model Size 859.52 M 860.32 M 859.52 M 91545 M
Trainable Parameters 0 0.80 M 859.52 M 5593 M
Batch Size per GPU - 12 12 12
Batch Size - 192 192 192
Iterations - 250K Steps 100K Steps 250K Steps*
Learning Rate - 1x107* 1x107° 1x 1075t
Guidance Scale 6 6 6 6

while significantly reducing computational overhead.

B. Additional Results and Analyses
B.1. Detailed Results on More Spices

The results in Table S2 demonstrate that classes with a
higher number of diverse species at the Class taxonomic
level achieve better results. This can be attributed to our
hierarchical training approach and the integration of Tax-
aGuide. By progressively training from higher taxonomy
levels, such as Family and Order, to lower levels, such
as Genus and Species, our method effectively trans-
fers shared traits and structural information across related
species. This progressive strategy enhances the model’s
ability to generate detailed and accurate images for classes
with richer inter-species diversity.

High-Species Diversity Classes. Some classes, such as
“Actinopteri” and “Elasmobranchii”, include 400 species,
achieved the best FID and BioCLIP scores (27.75 and 13.78
for “Actinopteri”’). These results highlight the model’s ca-
pability to handle diverse species datasets effectively. The
relatively low LPIPS values for these classes (0.7236 and
0.7324) indicate high perceptual similarity between gen-
erated and real images, suggesting that a large number of
species provides sufficient training diversity.
Low-Species-Diversity Classes. Some classes with fewer
species (“Dipneusti”, “Myxini”’, and “Cladistii”’) experi-
enced significantly higher FID values, such as 159.77 for
“Dipneusti”. Despite generating 50 images per species
to balance these classes, the limited inter-species diversity
likely constrains the ability of the model to generalize, re-
sulting in reduced visual fidelity. Similarly, lower BioCLIP
scores in these classes (8.87 for Dipneusti) indicate weaker
semantic alignment, reflecting challenges in capturing fine-
grained distinctions when species representation is sparse.
Intermediate Classes. Some classes such as “Holocephali”
and “Petromyzonti” with moderate species diversity (29 and
24 species, respectively) showed better FID and BioCLIP

scores than “Dipneusti” but lagged behind “Actinopteri”
and “Elasmobranchii”. The FID scores (109.48 and 93.14)
indicate reasonable generation fidelity, while the BioCLIP
scores (13.10 and 9.91) suggest effective, though not per-
fect, semantic alignment. This trend underscores the impor-
tance of sufficient inter-species diversity for robust genera-
tive performance.

Overall Trends. The results confirm that TaxaDiffusion
performs optimally with a balanced number of species,
as seen in the low FID and high BioCLIP scores for
Actinopteri and Elasmobranchii. However, as species di-
versity decreases, the model struggles to maintain compa-
rable performance, suggesting that enhancing data augmen-
tation or leveraging external sources could further benefit
low-diversity classes.

In summary, the analysis highlights the strengths of
TaxaDiffusion in generating high-fidelity, semantically
aligned images for high-diversity classes and identifies ar-
eas for improvement, particularly for classes with limited
species representation. Future work could explore advanced
balancing techniques or domain adaptation strategies to ad-
dress these challenges.

B.2. Results on the BIOSCAN-1M Insect Dataset

We further validate TaxaDiffusion using the BIOSCAN-1M
Insect Dataset [3], which is a large-scale dataset designed to
enable image-based taxonomic classification of insects. The
dataset includes high-quality microscope images of insects,
each annotated with taxonomic labels ranging from species
to higher taxonomic ranks such as genus, family, order, and
class. In addition to visual data, the dataset provides associ-
ated genetic information, such as DNA barcode sequences
and Barcode Index Numbers (BINs), making it a valuable
resource for biodiversity assessment and machine learning
applications. However, the dataset poses challenges, such
as a long-tailed distribution of classes and incomplete taxo-
nomic labeling for many records.

The motivation for using this dataset stems from its po-



Table S2. Results evaluated at the class level for balanced subsets of the dataset. For classes with fewer than 400 species, all available
species are included. We generate additional images per species to maintain balance. For classes with more than 400 species, a subset of

400 species was sampled. We report the FID for visual fidelity, LPIPS for perceptual similarity, and BioCLIP for semantic alignment.

Class name # of Generated Images  # of Species Images per Species FID | LPIPS| BioCLIP 1
Actinopteri 6000 400 15 27.75 0.7236 13.78
Elasmobranchii 6000 400 15 38.67 0.7324 12.78
Dipneusti 250 5 50 159.77  0.6910 8.87
Myxini 1050 21 50 119.23  0.7733 11.48
Cladistii 650 13 50 97.92 0.7226 8.34
Holocephali 1450 29 50 109.48  0.7364 13.10
Petromyzonti 1200 24 50 93.14 0.7954 9.91
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Figure S1. TaxaDiffusion results on BIOSCAN-1M dataset [3].

tential to validate the capability of our proposed TaxaDif-
fusion to handle highly diverse and fine-grained taxonomic
classes. To ensure consistency with our training pipeline
and focus on hierarchical taxonomic generation, we filtered
the BIOSCAN-IM dataset to include only records with
complete taxonomic information from species to class. Af-
ter filtering, we retained 84,443 records, ensuring that each
sample included annotations for species, genus, family, or-
der, and class levels.

We train TaxaDiffusion on the filtered BIOSCAN-1M

approach allows the model to generate images that are not
only visually accurate but also semantically aligned with the
hierarchical structure of the taxonomy.

The results, as shown in Figure SI, demonstrate the
strength of our method in generating high-quality and tax-
onomically coherent insect images across various levels of
the taxonomy. By effectively utilizing hierarchical infor-
mation and addressing class imbalance through progressive
training, TaxaDiffusion excels in fine-grained image gener-
ation for a diverse set of insect classes.

B.3. Comparison with State-of-the-Art Methods

Comparison with FineDiffusion [5] Figure S3 illustrates
the results for a subset of species common to the iNaturalist
and FishNet datasets. While FineDiffusion produces sim-
ilar high-resolution images (512 x 512), the generated im-
ages fail to align with ground truth images, lacking species-
specific details, whereas, TaxaDiffusion generates images
that closely resemble ground truth, effectively capturing
fine-grained characteristics unique to each species. This
demonstrates the effectiveness of TaxaDiffusion, achieving
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Figure S3. Comparison with SOTA. Qualitative comparison between TaxaDiffusion and FineDiffusion.

superior performance even when compared to FineDiffu-
sion, which utilizes DiT-XL/2 model, a framework shown
to outperform U-Net-based architectures [6].

B.4. Embedding Comparison

We investigate the quality of embeddings of TaxaDiffu-
sion with the CLIP embeddings using t-SNE visualiza-
tions. Figure S2 shows the embeddings at the Family
taxonomic levels for both models with diverse colors rep-
resenting the unique Class level. TaxaDiffusion exhibits
well-defined clusters, showing a clear separation between
different Class groups, whereas CLIP embeddings used
by baselines exhibit overlapping areas, particularly between
the orange and green clusters. This hinders its ability to
generate images that capture species-specific traits.

B.5. Further Analyses on Guidance Scale

To understand the effect of the guidance scale on image
quality and trait specificity, we evaluate our model across
arange of guidance scale values: 0, 2,4, 6,8, 10. The guid-
ance scale directly influences the intensity of the taxonomy-
driven conditioning, modulating the balance between the
generality and specificity of the generated samples. Fig-
ure S5 illustrates representative samples generated using
different guidance scales, highlighting the progressive en-
hancement in fine-grained details and the potential trade-
offs at extreme values.

Our experiments reveal a trend: at lower values (0 and
2), the generated images exhibit limited alignment with the
fine-grained taxonomic traits. As the scale increases, the
model’s focus on species-specific details improves, with no-
ticeable enhancements in morphological accuracy and dis-
tinctiveness at a guidance scale of 6. Beyond this point,
higher values (8 and 10) result in overly restrictive guid-

ance, which limits the diversity of the generated samples
and sometimes introduces artifacts due to excessive speci-
ficity. Based on these findings, we selected a guidance scale
of 6 for all subsequent experiments, achieving an optimal
balance between fidelity and trait specificity.

B.6. Attention Visualizations

In Figure S6, we show attention maps of each level on
two generated fishes Acestrorhynchus falcatus and Aces-
trorhynchus falcirostris with the same Genus but different
Species. Our method captures shared traits at higher lev-
els and distinct features at the Species level — the second
case focuses more on the tail, less on the head.

C. Limitations

While our proposed TaxaDiffusion demonstrates strong
generative capabilities across a wide range of taxonomic
classes, certain limitations arise in scenarios where the
dataset lacks sufficient diversity or representation. One no-
table case is the class Dipneusti within the FishNet dataset.
This class contains only 5 species, with a total of 19 sam-
ples, which poses a significant challenge for our progressive
diffusion framework.

The progressive training approach relies on transferring
shared traits and information from higher taxonomic levels
to refine the generative process at the species level. How-
ever, the extreme sparsity in the Dipneusti class limits this
transfer, resulting in suboptimal generations for this group.
As shown in Figure S4, the generated samples for Dipneusti
often fail to replicate the fine-grained traits and diversity ob-
served in the ground truth. Instead, the model struggles to
generalize effectively due to the insufficient data representa-
tion, highlighting the importance of adequate class diversity
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Figure S4. Failure cases. Examples of poor generations for the Dipneusti class due to insufficient data diversity and representation.
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Figure S5. Scale variations in TaxaDiffusion. We conduct an analysis of different scale factors used for TaxaDiffusion. Images for each
of the six species are generated with 250 inference steps with different TaxaDiffusion scale factors of 0, 2, 4, 6, 8, and 10 to show the
balance between the generality and specificity of the generated samples compared to the ground truth training images.

for hierarchical approaches like ours. ditional data, leveraging synthetic data generation (using
some methods like DreamBooth [8] to generate images

Addressing such limitations would require strategies to X - ; <
for each specific species), or employing data augmentation

augment the training process, such as incorporating ad-
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Figure S6. Attention maps of two species Acestrorhynchus falca-
tus and Acestrorhynchus falcirostris having the same Genus

techniques. Additionally, methods that enhance learning
under extreme class imbalance or sparsity, such as few-shot
learning or domain adaptation, could be explored to miti-
gate these challenges.

Trait discovery is a challenging problem, particularly
when working with datasets like FishNet, which predom-
inantly captures images of fish species in natural environ-
ments. Many fish species blend into their surroundings
through camouflage or appear in diverse orientations, mak-
ing it difficult to identify traits, especially for species with
limited training images. To address these challenges, we
plan to incorporate datasets with plain backgrounds, such
as those commonly found in museum collections [1, 2],
where controlled settings provide clearer views of species
traits [4].

D. Ethics and Social Impacts

We focus on advancing generative models to progressively
generate images of animal species, aiming to accelerate sci-
entific discovery and research. Our work does not involve
sensitive or human data, and we do not foresee any ethical
concerns or negative societal impact associated with TaxaD-
iffusion or the results obtained.
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