
8. Appendix
In the Appendix, we show additional extensive experimen-
tal results. First, we show details of the quantitative com-
parison of both datasets: DynamicFace and SplattingAvatar
[44]. Second, we depict the qualitative results on various
self- and cross-reenactment and novel-view synthesis sce-
narios. Then, we conduct additional ablation studies on
APS, FLAME mouth modification, and isolating the con-
tribution of each component. Followed by the visualization
of APS during mouth deformation, we also demonstrate
training and inference details and the preprocessing of our
model. Then, we elucidate the details of the mesh modifica-
tion process, dataset, and baselines. Finally, we discuss the
broader impacts of GeoAvatar, along with two examples:
interactable digital human and virtual presentation.

8.1. Additional Quantitative Comparison
In Table 12 and Table 13, we compared the self-reenactment
results of each video in SplattingAvatar [44] and Dynamic-
Face, respectively. For a fair and thorough comparison, we
utilized every 10 subjects in each video dataset. We denote
the name of each subject with the quantitative results in Ta-
ble 12 and Table 13. In both datasets, our model shows the
best performance in almost every video. Specifically, ours
shows the best results in 19 videos out of 20 videos.

Moreover, we demonstrated quantitative comparisons
with other models for a more comprehensive evaluation
as shown in Table 4. For evaluation metrics, we mea-
sured a cosine similarity by employing off-the-shelf mod-
els: 1) insightface* [10] for “ID preservation” and 2) Facial-
Expression-Recognition model* trained on FER2013 for
“Expression”. Still, ours shows the superior results on both
ID preservation and expression scores.

INSTA 3DGS SplattingAvatar FlashAvatar GaussianAvatars Ours
ID preservation → 0.850 0.783 0.873 0.889 0.831 0.906

Expression → 0.712 0.458 0.667 0.717 0.681 0.750

Table 4. Quantitative evaluation on cross-reenactment.

8.2. Additional Qualitative Comparison
In Figure 9(a), we compare cross-reenactments by utiliz-
ing the EMO-1-shout+laugh sequence of id061 in NeRSem-
ble for challenging expressions. Ours shows stable results,
while the baselines suffer from severe artifacts. In Figure
9(b), we show novel-view synthesis under the same identity
and expression. Ours successfully generates high-quality
images while maintaining consistency in identity.

In Figure 15, we show extensive self-reenactment results
of ours, compared to baselines. Indeed, ours shows notably

*https://github.com/deepinsight/insightface
*https://github.com/WuJie1010/Facial-Expression-

Recognition.Pytorch
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Figure 9. Cross-reenactment and novel-view synthesis.

better performance on the mouth region, e.g., handling arti-
facts on the second row, and resolution of teeth in the fourth
and sixth row. Moreover, our model shows robust and high-
resolution outputs on other facial regions, e.g., the iris in the
first and the fifth rows, and the ear in the third row.

In Figure 16, we show extensive cross-reenactment re-
sults of ours, compared to baselines. To evaluate the robust-
ness of each model more thoroughly, we utilize the source
and target actors from different datasets, e.g., the source
from SplattingAvatar when the target is from DynamicFace,
and vice versa. Even in this harsh scenario, ours shows con-
sistently robust reenactment results, while preserving the
identity of the source actor and mimicking the expression
of the target actor well. On the other hand, other models
suffer from severe artifacts, occurring by notable distribu-
tion differences between the source and the target actors.

In Figure 17, we show extensive novel-view synthesis
results of ours, compared to baselines. Ours shows consis-
tently robust results on various actors. Especially, we em-
phasize that in the case when the original image has the
extreme facial degree, e.g., the fourth row in the Figure 17,
ours can generate the face robustly in more extreme view-
points. In contrast, other models suffer from artifacts, e.g.,
INSTA, 3DGS, and GaussianAvatars, spiking artifacts, e.g.,
FlashAvatar, ghosting effects, e.g., INSTA. Please check our
project page for more visualization results.

8.3. Additional Ablation Results

IHGF E (Ours)

Figure 10. Additional qualitative ablation results. We show
qualitative results for additional ablation models for thorough eval-
uations. Models that only utilizes the rigid set,i.e., F and H, show
notably blurred results for the region where the FLAME mesh can-
not cover the ground truth geometry, e.g., hair. On the other hand,
setting every region to flexible set, i.e., G and I, introduces unde-
sirable artifacts for the mouth animation.

In the extension from Table 3, we add more settings for thor-
ough ablations. First, to evaluate the effectiveness of train-
ing initialization strategy, we train the baseline model with

https://github.com/deepinsight/insightface
https://github.com/WuJie1010/Facial-Expression-Recognition.Pytorch
https://github.com/WuJie1010/Facial-Expression-Recognition.Pytorch
https://hahminlew.github.io/geoavatar/


Configs Sets FLAME mouth MSE (10→3) ↑ PSNR → SSIM → LPIPS (10→1) ↑
F Rigid 0.960 30.291 0.923 0.975
G Flexible 0.991 30.356 0.919 0.653
H Rigid ↭ 0.901 30.471 0.923 0.840
I Flexible ↭ 0.853 31.318 0.930 0.629

E (Ours) APS ↭ 0.748 32.697 0.942 0.513

Table 5. Additional quantitative ablation results. We show
quantitative results for additional ablation models for thorough
evaluations. While applying either APS or FLAME mouth slightly
improve the performance, they show the synergestic effect when
applied together.

Configuration MSE (10→3) ↑ PSNR → SSIM → LPIPS (10→1) ↑
A Ours w/o APS 0.853 31.318 0.930 0.629
B Ours w/o FLAME mouth 0.912 30.551 0.929 0.561
C Ours w/o Part-wise deformation 0.815 32.162 0.941 0.540
D Ours w/o Langle 0.733 32.751 0.941 0.519

E Ours 0.748 32.697 0.942 0.513

Table 6. Quantitative ablation results by isolating the contribution.

assuming every Gaussian as the rigid set, i.e., F, and the
flexible set, i.e., G. Since the original GaussianAvatars [40]
utilizes threshold for position loss same with the threshold
of the flexible set, A and G is originally same. Then, we
apply FLAME mouth modification, i.e., mesh modification
and part-wise deformation, to each model, i.e., H and I, re-
spectively. Table 5 shows the average quantitative results
of each model, including our final model, i.e., E. We utilize
every model in SplattingAvatar and DynamicFace to obtain
the average result in Table 5.

First, in F and G, both model shows inferior results in
both qualitative and quantitative ways. In specific, as shown
in Figure 8.3, F shows severe artifacts in the hair region,
which needs high flexibility during training. By applying
FLAME modification and deformation to F and G, i.e., H
and I, respectively, improves the performance, it still shows
artifacts in hair or mouth.

Then, in H and I only applies FLAME mouth modifi-
cation and part-wise deformation, without applying APS.
Though only applying these improves both quantitative and
qualitative results notably, still it shows worse result than
our final model. We argue that since APS helps model to
train each part flexibly, it is helpful to improve the overall
quality of every part, either rigid or flexible. Indeed, our fi-
nal model, i.e., E, shows the best result on both quantitative
and qualitative ways.

To better clarify the contribution of each module, we also
perform ablations by isolating each module, as shown in Ta-
ble 6. Especially, in Config C, i.e., excluding part-wise de-
formation based on MLP, shows a notable degradation com-
pared to the original model, i.e., Config E, which clearly
shows the effectiveness of the MLP deformation.

(b)

Rigid

(a)

Figure 11. (a) Rendered results with the mesh, (b) Distribution of
rigid and flexible sets.

8.4. Visualization of APS and mouth deformation
We visualized the fitted mesh during mouth deformation in
Figure 11(a). We also plot the distributions of rigid and
flexible sets in Figure 11(b). We indeed check that the dis-
tribution follows the human intuition, e.g., rigid for facial
regions, flexible for scalp and neck. Several regions, e.g.,
forehead and ears, show varying results among subjects,
i.e., denoted as purple region, which justifies the dynamic
allocation of rigid and flexible sets of APS.

8.5. Training and Inference Details

Efficiency FlashAvatar GaussianAvatars MonoGaussianAvatar GaussianHeadAvatar Ours
Time (hrs) ↑ 1.66 9.25 7.90 19.92 4.90

Speed (FPS) → 291.20 19.11 5.91 6.25 71.52

Table 7. Efficiency comparisons on training time (hrs) and infer-
ence speed (FPS).

Steps (103) 50 100 APS 150 200 250 300

SplattingAvatar 33.95 42.22 - 34.67 43.61 46.12 47.63
DynamicFace 35.17 44.86 - 36.48 47.80 51.03 51.42

Table 8. Gaussian numbers (103) on each dataset.

In Table 7, we compare training and inference speeds with a
single RTX 3090. Ours shows enough inference efficiency,
i.e., > 60 FPS, for real-time scenario. We show numbers of
Gaussians at training and inference (300,000 steps) stages
in Table 8.

8.6. Preprocessing
We can coarsely divide preprocessing into two steps; mask-
ing and FLAME tracking. In the following paragraph, we
explain the details.
Masking. Since we target to generate human avatars,
we have to distinguish human parts from the others, e.g.,
clothes and background, as other baselines [44, 51, 65] did.
We conjugate two masking logics, Background Matting
[30] and BiSeNet [56]. Though Background Matting can
distinguish the foreground objects from the background, it
still contains non-human parts, e.g., chairs that the subject



Input Background Matting BiSeNet Final Mask

Figure 12. Comparison of each mask. Background Matting
yields a noisy mask, i.e., containing non-human parts, while
BiSeNet yields an over-smoothed mask. We intersect two masks
and obtain the final mask for training.

is sitting in. On the other hand, BiSeNet can distinguish
human parts and non-human parts accurately, but it returns
over-smoothed masks. Consequently, by utilizing the over-
lapped region of each mask, we can obtain an accurate and
sharp mask for the human part. Figure 12 shows the visu-
alization of each mask. We apply the aforementioned mask
logic for preprocessing DynamicFace and SplattingAvatar
datasets, but not for the NeRSemble dataset since they offer
the preprocessed mask together with the images.
FLAME Tracking. We utilize the modification of MICA
[64], which utilizes a pre-trained model that returns
FLAME shape parameters from a single image, and an ad-
ditional image-wise FLAME tracking model. We modi-
fied the original MICA to work on the 2023 version of
FLAME to utilize its revised eye region mesh, which orig-
inally worked on the 2020 version. Moreover, we optimize
the FLAME neck, global rotation, and translation parame-
ters, which are excluded in the original MICA, along with
other FLAME parameters, e.g., expression, jaw, and eye
pose, for better tracking results.
Hyperparameters. We set the hyperparameters for the
training as in Table 9. Except for the hyperparameters men-
tioned, we follow the settings of GaussianAvatars [40].

Symbol Parameter Description Value

n number of FLAME parts 10
ωr threshold for the rigid set 0.1
ωf threshold for the flexible set 2.0
ωω threshold for Langle 0.78
ε weight for D-SSIM 0.2
N iterations before APS 100000
- total iteration 200000

Table 9. Hyperparameter settings of GeoAvatar. We utilize the
hyperparameters mentioned above for training GeoAvatar.

8.7. Structural Details
Mesh Modification. Though FLAME [28] covers various
expressions and joint movements of the face, the absence of
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Figure 13. Teeth trajectory extension. Assuming that the ex-
isting teeth trajectory forms an arc of the circle, we calculate the
pseudo-center C of the circle by using the perpendicular bisector
line of v0v1 and v13v14. Then, we reflect the existing vertices of
the teeth by either Cv0 or Cv14, to extend the trajectory smoothly.

mouth interior structures deteriorates the expressiveness of
teeth and mouth interior [27, 40, 51]. Consequently, Gaus-
sianAvatars [40] adds teeth by duplicating the vertices tra-
jectory of lip rings of FLAME. As shown in Figure 13, the
mesh corresponding to frontal teeth can be generated. How-
ever, this cannot represent the geometry of molar teeth and
mouth interior structure, e.g., palate or tongue.

For better representation, we incorporate molar teeth and
mouth interiors into the FLAME structure. First, we gener-
ate the frontal teeth by utilizing the vertex trajectory of the
lip rings [40]. Empirically, we observe that the teeth ver-
tices lie on the xz-plane, i.e., they share the same y-axis
value, and their trajectory approximates the shape of an el-
lipsoid. Given that the curvature of the teeth trajectory is
relatively small, we hypothesize that it can be approximated
as an arc of a circle. Due to the symmetry of a circle about
its center, the arc can be extended smoothly by reflecting it
across the center. We apply this approach to the pseudo-arc
trajectory of the teeth. To this end, we identify the pseudo-
center of the circle and extend the teeth trajectory to gener-
ate the molar teeth, as illustrated in Figure 13.

First, we utilize the two leftmost vertices, i.e., v0 =
(x0, y0, z0) and v1 = (x1, y0, z1), and the two rightmost
vertices, i.e., v13 = (x13, y0, z13) and v14 = (x14, y0, z14),
out of 15 vertices that constructs the teeth trajectory ring.
First, to obtain the pseudo-center, we obtain the intersection
point C between the perpendicular bisector of v0v1, i.e., l1,
and the perpendicular bisector of v13v14, i.e., l2. Each per-
pendicular bisector can be obtained as follows:

l1 : z ↓ z1 + z2
2

= ↓x2 ↓ x1

z2 ↓ z1
(x↓ x1 + x2

2
),

l2 : z ↓ z13 + z14
2

= ↓x14 ↓ x13

z14 ↓ z13
(x↓ x13 + x14

2
).

Then, we reflect the 5 vertices located on the left side,
i.e., vi→{1,···5}, with the line Cv0. In the same way, we re-
flect the 5 vertices located on the right side, i.e., vi→{9,···13},
with the line Cv14. Finally, we can obtain the new teeth tra-
jectory which includes the molar teeth, denoted as the red



dot line in Figure 13. After generating the trajectory of the
teeth, we shift it backward to generate vertices for the palate
and the mouth floor.

8.8. Dataset Details

Dataset #ID #Expressions Resolution Total Time (min) Disk Space (GB)

NerFace (CVPR 2021) 3 1 1920↔1080 6.44 3.79
IMAvatar (CVPR 2022) 4 11 512↔512 7.08 3.39

DynamicFace 10 20 3840↔2160 32.25 18.92

Table 10. Comparison of monocular video-based datasets.

Our proposed dataset, DynamicFace is designed to cap-
ture a wide range of facial movements, enabling the gen-
eration of avatars capable of dynamic motion. Dynamic-
Face consists of 10 videos, each recording a single actor
performing various facial expressions provided by the in-
struction. During recording, actors are instructed to shake
their heads slowly to record the various facial degrees with a
single camera. Nine subjects are recorded by a single Sony
AX700 camcorder with a chromakey background. The re-
maining subject is recorded by a single iPhone14 with a nor-
mal background. In Figure 18, we show the sample frames
of DynamicFace. We also compare the details of monocular
video-based dataset features in Table 10.

8.9. Baseline Descriptions
INSTA. The instant volumetric head avatars (INSTA)
framework embeds a dynamic neural radiance field into
a surface-aligned multi-resolution grid around a 3D para-
metric face model. It employs a deformation field guided
by FLAME to map points between deformed and canoni-
cal spaces and uses 3DMM-driven geometry regularization
for depth alignment. The approach utilizes neural graph-
ics primitives with multi-resolution hash encoding to repre-
sent the radiance field, enabling reconstruction and render-
ing based on monocular RGB videos.
3D Gaussian Splatting. Unlike an existing 3D representa-
tion module[35, 37] which implicitly encodes the color and
density information of the volume inside MLP, 3D Gaus-
sian Splatting (3DGS) explicitly represents the 3D volume
using the mean and 3D variance of Gaussian distribution.
Moreover, the efficient tile-based rasterizer of 3DGS en-
ables remarkably faster rendering than the existing mod-
ule. However, 3DGS requires accurate pre-computed cam-
era poses [13, 46], e.g., obtained by COLMAP [43]. More-
over, primitive 3DGS can be applied only to static scenes,
which is definitely not appropriate for dynamic avatar gen-
eration. To adapt its property in the avatar generation, we
utilize FLAME meshes instead of COLMAP to initialize the
Gaussian points.
SplattingAvatar. SplattingAvatar proposes a binding strat-
egy between Gaussian and FLAME mesh, which forces
Gaussians to move together with FLAME mesh, which is

deformed by FLAME coefficients. Since SplattingAvatar
does not utilize additional regularization terms to locate
Gaussians nearby bonded triangles, it utilizes the walking
triangles strategy to adaptively change the bonded triangle
of Gaussian.
MonoGaussianAvatar. MonoGaussianAvatar proposes a
point-based 3D Gaussian head avatar generation frame-
work. They enhance the point insertion and deletion strat-
egy which prunes away invisible points via thresholding of
opacity. They also utilizes the Gaussian deformation field
to preserve the accessories.
FlashAvatar. FlashAvatar also utilizes the strategy of bind-
ing Gaussians to the FLAME mesh by using its UV map.
Then they utilize Gaussian offset models to deform Gaus-
sians by the animation of FLAME meshes. To enhance the
mouth interior generation performance, FlashAvatar adds
additional faces to fill the mouth cavity, using vertices on
the lip. Moreover, they utilize the masked loss which fo-
cuses on the mouth region.
GaussianAvatars. GaussianAvatars proposes a multi-view-
based Gaussian head avatar creation framework by rigging
3D Gaussian splats to 3DMM faces. This framework em-
ploys adaptive density control with binding inheritance, en-
suring that newly created or pruned 3D Gaussian splats re-
main consistently attached to their parent triangles on the
FLAME mesh during densification.

In GaussianAvatars, the linear blend skinning weight of
upper teeth is rigged to the neck, i.e., head movements,
while that of lower teeth is rigged to the jaw. Consequently,
upper and lower teeth movements are determined by de-
pending on head and jaw movements, respectively. To miti-
gate this, we propose a deformation network that offers off-
sets part-wisely, to translate each part independently from
the FLAME parameters using the offsets, which is unavail-
able in GaussianAvatars.

8.10. Additional Comparison Study on a One-shot-
based Method

Dataset Setting Method MSE (10→3) ↑ PSNR → SSIM → LPIPS (10→1) ↑ ID preservation →

SplattingAvatar
One-shot GAGAvatar [8] 5.108 23.541 0.875 1.121 0.832

Video Ours 0.884 32.635 0.965 0.367 0.944

DynamicFace
One-shot GAGAvatar [8] 2.421 26.406 0.850 1.485 0.827

Video Ours 0.612 32.760 0.919 0.660 0.931

Table 11. Quantitative comparisons on one-shot and video set-
tings.

Our work focuses on a single video-based setting for pre-
serving identity under expressive variations, i.e., high-
quality personalization. Unlike one-shot or few-shot-based
methods that risk entangling identity, video sequences pro-
vide sufficient intra-subject variation and temporal consis-
tency to robustly learn identity-specific structures such as
the mouth interior. Furthermore, image-based methods
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Figure 14. Comparisons on a one-shot-based baseline (GAGA-
vatar [8]) via self- and cross-reenactment.

often require large-scale pretraining on external datasets,
whereas our method achieves high-quality results without
any pretraining, making it practical for real-world applica-
tions. In Table 11 and Figure 14, we compared GeoAvatar
(video) and state-of-the-art image-based avatar generation
method, GAGAvatar [8] (one-shot). Ours achieves signifi-
cantly higher identity preservation, while GAGAvatar strug-
gles to preserve identity.

8.11. Broader Impacts
The proposed GeoAvatar framework demonstrates remark-
able versatility, offering a broad spectrum of potential ap-
plications across diverse industries. By leveraging its ca-
pability to generate realistic, speech-driven 3D avatars,
GeoAvatar has the potential to significantly enhance user
experiences in domains such as entertainment, education,
customer service, and healthcare. Its modular design al-
lows seamless integration with complementary technolo-
gies, including large language models (LLMs), text-to-
speech (TTS) models, and advanced 3D animation tech-
niques, positioning it as a robust solution for creating en-
gaging, interactive digital human experiences.

The following sections present two examples of
industrial-like applications built on GeoAvatar as shown in
Figure 19. Notably, these demonstrations were developed
using training data captured with a single smartphone, em-
phasizing the scalability and accessibility of our method.

8.12. Application #1: Interactable Digital Human
To highlight the capabilities of GeoAvatar, we integrated
a large language model (LLM), a text-to-speech (TTS)
model, and speech-driven 3D facial animation modules
from the NVIDIA Audio2Face framework [1]. This config-
uration enabled the development of a real-time interactable
digital human demo capable of engaging in natural, dy-
namic conversations with users.

In this system, the LLM processes textual user inputs
and generates contextually appropriate responses. These re-
sponses are then converted into natural-sounding speech by
the TTS model. Finally, the Audio2Face module drives a
3D avatar, synchronizing facial expressions, lip movements,
and head gestures to match the speech output. This seam-
less integration results in an immersive, life-like digital hu-
man experience, illustrating GeoAvatar’s potential for real-
time applications in virtual environments, customer engage-
ment, and interactive storytelling. The demo video is in
the project page. We utilized CHANGER [26] for seamless
head blending into the original scenes.

8.13. Application #2: Virtual Presentation
Expanding on recent advancements in speech-driven anima-
tion, we incorporated the state-of-the-art speech-to-facial
animation module (S2F) into the GeoAvatar framework.
This integration facilitated the generation of highly realistic
talking head avatars characterized by natural head move-
ments, expressive facial animations, and precise lip syn-
chronization.

The use of S2F allows GeoAvatar to produce avatars with
distinct personalities and speaking styles, making them suit-
able for a variety of applications, such as virtual presenta-
tions, personalized virtual assistants, and digital influencers.
The module’s ability to capture nuanced head motions and
deliver high-quality lip-syncing enhances the realism and
engagement of these avatars, particularly in use cases where
authentic communication and emotional expressiveness are
critical. This example underscores the framework’s flexi-
bility and its capacity to deliver diverse, high-fidelity digital
human experiences.

https://hahminlew.github.io/geoavatar


Model INSTA 3DGS SplattingAvatar MonoGaussianAvatar FlashAvatar GaussianAvatars Ours
Subject subject 001

MSE (10→3) ↑ 0.741 0.987 0.666 0.987 1.112 0.776 0.350
PSNR → 31.402 30.127 31.817 30.154 29.646 31.191 34.670
SSIM → 0.909 0.896 0.894 0.900 0.890 0.894 0.929
LPIPS (10→1) ↑ 0.984 1.437 1.270 1.447 0.695 0.728 0.633
Subject subject 002

MSE (10→3) ↑ 1.689 1.857 1.772 2.544 2.160 1.497 0.787
PSNR → 27.746 27.351 27.531 25.974 26.716 28.284 31.063
SSIM → 0.820 0.814 0.795 0.821 0.814 0.792 0.874
LPIPS (10→1) ↑ 1.723 2.020 1.728 1.479 0.881 0.982 0.775
Subject subject 003

MSE (10→3) ↑ 0.553 0.757 1.036 1.217 1.256 0.865 0.310
PSNR → 32.617 31.294 29.930 29.340 29.088 30.701 35.155
SSIM → 0.918 0.904 0.884 0.891 0.888 0.905 0.940
LPIPS (10→1) ↑ 0.905 1.408 1.215 1.286 0.715 0.626 0.518
Subject subject 004

MSE (10→3) ↑ 2.173 1.680 1.328 1.330 2.548 1.080 0.507
PSNR → 27.039 28.147 28.975 28.866 25.957 29.733 33.192
SSIM → 0.880 0.865 0.871 0.893 0.869 0.868 0.914
LPIPS (10→1) ↑ 1.355 1.704 1.160 1.131 0.817 0.627 0.547
Subject subject 005

MSE (10→3) ↑ 1.283 1.128 1.109 1.380 1.219 1.062 0.440
PSNR → 29.017 29.566 29.650 28.715 29.244 29.826 33.703
SSIM → 0.882 0.867 0.865 0.874 0.865 0.869 0.913
LPIPS (10→1) ↑ 1.444 2.029 1.328 1.464 0.679 0.893 0.643
Subject subject 006

MSE (10→3) ↑ 2.064 1.649 2.008 2.390 1.892 1.091 0.688
PSNR → 27.115 27.995 27.056 26.268 27.350 29.688 31.673
SSIM → 0.879 0.864 0.855 0.880 0.861 0.872 0.916
LPIPS (10→1) ↑ 1.618 2.215 1.686 1.527 0.803 0.850 0.702
Subject subject 007

MSE (10→3) ↑ 1.756 0.915 0.994 1.346 1.573 0.840 0.374
PSNR → 27.608 30.518 30.092 28.735 28.092 30.843 34.357
SSIM → 0.912 0.905 0.897 0.905 0.895 0.903 0.939
LPIPS (10→1) ↑ 1.147 1.342 1.251 1.233 0.680 0.536 0.522
Subject subject 008

MSE (10→3) ↑ 2.124 2.995 2.322 2.166 3.127 3.030 1.564
PSNR → 26.994 25.368 26.435 26.710 25.287 25.288 28.198
SSIM → 0.863 0.844 0.852 0.871 0.857 0.844 0.900
LPIPS (10→1) ↑ 1.563 2.003 1.653 1.455 0.910 1.269 1.020
Subject subject 009

MSE (10→3) ↑ 2.119 2.952 1.957 1.324 1.735 2.008 0.666
PSNR → 27.029 25.444 27.162 28.892 27.965 27.023 31.835
SSIM → 0.925 0.910 0.901 0.923 0.917 0.908 0.940
LPIPS (10→1) ↑ 0.944 1.132 1.200 1.005 0.601 0.810 0.629
Subject subject 010

MSE (10→3) ↑ 0.946 1.113 1.065 1.494 1.489 0.427 0.435
PSNR → 30.310 29.657 29.780 28.302 28.383 33.840 33.753
SSIM → 0.887 0.877 0.876 0.898 0.880 0.933 0.924
LPIPS (10→1) ↑ 1.204 1.702 1.287 1.189 0.666 0.595 0.614

Table 12. Additional quantitative results. Detailed quantitative comparison results of each subject from DynamicFace. For a fair
comparison, we utilized all 10 subjects without omission. Bold indicates the best and underline indicates the second.



Model INSTA 3DGS SplattingAvatar MonoGaussianAvatar FlashAvatar GaussianAvatars Ours
Subject bala

MSE (10→3) ↑ 1.396 1.2691 4.428 0.968 0.576 0.661 0.485
PSNR → 28.609 29.010 23.550 30.426 32.510 31.822 33.193
SSIM → 0.936 0.914 0.922 0.928 0.938 0.957 0.968
LPIPS (10→1) ↑ 0.816 1.424 0.715 0.819 0.346 0.350 0.320
Subject biden

MSE (10→3) ↑ 0.661 0.804 1.898 0.749 0.713 0.783 0.291
PSNR → 31.994 31.205 27.308 31.356 31.531 31.303 35.586
SSIM → 0.969 0.958 0.955 0.959 0.969 0.956 0.982
LPIPS (10→1) ↑ 0.359 0.452 0.412 0.433 0.239 0.239 0.169
Subject malte 1

MSE (10→3) ↑ 1.273 1.644 2.779 0.926 1.033 0.559 0.387
PSNR → 29.186 28.076 25.631 30.669 30.418 32.665 34.224
SSIM → 0.946 0.933 0.937 0.944 0.949 0.970 0.976
LPIPS (10→1) ↑ 0.579 0.807 0.509 0.561 0.343 0.305 0.273
Subject marcel

MSE (10→3) ↑ 1.180 2.794 2.228 1.089 1.850 2.902 1.149
PSNR → 29.635 25.807 26.497 29.791 27.404 24.457 29.639
SSIM → 0.947 0.929 0.940 0.948 0.931 0.913 0.960
LPIPS (10→1) ↑ 0.556 1.075 0.530 0.591 0.634 0.706 0.588
Subject nf 01

MSE (10→3) ↑ 1.705 1.904 3.643 1.505 1.644 1.961 1.054
PSNR → 27.891 27.470 24.458 28.484 28.114 27.399 30.027
SSIM → 0.945 0.933 0.935 0.939 0.951 0.931 0.966
LPIPS (10→1) ↑ 0.677 1.030 0.631 0.694 0.473 0.722 0.431
Subject nf 03

MSE (10→3) ↑ 1.171 1.962 2.001 1.576 1.383 0.636 0.492
PSNR → 29.637 27.249 27.063 28.226 28.857 30.403 33.286
SSIM → 0.941 0.923 0.934 0.935 0.941 0.943 0.968
LPIPS (10→1) ↑ 0.565 0.940 0.465 0.596 0.392 0.360 0.353
Subject obama

MSE (10→3) ↑ 3.264 1.546 3.245 1.045 1.371 0.854 0.234
PSNR → 27.231 29.317 25.073 30.212 30.387 29.243 36.801
SSIM → 0.951 0.937 0.945 0.958 0.963 0.935 0.981
LPIPS (10→1) ↑ 0.487 0.565 0.558 0.427 0.335 0.267 0.157
Subject person 0004

MSE (10→3) ↑ 6.881 6.726 3.478 6.078 9.676 2.579 2.308
PSNR → 24.045 24.536 24.648 22.345 24.503 26.377 30.349
SSIM → 0.909 0.904 0.937 0.913 0.928 0.937 0.947
LPIPS (10→1) ↑ 1.102 1.365 0.697 1.803 0.704 0.632 0.431
Subject wojtek 1

MSE (10→3) ↑ 1.203 0.738 3.422 0.645 0.423 0.364 0.282
PSNR → 29.269 31.534 24.683 32.119 33.867 34.454 35.535
SSIM → 0.957 0.949 0.938 0.956 0.964 0.979 0.981
LPIPS (10→1) ↑ 0.563 0.630 0.541 0.521 0.234 0.220 0.217
Subject yufeng

MSE (10→3) ↑ 5.559 8.312 4.145 4.373 3.727 5.497 2.061
PSNR → 23.331 21.227 24.412 24.501 25.463 23.122 27.708
SSIM → 0.878 0.849 0.888 0.893 0.900 0.860 0.924
LPIPS (10→1) ↑ 1.084 1.896 0.823 0.885 0.741 1.334 0.729

Table 13. Additional quantitative results. Detailed quantitative comparison results of each subject provided by SplattingAvatar [44]. For
a fair comparison, we utilized all 10 subjects without omission. Bold indicates the best and underline indicates the second.
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Figure 15. Additional self-reenactment synthesis results. We show additional self-reenactment results of ours, compared to baselines,
on SplattingAvatar and DynamicFace datasets. Our shows high-resolution results not only on regions where FLAME geometry is accurate,
e.g., eyes, but also on the regions where FLAME geometry is erroneous or absent, e.g., ears and mouth interior. However, baselines struggle
to generate high-resolution results, e.g., the first and fifth rows, or to prevent artifacts, e.g., the second, fourth, and sixth rows.
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Figure 16. Additional cross-reenactment synthesis results. We show additional cross-reenactment results of ours, compared to baselines,
on SplattingAvatar and DynamicFace datasets. To evaluate models thoroughly, we utilize the source and target actors from different
datasets, e.g., SplattinAvatar and DynamicFace. Ours shows robust generation results without artifacts, while baselines suffer from severe
artifacts. In specific, ours shows outstanding results for rendering eye regions, e.g., the first, second, and third rows, including accessories,
e.g., eyeglasses in the third row. Best viewed zoom-in.



no
ve

l-v
ie

w
sy

nt
he

sis

Original Image INSTA 3DGS SplattingAvatar FlashAvatar GaussianAvatars GeoAvatar (Ours)MonoGaussianAvatar

Figure 17. Additional novel-view synthesis results. We show additional novel-view synthesis results of ours, compared to baselines, on
SplattingAvatar and DynamicFace datasets. Ours shows clean and robust results not only on the facial region, e.g., the first, third, and fifth
row, but also on the boundaries, e.g., the second, fourth, and sixth rows. However, baselines suffer from either artifacts and low-resolution
results in the facial region, or noisy boundaries in the boundary. Best viewed zoom-in.



Neutral Highly Expressive Facial Motions

Figure 18. Examples of DynamicFace sequences. We show our DynamicFace example sequences for all subjects. Our DynamicFace has
diverse highly expressive facial motions.
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Figure 19. Application examples. Our proposed GeoAvatar framework shows its versatility across multiple applications. (a) Real-
time Interactable Digital Human Demo: By integrating a large language model (LLM), text-to-speech (TTS), and NVIDIA Audio2Face
(A2F) module, GeoAvatar enables real-time, interactive conversations with a fully animated digital human. Additional post-processing
for backgrounds is used to enhance visual outputs. (b) Virtual Presentation: Given an input audio, GeoAvatar utilizes a speech-driven 3D
facial animation module (S2F) to generate a high-quality digital human capable of delivering presentations with natural facial expressions
and lip synchronization. Both demo videos are visualized in our submitted project page HTML file.
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