Selective Contrastive Learning for Weakly Supervised Affordance Grounding

Appendix

A. Datasets and Implementation Details

Datasets. To benchmark weakly supervised affordance
grounding (WSAG) methods, we use two datasets, i.e.,
AGD20K [4], and HICO-IIF [7]. AGD20K is composed
of 3,755 egocentric images with 20,061 exocentric images
that belong to 36 affordance classes with 50 object classes.
Dense annotations are labeled according to the probabil-
ity of interaction between the human and object regions
where Gaussian blur is applied afterwards to generate the
heatmaps. HICO-IIF [7] comprises 1,088 egocentric images
and 4,793 exocentric images. HICO-IIF is collected from
HICO-DET [1] and IIT-AFF [5] where both datasets are
equipped with object and affordance categories.
Implementation Details. Following previous works [3, 7],
we employ DINO ViT-S/16 for all experiments and set £, the
number of exocentric images per egocentric image to 3. In
addition, we set K, the number of clusters used to segment
the objects in exocentric images for part-level prototypical
contrastive learning, to 3. The model is optimized using the
SGD optimizer with a learning rate of 1e-3, weight decay of
Se-4, and batch size of 8. Additionally, while maintaining
consistent parameters across datasets, we vary the number
of training epochs between ADE20k and HICO-IIF. Specif-
ically, we train the ADE20k dataset for 15 epochs in both
seen and unseen scenarios, whereas HICO-IIF is trained for
50 epochs. The extended training duration (3-4x) for HICO-
IIF accounts for its dataset size, which is approximately 3—4
times smaller than ADE20k, requiring additional iterations
to achieve performance saturation. The MLP is defined with
a feed-forward network and each projection layer contains
two convolution layers, followed by a classifier to gener-
ate CAMs. Projection layers for each contrastive loss are
designed with a linear layer with a normalization layer.

Furthermore, as mentioned in the paper, we employ the
strategy of ClearCLIP [2] to enhance local discriminability in
the visual features of CLIP ViT-B/16. ClearCLIP introduces
three key modifications to the original CLIP architecture in
its final layer: (1) removal of the residual connection, (2)
reorganization of spatial information through self-self atten-
tion (i.e., query-to-query attention [6]), and (3) elimination
of the feed-forward network. These modifications are applied
without the fine-tuning phase so that it uses the pretrained
weights of the original CLIP. The impact of ClearCLIP over
naive CLIP is shown in Tab. A 1.

B. Object Affinity Map

In this section, we provide a detailed explanation of how
the object affinity map A is obtained. Using ClearCLIP [2],

Table Al. Affordance grounding results using CLIP-B/16 and
ClearCLIP-B/16 in the AGD20k-Seen scenario.

Method ZeroShot KLD SIM NSS
0 1774 0250  0.640

CLIP X 1.160 0412 1267

0 1574 0294 0945

ClearCLIP X 1.124 0433 1280

Table A2. CLIP prompt comparison in the AGD20k-Seen scenario.
{action} represents the action labels.

Method Prompt KLD SIM NSS
CLIP {action} 1.826 0.242 0.522
“an item to” {action} “with”|1.774 0.250 0.640

{action} 1.672 0.277 0.795

ClearCLIPL., | ftem to” {action} “with”|1.574 0.294 0.945

Exo Image

Figure Al. Visualization of object affinity map for exocentric im-
age, with various kinds of prompt. (a): {action}, (b): “an item to”
{action} “with”, (c): multiplication of “an item to” {action} “with”
and “a person” {action} “an item”.

we apply different strategies to infer object affinity maps for
egocentric and exocentric images.

For the egocentric affinity map, we calculate the simi-
larity between the egocentric image and action-prompted
queries. The action-prompted queries are created by aug-
menting the action label with a fixed prefix, “an item to”,
and a postfix, “with”. For example, the action label “catch”
is augmented as “an item to catch with”. However, when the
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Figure A2. Ablation studies of various hyperparameters. The X-axis denotes the value of each hyperparameter, the Y-axis shows the KLD

performance.

action label already ends with “with”, such as “brush with”
or “cut with”, the postfix “with” is not added. The impact of
action-prompted queries is shown in Tab. A2.

On the other hand, the object affinity map for exocen-
tric images is generated using two prompting methods to
focus primarily on the object parts involved in the interaction
within the exocentric image, as shown in Fig. A1. To identify
objects in exocentric images, we first use the same action-
prompted queries as those applied to egocentric images, as
shown in row (b) of Fig. Al. However, we observe that
the activation is widely distributed across the foreground ob-
jects. To address this, we additionally utilize entity-prompted
queries to localize the entity interacting with the objects. We
hypothesize that the intersection of the action-prompted and
entity-prompted queries will yield a more accurate localiza-
tion map compared to a simple similarity map derived solely
from action labels. The entity-prompted query is structured
with the prefix “a person” and the postfix “an item”. For
example, the action label “catch” is augmented as “a person
catch an item”. Yet, the similarity map obtained using the
entity-prompted query may not fully capture the object parts,
as the focus is on the entity in the sentence. To address this,
we apply local average pooling, which smooths the activation
of each patch by averaging it with nearby patches. Finally,
we combine the affinity maps generated from the action- and
entity-prompted queries by multiplying them to produce the
object affinity map for exocentric images in row (c).

C. Hyperparameter Ablation

We study the impact of thresholds o and v which control
the reliability of selected affordable parts. The threshold «
determines whether the part segment within objects in exo-
centric images corresponds to the desired object part, while
~ is used to binarize object affinity map of both egocentric
and exocentric images into the foreground targets and the
background. Performance comparisons for varying o and y
are illustrated in Fig. A2. Our results indicate that «, used
for selecting reliable clusters (groups of pixels), is more sen-
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Figure A3. Study on loss coefficients. A1 and A2 are coefficients for
prototypical and pixel contrastive learning, respectively. We vary
each coefficient while keeping the others fixed at their default value
of 1 and also examine their impact when adjusted simultaneously.

sitive than . However, both thresholds consistently achieve
optimal performance within the range of 0.5 to 0.6. In this
work, we set o and 7y to 0.6.

Additionally, we examine the effects of varying 7, the
scaling parameter used in both prototypical and pixel con-
trastive losses. Results are shown on the right side of Fig. A2.
In this work, we set 7 to 0.5 as it outcomes the best result.

Although the performance slightly decreases when ad-
justing our hyperparameters, our results demonstrate the
robustness of the framework. In particular, our model consis-
tently achieves state-of-the-result performances regardless
of hyperparameters «, v, and 7.

Study on loss coefficients are in Fig. A3. As shown, our
default value of 1 yields its best result. Nevertheless, our
proposed approach consistently outperforms baselines by a
significant margin, demonstrating its robustness and insensi-
tivity to extensive parameter tuning.

D. Bias on Object and Affordance Classes

Objects can be involved in various actions, and likewise, dif-
ferent affordance classes may occur across diverse objects.
This presents a particular challenge in weakly supervised af-
fordance grounding, where the distinctions between classes
are not explicitly provided. In Fig. A4, we examine how
our proposed approach performs under such scenarios. First,
Fig. A4 (a) illustrates the prediction results when different af-
fordance classes are queried for the same object class. While
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(a) Different affordance regions within the same object class

(b) Same affordance regions across different object classes

Figure A4. Visualization of the test image, ground-truth label, and our prediction on AGD20K dataset.

Table A3. Comparison results between DINO attention map and
CLIP affinity map to measure ploU.

Method | KLD] SIMT NSST
DINO-attn | 1.124 0.433 1.280
CLIP-obj. | 1.126 0.435 1.273
DINO-attn | 1.243 0405 1.368
CLIP-obj. | 1.257 0.398 1.360

Dataset-Scenario

AGD20K-Seen

AGD20K-Unseen

the predictions are not perfectly accurate, the model still
exhibits meaningful distinctions between affordance classes
despite the absence of explicit class-level cues. Fig. A4 (b)
further visualizes how well the model generalizes affordance
understanding across diverse object classes, demonstrating
notably consistent performance. These results support that
our strategy effectively minimizes biases toward specific
object—affordance pairings, promoting robust affordance pre-
dictions.

E. DINO Attention Map for Prototype Selection

In prototype generation for prototypical contrastive learning,
we utilize the self-attention map from DINO to measure
ploU, which allows us to select the most suitable prototype
among three candidates and perform part-level learning. We
emphasize that the DINO attention map can be replaced by
any alternative capable of identifying the main object within
egocentric images. To validate this flexibility, we conduct
experiments using the CLIP affinity map as an alternative,
applying a specific threshold (0.75) to distinguish foreground
from background regions. Table A3 compares the results

obtained using DINO attention maps and CLIP affinity maps,
demonstrating the robustness and versatility of our method.

F. Additional Qualitative Results

Additional qualitative results in comparison to baseline meth-
ods are depicted in Fig. A5 and Fig. A6. Particularly, Fig. A5
illustrates the results in the seen domain, while Fig. A6 fo-
cuses on the unseen domain. As observed, we find that our
proposed approach consistently demonstrates more accurate
results than previous works.
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Figure A5. Affordance grounding results of our approach and other methods in the seen domain.
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Figure A6. Affordance grounding results of our approach and other methods in the unseen domain.
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