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A. Few-shot Adaptation of VLMs

VLMs are designed to learn a joint representation space for
images and text. They are typically trained on large-scale
image-text pairs. By aligning visual and textual informa-
tion, VLMs can perform tasks such as zero-shot classifi-
cation and cross-modal retrieval. CLIP is a type of VLM
that relies on contrastive learning to associate images with
their corresponding textual descriptions in the latent space.
Given a batch of N image-text pairs {(z;, t;)},, where
x; represents an image and ¢; its associated text, CLIP max-
imizes the similarity between matching pairs while mini-
mizing it for non-matching ones.

Formally, let fg(-) and g4(-) be the vision and text en-
coders, respectively, where 6 and ¢ denote their learnable
parameters. Given an image x; and its corresponding text ¢;,
the encoders project them into a shared normalized embed-
ding space. The image embedding is given by v; = fp(x;),
and the text embedding is given by z; = g4(t;). Both em-
beddings lie in the joint representation space. The VLM
model is then trained using a symmetric InfoNCE loss.
Zero-shot Inference. Once pretrained, CLIP classifies im-
ages without additional training on the target task. Classifi-
cation is performed by comparing the image embedding to
predefined text embeddings representing class labels. For a
classification task with C' categories, each class c is associ-
ated with a set of n text prompts {t; . —1. The prototype
for class c is computed by averaging the embeddings of its
prompts z, = %E?Zl 9o(tjc). The model predicts the
class using the softmax over the cosine similarities between
the image embedding v; and the class prototypes z.:

exp ((v;r . Zc)/T)
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where ;. represents the probability of the image x; belong-
ing to class ¢, and 7 is a temperature parameter that scales
the logits to control the sharpness of the probability distri-
bution. Since the embeddings v; and z. are {3-normalized,
the cosine similarity simplifies to the dot product operation.
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Few-shot Learning. Few-shot learning addresses the chal-
lenge of adapting VLMs to new tasks using only a lim-
ited number of labeled examples per class. Formally, let
S = {(x, yi)}5%Y be the support set, where K is the
number of examples per class. K typically takes small val-
ues, such as K € {1, 2, 4}. Each label y € {0,1}¢ is rep-
resented as a one-hot vector, where only one dimension is
active to indicate the correct class. The objective is to adapt
the pretrained VLM efficiently by leveraging this small sup-
port set .S while preserving its generalization ability.

To optimize the VLM model under the few-shot setting,
the cross-entropy loss function is typically used. Given the
support set .9, the objective is to minimize:
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This loss function maximizes the likelihood of the correct
class labels and minimizes incorrect predictions.

B. Algorithm

Our optimization strategy is described in Algorithm 1. By
promoting random gradient selection and importance-based
moment pruning, SO balances the short-term updates with
the long-term significance of parameters.

C. Memory Consumption and Scalability

Memory consumption. able | compares SO to various
low-rank methods and Adam in theoretical memory usage
for a single linear layer (W € R™>™). It illustrates how
each method’s weight, gradient, and optimizer states scale
w.r.t. rank 7 or sparsity ratio 1 —x. Notably, SO stores 2mnk
and 3mnk parameters for the gradient and optimizer states,
respectively, offering significant savings when & is small.
Table 2 extends this analysis to the full CLIP model, cov-
ering all 12 blocks of both the text and vision encoders. We
exclude biases and activations since they are shared across
all approaches. Our experiments use a default sparsity ratio



Table 1. Comparison of SO, GaLoRE, LoRA, PiSSA, DoRA, ReLLoRA, VeRA, and Adam in memory requirements for a single fully-
connected layer. Denote the weight of the layer W € R™*™, n the input dimension, m the output dimension, (m < n), rank r, and

sparsity ratio 1 — K.

SO GaLoRE LoRA PiSSA DoRA ReLoRA VeRA Adam
Weight mn mn mn+mr+nr mn+mr+nr mn+mr+nr+m  mn+mr+nr o mn+mr+nr+m-+r mn
Gradient 2mnk mn mr + nr mr + nr mr+nr+m mr + nr m+r mn
Optimizer States 3mnk  mr + 2nr 2mr + 2nr 2mr + 2nr 2mr + 2nr + 2m 2mr + 2nr 2m + 2r 2mn
Table 2. Comparison of theoretical memory consumption for CLIP when adapting all vision and text transformer blocks. Biases and

activations are excluded since they are shared across all methods. The table reports the total number of variables, overall memory usage,

and trainable parameters.

Method Weight (#Vars, MB) Gradient (#Vars, MB) Opt. States (#Vars, MB)  #Trainable  Total Mem. (MB)
SO (k = 0.05%) 122683392 (468MB) 122683 (0.47MB) 184025 (0.70MB) 61341 469.17MB
SO (k = 1%) 122683392 (468MB) 2453667 (9.36MB) 3680501 (14.04MB) 1226833 491.40MB
SO (k = 2%) 122683392 (468MB) 4907335 (18.72MB) 7361003 (28.08MB) 2453667 514.80MB
SO (k = 5%) 122683392 (468MB) 12268339 (46.80MB) 18402508 (70.20MB) 6134169 585.00MB
SO (k = 8%) 122683392 (468MB) 19629342 (74.88MB) 29444014 (112.32MB) 9814671 655.20MB
SO (k = 10%) 122683392 (468MB) 24536678 (93.60MB) 36805017 (140.40MB) 12268339 702.00MB
GaLoRE (r = 2) 122683392 (468.00MB) 122683392 (468.00MB) 706560 (2.70MB) 122683392 938.70MB
GaLoRE (r = 4) 122683392 (468 00MB) 122683392 (468.00MB) 1413120 (5.39MB) 122683392 941.39MB
GaLoRE (r = 8) 122683392 (468.00MB) 122683392 (468.00MB) 2826240 (10.78MB) 122683392 946.78MB
GaLoRE (r = 16) 122683392 (468.00MB) 122683392 (468.00MB) 5652480 (21.56MB) 122683392 957.56MB
LoRA (r =2) 123174912 (469.88MB) 491520 (1.88MB) 983040 (3.75MB) 491520 475.50MB
LoRA (r =4) 123666432 (471 75MB) 983040 (3.75MB) 1966080 (7.50MB) 983040 483.00MB
LoRA (r =8) 124649472 (475.50MB) 1966080 (7.50MB) 3932160 (15.00MB) 1966080 498.00MB
LoRA (r = 16) 126615552 (483.00MB) 3932160 (15.00MB) 7864320 (30.00MB) 3932160 528.00MB
PiSSA (r = 2) 123174912 (469.88MB) 491520 (1.88MB) 983040 (3.75MB) 491520 475.50MB
PiSSA (r = 4) 123666432 (471.75MB) 983040 (3.75MB) 1966080 (7.50MB) 983040 483.00MB
PiSSA (r =8) 124649472 (475.50MB) 1966080 (7.50MB) 3932160 (15.00MB) 1966080 498.00MB
PiSSA (r = 16) 126615552 (483.00MB) 3932160 (15.00MB) 7864320 (30.00MB) 3932160 528.00MB
DoRA (r = 2) 123313152 (470.40MB) 629760 (2.40MB) 1259520 (4.80MB) 629760 477.61MB
DoRA (r = 4) 123804672 (472.28MB) 1121280 (4.28MB) 2242560 (8.55MB) 1121280 485.11MB
DoRA (r = 8) 124787712 (476.03MB) 2104320 (8.03MB) 4208640 (16.05MB) 2104320 500.11MB
DoRA (r = 16) 126753792 (483.53MB) 4070400 (15.53MB) 8140800 (31.05MB) 4070400 530.11MB
ReLoRA (r = 2) 123174912 (469.88MB) 491520 (1.88MB) 983040 (3.75MB) 491520 475.50MB
ReLoRA (r =4) 123666432 (471.75MB) 983040 (3.75MB) 1966080 (7.50MB) 983040 483.00MB
ReLoRA (r = 8) 124649472 (475.50MB) 1966080 (7.50MB) 3932160 (15.00MB) 1966080 498.00MB
ReLoRA (r = 16) 126615552 (483.00MB) 3932160 (15.00MB) 7864320 (30.00MB) 3932160 528.00MB
VeRA (r = 2) 123313344 (470.40MB) 138432 (0.53MB) 276864 (1.06MB) 138432 471.99MB
VeRA (r =4) 123805056 (472.28MB) 138624 (0.53MB) 277248 (1.06MB) 138624 473.87TMB
VeRA (r = 8) 124788480 (476.03MB) 139008 (0.53MB) 278016 (1.06MB) 139008 477.62MB
VeRA (r = 16) 126755328 (483.53MB) 139776 (0.53MB) 279552 (1.07TMB) 139776 485.13MB
Adam (Full Finetune) 122683392 (468.00MB) 122683392 (468.00MB) 245366784 (936.00MB) 122683392 1872.00MB

of 1 — k with k = 0.05%.

This extremely sparse update

leads to minimal overheads in the gradient and optimizer
states (= 0.47 MB and 0.70 MB, respectively). As a result,
the total memory grows only slightly beyond the baseline
weight storage. Rank-based techniques, by contrast, rely
on separate low-rank matrices and typically require more
memory than SO at extreme sparsities. Adam imposes the
highest overhead due to storing a full gradient and two full
optimizer states for every parameter.

Hence, even at very low « (i.e., 0.05%), SO preserves
adaption flexibility while significantly reducing memory
consumption, which is particularly advantageous in few-
shot or resource-constrained settings.
Training efficiency and scalability. SO updates only |xd]
parameters per step and highly compresses the gradient and
the moments (k = 0.05%). Table 3 of this document shows

Table 3. Runtime on the ImageNet dataset using ViT-B/16.

2 shots 4 shots
Method Iter. Total sfiter  Iter. Total s/iter
ADAM 2000 56 min. 1.69 4000 1hS3  1.69
LoRA (r=2) 2000 52min. 1.56 4000 1h43 1.55
SO (k=0.05%) 2000 59 min. 1.76 4000 1h58 1.77

Table 4. Top-1 accuracy (%) on 4 datasets with ViT-L/14.

1 shot 2 shots 4 shots
Dataset
ReLoRA SO ReLoRA SO ReLoRA SO
DTD 61.5 61.9 67.3 68.4 69.3 71.0
EuroSat 75.7 79.7 85.1 85.7 86.7 86.9
Aircraft 40.0 42.1 41.8 46.0 48.2 51.3
UCF 82.5 83.0 84.5 85.3 86.5 87.8




Algorithm 1 SO: Sparse Optimization Algorithm

Require: 7 (learning rate), 31, 32 € [0, 1] (exponential de-
cay rates for moment estimates), « (density ratio), T’
(number of iterations before updating sparsity support),
€ (numerical stability constant), 7 (convergence rate)

Require: ©

1: [1,0 ~—0

g« 0

t<0

J < (0 (J denotes gradient sparsity support)

: while |£(©;_1)| > T do

t—t+1

gt < V@£(®t—1)

M «+ |kd]

if (t —1) mod T == 0 then

R A A A S o

10: gi < Random-M (g;)
11 T+ Z(g:)

12: else

13: gt < g:[J]

14: end if

15: Mt < Brjig—1 + (1 - Bl)gt
16: Vi < 52%—1 + (1 - ﬁQ)gtz

17: if (t —1) mod T == 0 then
18: iz < Top-M (1)

19: l7t — Vt[I(/lt)}

20: else

21: fir = pue[J]

22: Uy < v [J]

23: end if

24: /,Lt (- 5t

25: Uy — — ,Bt

26: O, 6041 — ﬁﬂt
27: end while
28: return O,

the runtime of SO, LoRA, and Adam (2-shot and 4-shot
finetuning on Imagenet). The runtime of SO is comparable
to that of Adam and LoRA. To further test scalability, we
finetuned ViT-L/14 (backbone size is 307M), which has ap-
proximately four times more parameters than ViT-B/16. As
shown in Table 4, SO improved the performance compared
with ReLoRA (second-best method in our comparison) by
+1.8 (1-shot), +1.7 (2-shot), and +1.6 (4-shot) average top-1
accuracy over 4 datasets.

D. Sensitivity

Fig. | illustrates the impact of the density ratio k
and the update interval T' on one-shot adaptation. In
these experiments, we vary k over a set of values
{0.99, 0.995, 0.999, 0.9995, 0.9999, 0.9999} and choose
update intervals T € {10, 20, 30}.
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Figure 1. Test accuracy of SO for different density ratios x and
update intervals 7' (1-shot setting).

A smaller x generally leads to improved performance as
it prevents overfitting by retaining fewer parameter updates
per step. However, overly low x reduces the model’s ef-
fective capacity and degrades accuracy. Similarly, smaller
T values lead to better performance by promoting a more
dynamic selection of trainable parameters.

E. Hardware and Software

All experiments are conducted on a Linux server with a con-
sistent hardware and software environment. Table 5 pro-
vides details on the hardware and software used.

Table 5. Hardware and software.

Hardware
RAM 504 GB
CPU model Intel(R) Xeon(R) Silver 4310 CPU @ 2.10GHz
# of CPUs 48
GPU model NVIDIA RTX A6000
GPU memory 48 GB
# of GPUs 4

Software

Operating System Ubuntu 18.04.6 LTS
Python 3.10.16
PyTorch 2.5.1
CUDA 12.4

F. Additional Results

LoRA Pitfalls. Figures 2 and 3 illustrate LoRA’s per-
formance under few-shot settings, specifically with 2-shot
and 4-shot. We finetune CLIP with a ViT-B/16 back-
bone on three benchmark datasets—DTD, Oxford Pets, and
UCF101—and vary the LoRA rank in {2, 3,4,5}. We set
the LoRA rank in {2,3,4,5} and train for a maximum of
2000 iterations or until the training loss reaches or falls be-
low 0.01, whichever occurs first. At each iteration, we mea-
sure test-set accuracy to assess overfitting and convergence.
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Figure 2. LoRA performance in a 2-shot setting on three datasets—DTD, Oxford Pets, and UCF101— using a pretrained CLIP with
ViT-B/16 backbone. The model is trained for at most 2000 iterations or until the loss < 0.01.

First, LoRA generally shows an improvement in test ac-
curacy at the beginning of the training process, but results
deteriorate noticeably as training proceeds. For instance, in
the 2-shot Pets case at rank 2, accuracy peaks around 200 it-
erations before declining by over 5%, indicating overfitting.
In contrast, the 4-shot DTD setting at rank 4 peaks around
300 iterations and then loses several points of accuracy once
training proceeds.

Second, the optimal rank differs by dataset and shot set-
ting. While rank 2 seems sufficient for DTD, it is not asso-
ciated with the best results on the Pets or UCF101 datasets.
The results of LoRA in 2-shot learning on UCF101 at rank
5 initially surpasses rank 2 but soon drop below it once the
model overfits. These behaviors illustrate how peak accu-
racy depends strongly on the dataset, the number of shots,
and the chosen rank.

Finally, the oscillatory accuracy trends underscore
LoRA’s sensitivity to both the rank parameter and the num-
ber of training iterations. Such fluctuations align with our
main critique of LoRA. This method can be unstable in few-
shot scenarios, which makes it difficult to choose a single
hyperparameter setup that generalizes well across tasks.

Figures 4a and 4b illustrate SO’s test accuracy across

training iterations when using importance-based gradient
pruning for 1-shot adaptation of a pretrained CLIP (ViT-
B/16). We set the density ratio to x = 0.05% and refresh
the sparsity support every 7' = 10 iterations, training either
until the loss falls below 0.01 or until 2000 iterations are
reached.

On Oxford Pets (Fig. 4a), the model briefly attains nearly
93% accuracy before declining by about 7% due to overfit-
ting. In UCF101 (Fig. 4b), accuracy rises above 74% but
steadily drops and stabilizes near 64%. These trends con-
firm that, despite high initial gains, importance-based up-
dates can still overfit in few-shot scenarios.

More Results. We include an 8/16-shot comparison with
LoRA in Table 6. Furthermore, we implemented SAFT [1],
a sparse optimization technique with a static support, fol-
lowing the paper. SO outperforms LoRA and SAFT across
all few-shot settings. Unlike SO, SAFT uses a static spar-
sity support and importance-based gradient pruning, which
may accelerate overfitting.

Applicability beyond CLIP Since SO is an optimizer built
on Adam, it is model-agnostic. Besides the VLM experi-
ments, we applied SO to BERT on RTE (GLUE) with 32-
shot (see Table 7).
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Figure 3. LoRA performance in a 4-shot setting on three datasets—DTD, Oxford Pets, and UCF101— using a pretrained CLIP with
ViT-B/16 backbone. The model is trained for at most 2000 iterations or until the loss < 0.01.

Table 6. Few-shot classification performance on 11 datasets with ViT-B/16 backbone. Top-1 accuracy (3 seeds); best in **bold**,
second-best underlined.

Shots  Method ImageNet SUN Aircraft EuroSAT Cars Food Pets Flowers Caltech DTD UCF Average
0 CLIP acm 2 66.7 62.6 24.7 475 653 86.1 89.1 71.4 92.9 436  66.7 65.1
LoRA (CLR "22) 67.3 67.0 25.0 67.5 682 812 905 85.7 92.3 524 729 70.0
1 SAFT (Eccv "24) 68.5 68.7 30.1 70.8 69.7 838 912 81.2 93.3 53.1 759 71.5
SO (Ours) 70.1 70.3 31.5 78.2 71.6 862 933 84.9 94.1 553 764 73.8
LoRA (CLR "22) 67.4 68.3 30.3 81.9 70.1 793 894 90.9 93.7 59.6  76.1 73.4
2 SAFT (&ccv *24) 68.9 70.1 335 81.1 70.0 843 915 87.0 94.5 59.8 783 74.4
SO (Ours) 70.5 72.3 37.2 82.7 744 853 922 91.9 95.3 60.2 80.4 76.6
LoRA (cLR "22) 68.5 69.7 35.2 85.2 748 787 879 94.1 93.9 635 782 75.4
4 SAFT (&ccv "24) 70.0 72.0 35.8 85.5 752 849 927 90.8 95.1 63.6 804 76.9
SO (ours) 714 73.7 38.6 87.17 789 853 924 95.1 95.5 66.4 834 78.9
LoRA (cLRr "22) 69.1 73.3 43.7 84.6 81.4 853 935 94.3 95.7 67.0 83.7 79.2
8 SAFT (Eccv "24) 71.1 73.7 42.5 87.1 793 850 932 94.0 95.6 66.7 83.1 79.3
SO (Ours) 722 72.7 45.6 87.5 82.8 854 93.6 95.6 95.8 67.6 839 80.2
LoRA (cLR 22 71.3 74.8 50.4 90.3 854 858 942 97.0 96.2 71.1  85.7 82.0
16 SAFT (&ccv "24) 72.8 75.4 49.0 90.9 842 859 942 97.0 96.3 71.1 859 82.1
SO (Ours) 73.3 74.0 54.7 92.6 86.8 857 943 97.1 96.4 72.8  86.5 83.2

G. Two-Layer Architecture

In addition to the experiments with CLIP, we evaluate SO
on a simpler two-layer fully-connected network.
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Figure 4. Test accuracy of SO (importance-based gradient prun-
ing) with density ratio xk = 0.05% and update interval ' = 10,
applied to a pretrained CLIP (ViT-B/16) backbone. We train on
a 1-shot setting for Pets and UCF101 until the loss < 0.01 or a
maximum of 2000 iterations.

Table 7. Finetuning BERT (32-shot; stop when £ < 10™%),

Task LoRA SO
r=2 r=4 r=8 r=16 r=0001% k=0.01% ~r=0.1%
RTE 545 542 542 545 57.0 57.0 55.6

G.1. Experimental Methodology

The two-layer fully connected network has an input layer
of size 28 x 28, a single hidden layer of size 128 with
ReLU activations, and an output layer matching the num-
ber of classes.

We conduct two types of experiments: (i) pretraining the
model on MNIST or FMNIST, then fine-tuning on a target
dataset (adaptation), and (ii) training from randomly initial-
ized weights on the target dataset (no adaptation).

We explore both standard classification (full data) and
few-shot learning (limited labeled data) under these sce-
narios. Finally, we include ablation studies that assess
the influence of random-gradient pruning compared with
importance-based gradient pruning.

All weights and biases are trainable, and we apply the
same hyperparameters across all experiments for all meth-
ods. We train until convergence or for a maximum of 3000
iterations, whichever is reached first. In all two-layer net-
work experiments, we use our SO optimizer and the low-
rank baselines with the following default hyperparameters:

Hyperparameter Value

Learning Rate 1x1073

Adam Betas (81, B2) = (0.9, 0.999)
Epsilon () 1x1078

1%, 2%, 5%, 8%, 10%)
30 (iterations)
10~* (early stopping)

Sparsity Ratio (k)
Update Interval (T")
Target Loss

Table 8. Default hyperparameters for two-layer experiments.

We use the following six datasets for all experiments:
e MNIST: A canonical dataset of handwritten digits (0—

9). Each sample is a 28 x 28 grayscale image, compris-
ing 60k training and 10k test examples.

¢ FashionMNIST (FMNIST): Contains 28 x 28
grayscale images of ten clothing and footwear cate-
gories. It serves as a harder drop-in replacement for
MNIST in benchmarking.

 EMNIST (Balanced Split): Extends MNIST to letters
and digits, covering 47 classes of handwritten alphanu-
meric characters. It includes both uppercase and lower-
case letters.

o PathMNIST: A medical image dataset with histopatho-
logical images of colorectal tissue, each labeled among
nine classes (normal tissue, tumor tissue, etc.).

¢ OrganMINISTAxial: Features axial-view organ scans
across eleven abdominal classes (e.g., spleen, kidney,
aorta). Images are grayscale and resized to 28 x 28.

* BloodMNIST: Comprises microscopic blood cell im-
ages from eight categories. Samples are also converted
to a standardized 28 x 28 resolution.

For adaptation, we first pretrain the models on MNIST or
FMNIST. Then, we adapt this pretrained model to several
target datasets. In each scenario, we compare SO to state-
of-the-art low-rank methods (LoRA, ReLoRA, GalLoRE,
etc.) and a fully finetuned baseline (Adam).

We measure classification accuracy on each target
dataset. We report the mean and standard deviation over
10 runs with different random seeds. By presenting results
for multiple tasks, we show the robustness and versatility
of our sparse optimization approach compared to low-rank
and dense baselines.

G.2. Memory Consumption

We evaluate GPU memory usage in a two-layer fully con-
nected network. Tables 9 and 10 compare theoretical mem-
ory consumption, number of variables, and trainable param-
eters for the first and second layers, respectively. Activa-
tions and bias terms are excluded since they are identical
for all methods.

Table 9 reports results for the first layer (W; €
R128%784) © Sparse Optimization (SO) requires fewer ad-
ditional variables than most low-rank methods at a similar
sparsity ratio. Its gradient and optimizer states are smaller
because of dynamic sparsity. In contrast, Adam consumes
the largest memory due to storing full gradients and opti-
mizer states. Overall, SO balances memory and flexibility
by freezing the base weights and updating a small subset of
parameters.

Table 10 presents results for the second layer (W €
R128x128) SO uses considerably fewer gradients and op-
timizer variables, especially for low sparsity. Low-rank
methods show higher memory usage due to extra low-rank
matrices per layer. In contrast, SO’s minimal updates miti-
gate memory overhead. Hence, the results confirm that SO



Table 9. Comparison of theoretical memory usage, number of variables, and trainable parameters for the first layer (W, € R'28X784) of
the two-layer fully connected architecture. Activations and bias terms are excluded because they remain consistent across all methods..

Method Weight (#Vars, Mem.) Gradient (#Vars, Mem.) Opt. States (#Vars, Mem.) #Trainable Total Mem. (MB)
SO (k = 1%) 100352 (0.38M B) 2007 (0.01M B) 3010 (0.01M B) 1003 0.40MB
SO (k = 2%) 100352 (0.38M B) 4014 (0.02M B) 6021 (0.02M B) 2007 0.42MB
SO (k = 5%) 100352 (0.38M B) 10035 (0.04M B) 15052 (0.06 M B) 5017 0.48MB
SO (k = 8%) 100352 (0.38M B) 16056 (0.06M B) 24084 (0.09M B) 8028 0.54MB
SO (k = 10%) 100352 (0.38M B) 20070 (0.08M B) 30105 (0.11M B) 10035 0.57MB
GaLoRE (r = 2) 100352 (0.38M B) 100352 (0.38M B) 3392 (0.01MB) 100352 0.78MB
GaLoRE (r = 4) 100352 (0.38M B) 100352 (0.38M B) 6784 (0.03M B) 100352 0.79MB
GaLoRE (r = 8) 100352 (0.38M B) 100352 (0.38M B) 13568 (0.05M B) 100352 0.82MB
GaLoRE (r = 16) 100352 (0.38M B) 100352 (0.38M B) 27136 (0.10M B) 100352 0.87MB
LoRA (r = 2) 102176 (0.39M B) 1824 (0.01M B) 3648 (0.01M B) 1824 0.41MB
LoRA (r = 4) 104000 (0.40M B) 3648 (0.01M B) 7296 (0.03M B) 3648 0.44MB
LoRA (r =8) 107648 (0.41M B) 7296 (0.03M B) 14592 (0.06 M B) 7296 0.49MB
LoRA (r = 16) 114944 (0.44M B) 14592 (0.06 M B) 29184 (0.11M B) 14592 0.61MB
PiSSA (r =2) 102176 (0.39M B) 1824 (0.01M B) 3648 (0.01M B) 1824 0.41MB
PiSSA (r =4) 104000 (0.40M B) 3648 (0.01M B) 7296 (0.03M B) 3648 0.44MB
PiSSA (r = 8) 107648 (0.41M B) 7296 (0.03M B) 14592 (0.06 M B) 7296 0.49MB
PiSSA (r = 16) 114944 (0.44M B) 14592 (0.06M B) 29184 (0.11M B) 14592 0.61IMB
DoRA (r = 2) 102304 (0.39M B) 1952 (0.01M B) 3904 (0.01M B) 1952 0.41MB
DoRA (r = 4) 104128 (0.40M B) 3776 (0.01M B) 7552 (0.03M B) 3776 0.44MB
DoRA (r = 8) 107776 (0.41M B) 7424 (0.03M B) 14848 (0.06 M B) 7424 0.50MB
DoRA (r = 16) 115072 (0.44M B) 14720 (0.06 M B) 29440 (0.11M B) 14720 0.61MB
ReLoRA (r = 2) 102176 (0.39M B) 1824 (0.01M B) 3648 (0.01M B) 1824 0.41MB
ReLoRA (r =4) 104000 (0.40M B) 3648 (0.01M B) 7296 (0.03M B) 3648 0.44MB
ReLoRA (r = 8) 107648 (0.41M B) 7296 (0.03M B) 14592 (0.06 M B) 7296 0.49MB
ReLoRA (r = 16) 114944 (0.44M B) 14592 (0.06M B) 29184 (0.11M B) 14592 0.61MB
VeRA (r = 2) 102306 (0.39M B) 130 (0.00M B) 260 (0.00M B) 130 0.39MB
VeRA (r =4) 104132 (0.40M B) 132 (0.00M B) 264 (0.00M B) 132 0.40MB
VeRA (r = 8) 107784 (0.41M B) 136 (0.00M B) 272 (0.00M B) 136 0.41MB
VeRA (r = 16) 115088 (0.44M B) 144 (0.00M B) 288 (0.00M B) 144 0.44MB
Adam 100352 (0.38M B) 100352 (0.38M B) 200704 (0.77M B) 100352 1.53MB

reduces memory requirements.

G.3. Results

Effectiveness in Classification. Table 11 presents classi-
fication performance when training from scratch (no pre-
training) on each target dataset. Adam achieves slightly
higher accuracy on some tasks (e.g., EMNIST, MNIST), but
it often performs comparably or worse on others. Mean-
while, SO consistently outperforms GaLoRE (r = 2-
16) on datasets like OrganMNISTAxial, BloodMNIST, and
BreastMNIST. For instance, SO (v = 1% or 2%) gener-
ally improves upon the low-rank methods while retaining
fewer trainable parameters. This highlights the ability of
optimizer.

Tables 12 and 13 report results after pretraining on
MNIST or FMNIST, respectively. All methods benefit from
pretraining, and Adam attains strong performance. How-
ever, our SO optimizer often yields higher or comparable
accuracy to the low-rank baselines across most datasets, es-
pecially for moderate « values (e.g., 1%—5%). In Organ-
MNISTAXxial or BloodMNIST, for instance, SO frequently
exceeds or matches GaLoRE and ReLLoRA, while also pre-
serving memory efficiency (Sec. G.2).

Tables 14, 15, and 16 compare two pruning strate-
gies: importance-based (selecting the largest gradients)
vs. randomness-based (selecting random gradients). When

training from scratch or adapting a pretrained model, we ob-
serve that randomness-based pruning generally outperforms
its importance-based counterpart, particularly at lower .
This supports our hypothesis that sparse updates driven by
random gradient selection mitigate overfitting more effec-
tively than always choosing high-magnitude gradients.

Effectiveness in Few-Shot Learning. Table 17 shows
results when training from scratch on just a few labeled
samples per class (4, 8, and 16 shots). GaLLoRE tends to un-
derfit for low-shot regimes, especially when 7 is small. In
contrast, SO (x < 2%) achieves higher accuracy on datasets
such as EMNIST, MNIST, and BreastMNIST. For instance,
at 4 shots, SO surpasses GaLLoRE by up to 2-3% in EM-
NIST and BreastMNIST. This performance is probably at-
tributed to the capacity of SO to mitigate overfitting in lim-
ited data situations, even without pretraining.

Tables 18 and 19 provide few-shot results after pretrain-
ing on MNIST or FMNIST, respectively. All methods im-
prove considerably over the no-adaptation scenario, as the
pretrained backbone offers a strong initialization. Neverthe-
less, SO still outperforms many low-rank baselines (LoRA,
ReLoRA, GaloRE) at 4, 8, or 16 shots, often matching or
exceeding Adam. The benefits of sparsity persist in this set-
ting, allowing SO to avoid overfitting.

Tables 20-22  compare importance-based  vs.
randomness-based gradient pruning in few-shot sce-



Table 10. Comparison of theoretical memory consumption, number of variables, and trainable parameters for the second layer (W> €

R!28%128) of the two-layer fully connected architecture. Activations and bias terms are excluded since they remain unchanged across
methods.
Method Weight (#Vars, Mem.)  Gradient (#Vars, Mem.)  Opt. States (#Vars, Mem.) #Trainable Total Mem. (MB)
SO (k = 0.01) 16384 (0.06M B) 327(0.00M B) 491 (0.00M B) 163 0.07MB
SO (k = 0.02) 16384 (0.06M B) 655 (0.00M B) 983 (0.00M B) 327 0.07MB
SO (k = 0.05) 16384 (0.06M B) 1638 (0.01M B) 2457 (0.01M B) 819 0.08MB
SO (k = 0.08) 16384 (0.06M B) 2621 (0.01M B) 3932 (0.01M B) 1310 0.09MB
SO (k = 0.1) 16384 (0.06M B) 3276 (0.01M B) 4915 (0.02M B) 1638 0.09MB
GaLoRE (r = 2) 16384 (0.06M B) 16384 (0.06M B) 768 (0.00M B) 16384 0.13MB
GaLoRE (r = 4) 16384 (0.06M B) 16384 (0.06M B) 1536 (0.01M B) 16384 0.13MB
GaLoRE (r = 8) 16384 (0.06M B) 16384 (0.06M B) 3072 (0.01M B) 16384 0.14MB
GaLoRE (r = 16) 16384 (0.06M B) 16384 (0.06M B) 6144 (0.02M B) 16384 0.15MB
LoRA (r = 2) 16896 (0.06M B) 512 (0.00M B) 1024 (0.00M B) 512 0.07MB
LoRA (r = 4) 17408 (0.07M B) 1024 (0.00M B) 2048 (0.01M B) 1024 0.08MB
LoRA (r = 8) 18432 (0.07M B) 2048 (0.01M B) 4096 (0.02M B) 2048 0.09MB
LoRA (r = 16) 20480 (0.08M B) 4096 (0.02M B) 8192 (0.03M B) 4096 0.12MB
PiSSA (r = 2) 16896 (0.06M B) 512 (0.00M B) 1024 (0.00M B) 512 0.07MB
PiSSA (r = 4) 17408 (0.07M B) 1024 (0.00M B) 2048 (0.01M B) 1024 0.08MB
PiSSA (r = 8) 18432 (0.07M B) 2048 (0.01M B) 4096 (0.02M B) 2048 0.09MB
PiSSA (r = 16) 20480 (0.08M B) 4096 (0.02M B) 8192 (0.03M B) 4096 0.12MB
DoRA (r = 2) 17024 (0.06M B) 640 (0.00M B) 1280 (0.00M B) 640 0.07MB
DoRA (r = 4) 17536 (0.07M B) 1152 (0.00M B) 2304 (0.01M B) 1152 0.08MB
DoRA (r = 8) 18560 (0.07M B) 2176 (0.01M B) 4352 (0.02M B) 2176 0.10MB
DoRA (r = 16) 20608 (0.08M B) 4224 (0.02M B) 8448 (0.03M B) 4224 0.13MB
ReLoRA (r = 2) 16896 (0.06M B) 512 (0.00M B) 1024 (0.00M B) 512 0.07MB
ReLoRA (r = 4) 17408 (0.07M B) 1024 (0.00M B) 2048 (0.01M B) 1024 0.08MB
ReLoRA (r = 8) 18432 (0.07M B) 2048 (0.01M B) 4096 (0.02M B) 2048 0.09MB
ReLoRA (r = 16) 20480 (0.08M B) 4096 (0.02M B) 8192 (0.03M B) 4096 0.12MB
VeRA (r = 2) 17026 (0.06M B) 130 (0.00M B) 260 (0.00M B) 130 0.07MB
VeRA (r = 4) 17540 (0.07M B) 132 (0.00M B) 264 (0.00M B) 132 0.07MB
VeRA (r = 8) 18568 (0.07M B) 136 (0.00M B) 272 (0.00M B) 136 0.07MB
VeRA (r = 16) 20624 (0.08M B) 144 (0.00M B) 288 (0.00M B) 144 0.08MB
Adam 16384 (0.06M B) 16384 (0.06M B) 32768 (0.12M B) 16384 0.25MB

narios. We observe that random gradient selection provides
better accuracy, especially at lower «. By avoiding ex-
clusive reliance on large-magnitude updates, SO’s sparse
updates reduce overfitting risk.

Full-Rank Learning. Figures 5-16 illustrate how ran-
dom gradient pruning maintains a high-dimensional update
space, effectively enabling full-rank learning despite ex-
treme sparsity.

In rank evolution plots, the gradient rank for random
pruning remains close to the full rank throughout train-
ing, whereas the gradient rank for importance-based prun-
ing often settles to a lower value. This outcome sug-
gests that the random selection of gradient entries explores
more diverse directions in parameter space, thereby pre-
serving expressive capacity. Further, the loss curves con-
firm that random pruning converges stably and less rapidly,
while importance-based pruning risks collapsing updates
into fewer directions, potentially causing overfitting. Ran-
dom gradient pruning causes a slow learning process but is
more stable and less prone to overfitting, while importance-
based gradient learning leads to fast learning and potential
overfitting.

Overall, these figures illustrate that sparsity —even at
very low-density ratios— does not diminish the fundamen-
tal rank of the gradient and previous results confirm that

sparsity does not lower the learning capacity.
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Table 11. Classication performance on 7 datasets with a two-layer fully-connected architecture. Results are the average top-1 accuracy of
10 executions =+ standard deviation.

Model EMNIST MNIST FMNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMINIST
GaLoRE (r = 2) 80.64 +0.17  96.06 +o0.12  86.35 +0.25  49.41 +0.97 67.85 +0.48 75.57 +0.35 77.37 +1.35
GaLoRE (r =4) 80.80 +0.16 95.89 +0.12 86.31 +0.20  53.27 F0.91 68.32 10.44 76.01 4-0.22 77.88 f0.87
GaLoRE (r = 8) 81.29 +0.25 96.04 £o0.16 86.68 £0.28  53.74 £0.94 69.19 +o0.38 77.54 +0.32 78.65 +1.28
GaLoRE (r = 16) 81.74 £0.28 97.07 +0.13 87.48 +0.27  53.73 +1.44 70.56 +0.40 77.96 +0.38 78.53 +1.47
SO (k = 1%) 81.29 +0.18  97.16 +0.12 87.46 +0.19  53.63 F0.64 72.67 £0.35 78.89 40.42 79.62 +1.06
SO (k = 2%) 81.55 +0.16  97.18 *0.10 87.67 +0.28  53.43 F0.82 72.19 £o.61 79.14 40.45 78.78 £+1.16
SO (k = 5%) 81.63 +0.25 97.24 +0.09 87.66 £0.36  54.41 +0.89 72.11 40.41 78.81 +o0.37 78.65 +1.79
SO (k = 8%) 81.50 +0.31  97.32 +0.14 87.52 +0.30  54.20 *1.02 71.85 40.45 78.74 t0.60 77.76 £1.00
SO (k = 10%) 81.40 +0.38 97.36 £0.18 87.78 £0.26  52.65 *1.06 71.74 o0.56 78.38 40.41 77.31 +1.50
Adam 82.19 +0.53 97.53 £0.14 88.08 £0.21  52.19 +1.25 72.38 t0.47 78.49 t0.38 77.56 0.86

Table 12. Classication performance on 6 target datasets after pretraining on MNIST with a two-layer fully-connected architecture. Results
are the average top-1 accuracy over 10 executions =+ standard deviation.

Model EMNIST FMNIST PathMNIST OrganMNISTAxial BloodMINIST BreastMNIST
LoRA (r = 2) 75.85 4+0.29 84.96 +0.18  51.24 £0.73 67.11 +o0.81 76.06 £0.18 77.37 +1.32
LoRA (r =4) 78.51 +0.16  85.93 +0.26  52.03 Lo.77 69.13 £o.62 77.09 to0.56 78.21 +1.15
LoRA (r = 38) 80.52 +0.15 86.68 +0.28  52.28 40.94 71.70 40.53 77.76 +0.24 77.95 +0.92
LoRA (r = 16) 81.82 +0.24 87.03 +0.26 52.58 +1.36 71.92 4-0.46 78.00 £0.36 77.63 +1.26
ReLoRA (r =2) 78.67 +0.17  85.58 +0.20  50.19 $0.60 70.62 $0.37 75.79 40.44 78.21 +1.25
ReLoRA (r = 4) 78.76 0.18  85.65 +0.20  50.43 £0.43 70.65 t0.45 76.90 t0.47 78.01 £1.32
ReLoRA (r = 8) 78.73 +0.17  85.60 +0.11  50.62 $0.45 70.80 40.55 78.03 £0.45 77.82 +1.52
ReLoRA (r =16) 78.81 £o0.16 85.56 +0.14  50.54 +0.56 70.55 40.49 78.20 £0.41 77.44 +1.37
GaLoRE (r = 2) 80.26 +0.23 86.40 +0.23  50.50 Fo0.70 70.71 40.38 76.43 $0.60 78.53 +o0.72
GaLoRE (r =4) 81.02 +0.30 86.71 £0.21  50.79 £0.93 71.44 +0.41 77.24 +0.39 80.45 +1.86
GaLoRE (r = 8) 81.60 +0.19 87.08 £0.21  51.36 *o0.77 71.98 40.43 77.97 £+0.26 82.56 40.94
GaLoRE (r = 16) 82.04 £o0.22 87.63 £0.23  52.02 £o0.79 71.95 t0.54 78.84 +0.45 82.56 £1.31
SO (k = 1%) 81.64 +o0.25 87.55 £0.21  52.17 £0.94 74.34 +0.69 79.21 o0.25 82.31 £1.32
SO (k = 2%) 81.82 +0.09 87.64 +0.14  52.91 to0.90 74.20 t0.22 79.56 £0.31 82.18 +1.43
SO (k = 5%) 81.99 +0.11  87.68 +0.23  53.14 £1.00 73.67 £0.47 79.76 £0.53 82.37 +1.38
SO (k = 8%) 81.82 +o0.27 87.74 £o021 53.18 £1.23 73.64 to0.56 79.66 t0.43 81.99 +1.23
SO (k = 10%) 81.73 +0.23 87.55 +0.31  52.97 +1.11 73.20 t0.47 79.47 t+0.60 80.77 +1.03

Adam 82.47 +0.35 88.03 0.17  51.59 to0.92 73.23 +0.42 79.42 t0.51 82.05 +1.34




Table 13. Classication performance on 6 target datasets after pretraining on FMNIST with a two-layer fully-connected architecture. Results
are the average top-1 accuracy over 10 executions =+ standard deviation.

Model EMNIST MNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
LoRA (r = 2) 74.83 +0.18  94.80 +0.25  50.69 +o.70 68.14 +0.34 74.89 t0.46 77.95 +1.93
LoRA (r =4) 77.44 +0.20 95.73 +0.15  50.43 £0.54 69.97 4-0.41 76.40 40.21 78.21 £1.15
LoRA (r = 8) 79.59 +0.16  96.32 +0.12  50.73 £1.09 70.73 +o0.26 76.30 t0.58 78.59 +0.96
LoRA (r = 16) 81.18 +0.14 96.48 +o0.16  51.52 F0.61 71.17 +o0.55 76.89 to0.66 78.65 +1.46
ReLoRA (r =2) 77.79 +0.18  95.39 +0.12  49.99 40.39 70.63 10.38 74.93 40.44 78.01 £1.55
ReLoRA (r =4) 77.74 +0.24  95.29 +0.14  50.01 F0.59 70.49 Fo0.37 75.97 40.48 78.14 f0.97
ReLoRA (r = 8) 77.76 £o.22  95.36 +0.10  50.18 +o0.62 70.62 +0.42 76.45 +0.48 79.42 +1.61
ReLoRA (r =16) 77.79 +0.20 95.44 +0.13  49.82 +0.40 70.70 +0.35 76.59 to0.51 78.27 +1.53
GaLoRE (r = 2) 80.00 +0.23 95.86 +0.16  50.21 F0.56 70.64 +0.36 75.64 +0.46 79.68 +1.46
GaLoRE (r = 4) 80.41 +0.36  96.15 +0.16  50.46 F-0.90 71.15 F0.59 76.55 40.46 78.91 £1.47
GaLoRE (r = 8) 81.07 £0.24 96.53 £o0.08 51.84 F0.62 71.23 +0.43 77.66 +0.30 79.55 +1.73
GaLoRE (r = 16) 81.61 o021 97.08 £0.20 52.20 *o0.61 71.99 to0.57 78.48 +0.40 79.62 +2.62
SO (k = 1%) 81.17 0.16  97.07 +0.13  52.14 40.59 72.94 +0.35 77.64 +0.41 79.94 +1.41
SO (k = 2%) 81.33 £o.25 97.32 £o0.08  52.82 F0.49 73.39 +o0.28 78.13 f0.35 80.13 +1.07
SO (k = 5%) 81.58 +0.29 97.47 +0.13  53.22 fo0.77 73.23 +0.55 78.55 40.43 80.58 +1.92
SO (k = 8%) 81.58 £0.34  97.44 +0.09  53.41 *1.05 72.93 t0.37 78.47 0.53 80.00 *1.40
SO (k = 10%) 81.35 032 97.43 £o.10  53.27 £1.17 73.07 *o0.37 78.42 t-0.47 79.94 +1.11
Adam 82.08 £0.30 97.69 £o0.11  52.36 £0.69 72.88 t0.56 79.04 0.43 80.71 £1.26

Table 14. Classication performance on 7 datasets with a two-layer fully-connected architecture. Results are the average top-1 accuracy
over 10 executions =+ standard deviation.

Strategy EMNIST MNIST FMNIST  PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
Importance-Based Gradient Pruning

SO (k = 1%) 76.81 +0.45 95.05 +0.44 85.42+0.38 50.22 £1.23 67.34 £o0.84 74.60 to0.72 77.63 +2.28
SO (k = 2%) 78.52 +0.78 95.46 +0.37 86.29 +0.37  52.18 £0.48 67.90 +0.31 75.18 t0.59 79.55 +1.56
SO (k = 5%) 80.05 +0.23 96.27 +0.26 86.70 +0.20  53.19 £0.77 68.17 +0.75 75.68 10.62 78.53 +1.44
SO (k = 8%) 80.59 +0.38  96.51 +0.20 86.94 +0.33  53.39 F0.76 69.33 t0.66 75.88 +0.92 76.92 +2.48
SO (k =10%) 80.20 0.45 96.55 +0.20 87.30 *0.3¢4  53.65 £0.50 69.89 +0.55 76.35 t+0.34 77.05 +6.52
Random Gradient Pruning

SO (k = 1%) 81.29 +0.18 97.16 +0.12 87.46 £0.19  53.63 to0.64 72.67 £0.35 78.89 40.42 79.62 £1.06
SO (k = 2%) 81.55 +0.16  97.18 0.10 87.67 +0.28  53.43 t0.82 72.19 fo0.61 79.14 t+o0.45 78.78 +1.16
SO (k = 5%) 81.63 +0.25 97.24 +0.09 87.66 *0.36  54.41 F0.89 72.11 +o0.41 78.81 t+0.37 78.65 +1.79
SO (k = 8%) 81.50 +0.31  97.32 +0.14 87.5240.30 54.20 *1.02 71.85 %0.45 78.74 F0.60 77.76 1.00
SO (k = 10%) 81.40 £0.38 97.36 £0.18 87.78 £0.26  52.65 £1.06 71.74 t+0.56 78.38 +0.41 77.31 +1.50

Table 15. Classication performance on 6 target datasets after pretraining on MNIST with a two-layer fully-connected architecture. Results
are the average top-1 accuracy over 10 executions =+ standard deviation.

Strategy EMNIST FMNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
Importance-Based Gradient Pruning

SO (k = 1%) 79.89 +0.26 86.54 +0.3¢  51.42+1.51 69.82 +0.46 76.09 t0.42 81.35 £1.89
SO (k = 2%) 80.12 +0.33 86.54 +0.38  51.15 *2.15 69.95 +0.80 76.17 0.47 81.35 £1.56
SO (k = 5%) 80.23 £o0.45 87.08 £0.28 51.54 +1.75 70.60 *o0.68 76.45 F0.55 81.41 +1.22
SO (k = 8%) 80.50 £0.41 87.41 £o0.28  53.23 +1.22 71.01 fo0.53 77.34 +0.50 82.05 £1.81
SO (k = 10%) 80.80 4-0.35 87.14 +0.30  53.66 F-0.87 71.08 f0.57 77.27 +o0.77 80.77 £2.20
Random Gradient Pruning

SO (k = 1%) 81.64 £o0.25 87.55 021  52.17 £0.94 74.34 +0.69 79.21 40.25 82.31 +1.32
SO (k = 2%) 81.82 +0.09 87.64 +0.14  52.91 f0.90 74.20 £0.22 79.56 +0.31 82.18 +1.43
SO (k = 5%) 81.99 +0.11  87.68 +0.23  53.14 £1.00 73.67 £0.47 79.76 £0.53 82.37 +1.38
SO (k = 8%) 81.82 o027 87.74 £021 53.18 £1.23 73.64 +o0.56 79.66 t0.43 81.99 £1.23

SO (k = 10%) 81.73 40.23 87.55+0.31  52.97 +1.11 73.20 £0.47 79.47 t+0.60 80.77 £1.03




Table 16. Classication performance on 6 target datasets after pretraining on FMNIST with a two-layer fully-connected architecture. Results
are the average top-1 accuracy over 10 executions =+ standard deviation.

Strategy EMNIST MNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
Importance-Based Gradient Pruning

SO (k = 1%) 79.13 045 96.05 +£o0.16  51.80 £0.92 70.15 +0.53 75.95 t0.60 79.42 +2.04
SO (k = 2%) 79.58 +0.36  96.16 +0.14  52.25 40.95 70.23 +0.55 76.00 4-0.89 79.04 +1.81
SO (k = 5%) 80.21 +0.32  96.27 +0.41  52.13 £2.10 70.33 £0.54 76.81 fo0.61 79.62 £1.90
SO (k = 8%) 80.42 £0.42  96.60 £0.20  52.26 +1.24 71.05 to0.77 76.83 +0.96 78.59 +1.72
SO (k = 10%) 80.69 0.30 96.71 £0.40  53.64 4-0.93 71.50 £0.60 77.20 t0.66 79.29 +1.77
Random Gradient Pruning

SO (k = 1%) 81.17 £o0.16  97.07 £0.13  52.14 F0.59 72.94 +0.35 77.64 40.41 79.94 +1.41
SO (k = 2%) 81.33 £o.25 97.32 £0.08  52.82 40.49 73.39 t0.28 78.13 +0.35 80.13 £1.07
SO (k = 5%) 81.58 +0.29 97.47 +0.13  53.22 Fo0.77 73.23 £0.55 78.55 40.43 80.58 +1.92
SO (k = 8%) 81.58 £0.34 97.44 £o0.09  53.41 £1.05 72.93 £o0.37 78.47 f0.53 80.00 *£1.40
SO (k = 10%) 81.3540.32 97.43 +0.10  53.27 1.7 73.07 0.37 78.42 +0.47 79.94 +1.11

Table 17. Few-shot classification performance on 7 datasets using a two-layer fully-connected architecture without pretraining. Results are
the average top-1 accuracy of 10 executions =+ standard deviation.

Shots Model EMNIST MNIST FMNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
GaLoRE (r =2) 28.71 +1.75 54.79 +3.09 59.38 +2.33  26.20 £3.54 39.49 +1.59 47.75 +3.64 58.46 +9.95
GaLoRE (r =4) 27.124185 56.71 +3.98 58.99 £2.96  23.66 £3.23 37.90 £2.45 46.08 £2.46 57.82 £10.08

4 GaLoRE (r =8) 2894 +1.82 62.78 £3.06 60.57 £2.48  22.26 +2.99 39.59 +1.55 43.85 £3.26 58.33 £10.47

GaLoRE (r = 16) 32.77 151  62.80 +3.03 61.56 +2.48  21.49 £3.13 40.37 £+2.03 44.76 +2.98 57.76 £10.32
SO (k = 1%) 34.17 £1.83 63.20 +3.03 61.15 +2.78  26.61 +5.09 40.72 +1.79 46.47 +2.64 57.88 t+11.01
SO (k = 2%) 34.38 £1.81 63.14 £3.10 61.32 4+2.79  25.77 +4.08 41.25 +2.33 45.94 +2.47 57.12 t+10.52
SO (k = 5%) 34.07 £1.84 62.98 £2.52  61.81 £2.21  22.93 1-4.88 40.92 £2.37 46.94 £2.50 56.86 £10.26
SO (k = 8%) 33.93 £1.73 63.59 +3.10 61.60 £2.40  24.30 +4.84 40.87 £1.91 46.74 +2.51 57.12 +9.87

SO (k = 10%) 34.22 180 63.0243.32 61.16 £2.22  21.27 £2.96 40.08 £1.87 45.42 +2.24 58.46 +10.54
Adam 33.71 £1.98 63.73 £2.64 61.07 £2.07  20.77 +3.14 39.42 £2.04 47.64 +2.54 58.0 £10.40
GalLoRE (r =2) 35.20+1.28 66.16 +3.45 64.66 +1.66 25.52 £3.48 43.77 £1.50 51.21 £3.74 63.01 +9.18
GalLoRE (r =4) 33.85+1.83 66.06+3.11 65.51 +1.86 23.38 £2.68 43.19 £2.24 51.04 £3.86 63.14 £8.63

8 GaloRE (r=8) 35.71+1.25 71.64 4248 67.18 £1.50 22.47 £3.38 44.18 +2.03 49.01 +2.66 62.82 +8.43

GaLoRE (r =16) 40.98 +1.15 73.00 £2.00 67.50 1.10  21.96 £3.50 45.31 £+2.05 49.39 £3.10 63.78 £8.73
SO (k = 1%) 41.79 +1.45 72.09 £2.36  67.18 £1.22  26.79 t-4.63 46.65 £1.47 51.66 £3.33 64.10 £8.19
SO (k = 2%) 41.78 £1.27  72.34 248 67.42+1.32  25.39 £3.78 46.66 £2.43 51.66 £2.96 63.46 £7.57
SO (k = 5%) 41.81 +£1.37  72.22 +2.72  67.20 £1.38  24.08 +3.75 46.36 +1.72 52.03 £3.40 63.33 £8.64
SO (k = 8%) 41.69 +£1.19  71.86 +2.47 67.11 £1.24  23.33 +3.63 45.87 +1.87 52.16 £3.60 63.59 £8.34

SO (k = 10%) 41.31 +158 72.52 4237 66.89 +1.74 23.14 +2.56 45.98 +1.99 51.98 £3.25 63.27 £7.51
Adam 41.93 +1.34  72.88 +2.38 67.37 £1.54  20.79 +2.32 44.85 +1.91 52.81 £3.21 63.01 £10.13
GaLoRE (r =2) 43.66 +o.74 73.27 +2.72 68.89 +1.38  24.87 +3.11 48.89 +1.52 54.36 £2.36 62.31 £7.12
GaLoRE (r =4) 41.50 +0.72 74.20 +2.57 69.65 +1.58  23.84 £2.17 48.26 +1.36 54.44 +1.97 61.41 +7.74

16 GaLoRE (r =8) 42.64 +0.85 77.87 4171 71.47+134 23.48 £1.62 49.17 +1.84 52.40 £1.66 61.09 £8.85

GaLoRE (r = 16) 47.66 +0.68 79.31 +1.53 72.26 £1.25  22.90 £2.21 51.03 £1.89 54.16 £1.34 60.90 £8.58
SO (k = 1%) 48.60 +0.68 78.99 £1.39 71.94+1.57  27.21 255 52.85 £1.19 55.93 £1.68 62.12 £9.50
SO (k = 2%) 48.38 +0.49 78.64 +1.66 71.90 £1.24  26.77 +2.35 52.15 £1.43 55.51 £2.19 62.69 £8.24
SO (k = 5%) 48.45 +0.82 79.45+1.46 71.44+166 27.06 £2.65 51.77 £1.62 56.38 +1.80 61.15 +9.45
SO (k = 8%) 48.74 o071 79.17 £1.58  71.79+1.43  25.25 +1.84 51.71 £1.12 56.71 £1.81 63.97 £8.25

SO (k = 10%) 48.77 £1.07  79.06 £1.53  71.90 £1.3¢  25.50 +2.39 51.77 £1.19 56.81 £1.58 60.51 £10.17

Adam 48.80 +0.60 79.29 +1.59 T71.97 £1.48 2298 +1.18 50.76 £1.48 56.24 £2.39 61.54 +6.43




Table 18. Few-shot classification performance on 6 datasets using a two-layer fully-connected architecture after pretraining on MNIST.
Results are the average top-1 accuracy over 10 executions =+ standard deviation.

Shots Model EMNIST FMNIST  PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
LoRA (r =2) 28.02 +1.32  55.36 +2.30  26.69 +-2.21 31.73 +2.66 45.21 +4.09 61.28 £7.25
LoRA (r =4) 28.44 +1.32  55.21 +2.97  26.81 2.45 34.10 %2.05 45.79 £2.60 60.71 £8.61

4 LoRA (r = 8) 29.08 +1.23  56.70 £2.62  27.50 £2.72 34.87 £1.70 45.41 £2.47 60.13 £8.21
LoRA (r = 16) 29.14 +1.42  55.60 £2.80 27.19 t1.61 34.74 +1.12 46.23 £3.38 60.19 £8.96

ReLoRA (r =2) 27.8441.42 55.36 £2.30 26.69 £2.21 31.73 +2.66 44.61 £3.36 60.90 +9.48
ReLoRA (r =4) 28.28 £1.45 55.21 £2.97  26.81 245 34.10 £2.05 45.52 £2.29 60.64 £7.82
ReLoRA (r =8) 28.89+1.32 56.70 262  27.50 +2.72 34.87 t1.70 45.14 £3.23 59.87 +7.60
ReLoRA (r =16) 29.07 £1.43 55.60 £2.80  27.19 £1.61 34.74 +1.12 45.71 £2.90 59.29 +38.32
GaLoRE (r =2) 29.86 +1.38 56.93 £2.74  26.23 £2.91 33.46 £1.89 44.25 £3.43 59.81 +8.43
GaLoRE (r =4) 30.47 +1.48 58.63 +2.46 25.13 +2.36 34.30 +1.00 45.88 +2.69 60.00 £7.70
GaLoRE (r =8) 30.89 +1.65 59.58 +2.63 23.19 *1.68 35.46 +2.05 44.42 +3.30 61.99 +8.81
GaLoRE (r =16) 31.87 +1.61 58.98 +2.78  23.09 +2.16 35.19 +o0.91 43.82 £2.78 60.90 +9.55
SO (k = 1%) 31.18 +1.53  57.36 2.54  27.90 1.35 33.67 +1.79 43.86 £2.07 60.77 +6.91
SO (k = 2%) 31.38 £1.48 57.82+2:54  27.29 £2.03 34.73 £1.80 44.13 £2.37 60.96 £6.95
SO (k = 5%) 31.69 +1.16  58.36 +2.57  25.17 +1.70 35.60 +2.16 44.76 £2.73 60.58 £7.93
SO (k = 8%) 32.22 +1.15 58.80 +2.68  25.36 +3.25 35.78 +1.66 44.64 £2.10 61.99 £7.72
SO (k = 10%) 31.58 +1.45 58.87 +£2.33 24.39+1.71 36.01 £1.48 45.02 £2.29 60.77 £7.75
Adam 32.46 +1.66  59.60 £2.70  22.22 +2.32 38.46 £2.92 46.21 £3.46 59.55 +9.51
LoRA (r =2) 36.70 +1.02  59.86 £1.70  26.62 £2.47 37.21 +1.76 51.45 +3.25 65.45 +6.55
LoRA (r =4) 37.90 +0.92  61.61 1.44  28.55 +2.24 38.25 +2.02 52.87 13.43 65.45 £5.82

8 LoRA (r = 8) 38.38 +1.16  62.03 £1.03  28.76 £3.17 39.52 £2.21 53.04 +2.82 64.29 £7.44

LoRA (r = 16) 38.62 +0.85 61.72+1.15  28.04 £2.79 39.69 +1.99 53.04 +3.26 65.00 £8.04
ReLoRA (r =2) 36.61 +1.08 59.86 £1.70  26.62 £2.47 37.21 +1.76 50.83 +3.77 64.74 £77.8
ReLoRA (r =4) 37.77+o0.95 61.61 £1.44  28.55 +2.24 38.25 £2.02 52.20 +3.79 65.00 £6.16
ReLoRA (r =8) 38.20 +1.42 62.03 £1.03  28.76 £3.17 39.52 +2.21 53.02 £3.25 65.51 +7.64

ReLoRA (r =16) 38.58 +0.86 61.72£1.15 28.04 £2.79 39.69 +1.99 53.10 %3.50 64.55 +5.89
GaLoRE (r =2) 3891 +1.04 62.36 £1.48 27.24 +2.50 39.02 £1.87 51.22 +3.20 63.59 £7.91
GaLoRE (r =4) 39.57 090 63.60 +1.51  25.09 4-2.54 40.06 *+1.13 51.52 42.39 64.94 +5.73
GaLoRE (r =8) 39.79 +1.08 64.06 +0.98  24.99 4-2.38 40.73 £1.40 49.89 +2.75 62.76 £8.85
GaLoRE (r =16) 41.42+1.00 65.25+1.85 24.29 4+2.17 41.08 £2.34 49.72 £2.54 63.97 £5.27
SO (k = 1%) 40.11 £1.09  62.62 +1.06  30.10 *2.60 39.62 +1.27 51.08 +-2.88 63.27 £5.68
SO (k = 2%) 40.75 £0.98 63.29 £1.15  29.57 £2.19 40.45 £1.53 51.10 42.93 63.78 +6.62
SO (k = 5%) 41.14 +o.97 63.71 £1.19  27.79 +2.47 40.88 £1.20 51.45 +3.05 63.91 £8.36
SO (k = 8%) 41.17 £1.12  64.71 118  26.80 +2.24 41.09 +1.23 51.76 +3.13 64.87 £7.45
SO (k = 10%) 41.39 £1.01  64.26 £0.96  26.46 £2.49 41.57 £1.04 51.65 +3.46 63.53 £7.02
Adam 42.39 +1.26 65.49 £1.36  23.83 +2.34 43.25 £1.59 52.95 +3.11 64.49 £8.93

LoRA (r =2) 45.15+0.98 65.73 £3.32  29.11 42.49 40.56 £2.89 54.11 +1.62 62.50 £9.17

LoRA (r =4) 46.46 +0.67 67.36 £1.11  28.90 %2.48 44.60 +1.73 55.28 +2.37 61.99 +7.44

16 LoRA (r = 8) 47.49 £0.96 68.14 £0.97  29.59 £1.50 46.38 £2.12 56.46 +2.85 61.92 £8.63

LoRA (r = 16) 48.07 £1.01  68.63 £1.27  29.75 +1.99 45.68 £1.57 55.29 +2.53 63.01 £9.41
ReLoRA (r =2) 44.91 +0.99 65.73 334  29.11 42.49 40.56 +2.89 53.88 *1.87 62.50 £9.17
ReLoRA (r =4) 46.38 £0.63 67.36 £1.11  28.90 %2.48 44.60 £1.73 55.59 +2.13 61.86 £8.34
ReLoRA (r =8) 47.49+0.99 68.29+136 29.67 +2.42 46.40 £1.81 55.14 +2.13 61.86 £8.34

ReLoRA (r =16) 47.68 £0.94 68.63 £1.27  29.75 £1.99 45.68 +1.57 55.77 +2.21 61.99 £8.00
GaloRE (r =2) 47.1540.88 68.05+1.33  28.63 +2.87 46.52 £2.33 55.61 +2.39 61.92 £8.58
GaLoRE (r =4) 48.13+1.13 69.47 152  26.63 +1.83 46.75 £1.75 55.13 £2.30 61.41 +8.83
GaLoRE (r =8) 48.47 £1.03 69.97 £1.83  26.26 +1.63 47.41 +1.64 54.57 +1.23 61.22 +10.40
GaLoRE (r =16) 50.30 0.67 70.36 £1.59  26.73 +1.57 47.96 £1.78 54.42 +1.41 62.05 £8.01
SO (k = 1%) 49.33 +o.76  68.91 £1.63  32.79 +1.99 47.86 +1.65 55.70 +1.31 61.28 +10.38
SO (k = 2%) 49.95 +0.68 69.55 +1.43  31.72 +2.13 48.09 +2.05 56.01 +1.14 62.88 £7.74
SO (k = 5%) 50.59 +0.64 69.92 +1.66 30.21 £2.25 48.27 £1.99 56.16 +1.47 61.92 £8.78
SO (k = 8%) 50.55 +0.81  70.16 +£1.77  29.34 £1.57 49.42 +1.78 56.41 +1.31 61.03 +10.07
SO (k = 10%) 50.68 +0.56  70.30 £1.66  28.04 £1.87 49.23 +1.67 56.41 +1.19 62.18 +10.51

Adam 51.12 +0.84  70.51 +1.60  25.94 +1.28 50.09 +1.59 56.50 +1.97 61.99 +10.34




Table 19. Few-shot classification performance on 6 datasets using a two-layer fully-connected architecture after pretraining on FMNIST.
Results are the average top-1 accuracy over 10 executions =+ standard deviation.

Shots Model EMNIST MNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
LoRA (r =2) 29.31 +1.43  54.60 £3.53  28.00 +2.63 35.65 +2.42 40.59 +2.68 60.38 £9.03
LoRA (r =4) 29.55 +1.19  54.73 +£2.93  28.04 *2.62 36.13 +1.63 42.27 £2.08 57.88 +9.11

4 LoRA (r = 8) 30.01 +1.68 54.84 £3.41  28.61 £2.12 36.43 £1.57 42.19 £3.11 57.76 +8.97
LoRA (r = 16) 30.21 +1.46 55.64 +3.45  28.85 +1.96 36.03 t1.61 41.74 +2.83 58.46 +9.96

ReLoRA (r =2) 29.32 4+1.43 54.60 £3.53  28.00 £2.63 35.65 +2.42 40.59 +2.68 60.38 +9.03
ReLoRA (r =4) 29.46 £1.32 54.73 £2.93  28.04 +2.62 36.13 £1.63 42.27 £2.08 57.88 +9.11
ReLoRA (r =8) 29.85+1.64 54.84 +3.41  28.61 +2.12 36.43 +1.57 42.19 £3.11 57.76 +8.97
ReLoRA (r =16) 30.06 £1.36 55.64 £3.45  28.85 £1.96 36.03 +1.61 41.74 +2.83 58.46 +9.96
GaLoRE (r =2) 29.87+1.27 55.90 +3.22  26.72 +2.58 35.84 +1.58 40.77 £2.71 58.27 +9.02
GaLoRE (r =4) 30.62+1.43 56.53 £3.81  25.57 +1.98 36.54 +2.43 43.23 +2.98 58.72 +38.83
GaLoRE (r =8) 31.45+1.17 58.17 +3.36  24.33 +2.09 35.69 +1.59 41.97 £2.24 56.54 +9.39
GaLoRE (r =16) 32.14 +1.07 58.80 +2.70  23.33 +1.85 36.06 £1.25 41.51 £2.76 57.69 +7.43
SO (k = 1%) 31.05 +1.01  55.36 2.85  27.46 *2.12 35.61 +1.47 39.69 +2.40 57.44 +7.47
SO (k = 2%) 3147 +1.22  56.00 £3.43  26.97 £2.03 36.23 £1.46 40.68 £2.43 57.12 +7.61
SO (k = 5%) 32.46 +1.14 57.86 +2.49  25.76 +1.88 36.34 +1.57 41.65 £1.89 57.88 +38.14
SO (k = 8%) 32.67 +1.24 57.55 +2.98  25.53 +2.17 37.00 *2.29 41.86 £2.43 57.12 +7.66
SO (k = 10%) 3290 +1.22  59.12 £330 25.32 £1.42 36.86 £1.63 42.25 £2.30 57.88 +7.52
Adam 33.11 +1.54  60.18 £2.96  22.58 £2.52 39.26 +1.65 44.36 £2.00 56.73 +7.09
LoRA (r =2) 37.38 +0.95 65.74 £2.44  28.57 £2.33 41.26 £1.45 48.66 £3.46 59.62 +5.64
LoRA (r =4) 38.57 +1.00 66.13 +3.10  28.93 +-2.57 42.89 *+1.70 49.46 £3.70 60.26 £7.22

8 LoRA (r = 8) 38.87 +0.89 67.14 £3.31  29.71 £2.26 43.20 £1.49 48.68 £3.83 60.90 £5.47

LoRA (r = 16) 39.03 +1.08 66.97 +2.66  29.43 +1.91 43.07 +1.93 49.41 +4.15 60.51 +6.78
ReLoRA (r =2) 37.1541.08 65.74 £2.44  28.57 £2.33 41.26 +1.45 48.66 £3.46 59.62 +5.64
ReLoRA (r =4) 38.38 £0.92 66.13 £3.10  28.93 257 42.89 £1.70 49.46 £3.70 60.26 £7.22
ReLoRA (r =8) 38.79+0.92 67.14 £331  29.71 +2.26 43.20 +1.49 48.68 £3.83 60.90 £5.47

ReLoRA (r =16) 39.13 £1.14 66.97 £2.66  29.43 £1.91 43.07 +1.93 49.41 +4.15 60.51 +6.78
GalLoRE (r =2) 38474105 66.38 £3.41  27.81 +2.58 41.43 +156 47.57 £3.39 61.28 £5.78
GaLoRE (r =4) 39.19 o081 68.95 +2.80  26.10 +2.72 42.64 +1.41 48.31 £3.58 60.90 +5.81
GaLoRE (r =8) 40.41 +1.14 69.20 +2.94  24.94 +2.27 42.00 *1.81 46.92 £3.58 60.58 +6.43
GaLoRE (r =16) 41.93 +1.28 70.05 +2.69 24.61 +2.34 42.89 £1.02 47.42 £3.30 62.24 +6.06
SO (k = 1%) 40.63 +£0.91  67.70 3.16  29.45 +1.99 42.27 +1.38 45.77 £3.55 58.78 +6.46
SO (k = 2%) 41.29 £1.07  68.03 £3.09  28.80 %2.54 42.52 £1.29 46.74 £3.32 58.21 +6.67
SO (k = 5%) 41.95 +0.89 69.18 £2.98  27.42 4242 42.92 £1.69 47.33 £2.89 60.00 £6.49
SO (k = 8%) 42.09 +0.95 69.60 +3.03  26.97 +2.90 43.53 +1.30 47.70 £3.51 60.96 +7.88
SO (k = 10%) 42.08 £1.09  69.60 £3.09  26.36 *2.68 44.15 £1.67 48.85 £3.58 61.09 +6.93
Adam 42.84 +1.07  70.67 £2.38  23.97 +-2.88 44.76 £1.90 50.44 +4.18 62.44 +6.04
LoRA (r =2) 44.36 +o.64 72.90 £2.01  29.86 +3.08 46.84 +2.30 54.73 +2.34 61.09 £9.21
LoRA (r =4) 45.96 +0.49  75.26 1.59  30.26 %3.06 48.21 *+1.26 55.55 +2.24 61.47 +9.88

16 LoRA (r = 8) 4719 +0.45 75.91 £1.15  30.91 £3.03 48.25 £1.40 55.47 +2.16 61.35 £9.27

LoRA (r = 16) 47.80 £o.61 75.58 £1.44  31.16 +2.73 48.93 £2.06 55.22 +2.20 62.31 £8.76
ReLoRA (r =2) 44.51 +o0.65 72.90 £2.01  29.86 +30.8 46.84 +2.30 54.73 +2.34 61.09 +9.21
ReLoRA (r =4) 46.14 £0.65 75.26 £1.59  30.26 %3.06 48.21 +1.26 55.55 +2.24 61.47 £9.88
ReLoRA (r =8) 47.20+o050 75.91 £1.15  30.91 £3.03 48.25 +1.40 55.47 +2.16 61.35 £9.27

ReLoRA (r =16) 47.64 +0.43 75.74 £1.68  31.30 £2.72 48.67 +2.30 55.37 +2.11 60.71 £8.95
GaLoRE (r =2) 46.45+0.53 75.22+1.11  29.86 £1.63 47.88 £2.01 53.39 +1.52 61.03 £9.89
GaloRE (r =4) 47.46 054 75.74 +1.50 27.47 +1.73 47.64 £2.11 53.33 +1.94 60.90 +8.08
GaLoRE (r =8) 48.43 fo0.72 77.44 +1.33  26.85 *+1.96 49.06 +1.94 52.53 +2.37 61.22 1+9.43
GaLoRE (r =16) 49.87 +0.86 78.36 1.45 26.64 +1.41 49.30 £1.54 51.87 +1.91 59.29 +9.01
SO (k = 1%) 49.54 +o0.51  76.59 £1.36  32.65 +1.72 48.88 +1.85 52.08 +1.42 60.38 £8.87
SO (k = 2%) 49.62 +0.60 77.41 +1.38  31.35 *1.19 49.17 +1.33 52.91 +1.53 59.23 49.47
SO (k = 5%) 50.36 +0.60 78.14 £1.42  29.88 £1.75 49.25 £1.74 53.62 +1.72 60.64 +9.06
SO (k = 8%) 50.06 +0.98 78.25 +1.65 29.38 +2.01 50.01 +1.50 53.81 +1.18 59.36 +9.51
SO (k = 10%) 50.21 +0.90 78.83 +1.32  27.86 *2.20 49.66 +1.55 54.79 41.43 60.71 £8.31

Adam 51.49 +0.50 78.8 +1.42 26.28 +1.67 50.84 +1.47 56.02 +1.71 60.83 £8.77




Table 20. Few-shot classification performance on 7 datasets using a two-layer fully-connected architecture without pretraining. Results are
the average top-1 accuracy of 10 executions =+ standard deviation.

Shots  Strategy EMNIST MNIST FMNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
Importance-Based Gradient Pruning
SO (k = 1%) 26.59 +2.77  58.43 £3.20 58.71 £2.69  23.85 *4.78 38.12 £2.13 46.15 £3.25 59.23 +38.68
SO (k = 2%) 29.31 +1.76  59.94 +4.18 59.44 +2.70  23.83 t4.50 40.27 £1.80 46.07 £2.05 57.50 +38.26
SO (k = 5%) 30.44 +£3.35 61.16 +4.20 61.32 2.23  22.77 +4.89 39.86 +1.73 46.16 £3.43 56.99 49.70
SO (k = 8%) 3197 £1.52  61.50£3.76 60.97 £2.91  23.39 £5.31 40.32 £1.29 47.21 £2.92 57.63 +9.66
SO (k =10%) 32.23 +1.64 61.80 %285 61.26+2.49 21.74 £3.60 39.92 +1.50 46.61 £3.39 56.73 +9.65
Random Gradient Pruning

4 SO (k = 1%) 34.17 +1.83  63.20 +3.03 61.15 +2.78  26.61 +5.09 40.72 £1.79 46.47 £2.64 57.88 +11.01
SO (k = 2%) 34.38 +1.81  63.14 +3.10 61.32 +2.79  25.77 +4.08 41.25 £2.33 45.94 +2.47 57.12 +10.52
SO (k = 5%) 34.07 £1.84 62.98 +2.52  61.81 +2.21  22.93 +4.88 40.92 £2.37 46.94 £2.50 56.86 £10.26
SO (k = 8%) 33.93 +1.73  63.59 +3.10 61.60 2.40  24.30 +4.84 40.87 £1.91 46.74 +2.51 57.12 t9.87
SO (k =10%) 34.22 4180 63.02+332 61.16 4222 21.27 £2.96 40.08 £1.87 45.42 +2.24 58.46 +10.54
Importance-Based Gradient Pruning
SO (k = 1%) 32.19 +3.40 68.11 2.40 64.99 +2.74  23.66 £3.92 42.76 +1.86 51.27 43.43 62.05 £9.75
SO (k = 2%) 37.57 +1.50 69.88 +2.58 66.51 +1.42  23.39 +4.34 44.58 £2.43 52.05 +3.54 63.27 £8.28
SO (k = 5%) 39.54 +1.51 7218 217 67.16 1.22  21.83 +3.09 45.20 £1.21 52.26 +3.56 63.65 £8.22
SO (k = 8%) 40.28 £1.31  72.32 +2.23 66.99 +1.01  23.33 4.62 45.39 +2.13 52.34 t2.77 61.99 £8.79
SO (kv =10%) 39.18 +3.86 72.21 +2.36 67.12 4151  21.52 £3.39 45.49 £1.54 52.46 +3.48 61.67 £7.70
Random Gradient Pruning

8 SO (k = 1%) 41.79 £1.45 72.09 236 67.18 1.22  26.79 F-4.63 46.65 +1.47 51.66 +-3.33 64.10 £8.19
SO (k = 2%) 41.78 £1.27  72.34 +2.48 67.42 +1.32  25.39 +3.78 46.66 £2.43 51.66 +2.96 63.46 +7.57
SO (k = 5%) 41.81 £1.37  72.22 272 67.20 +1.38  24.08 +3.75 46.36 £1.72 52.03 +3.40 63.33 £8.64
SO (k = 8%) 41.69 £1.19  T71.86 +2.47 67.11 +1.24  23.33 3.63 45.87 +1.87 52.16 %3.60 63.59 £8.34
SO (kv = 10%) 41.31 +1.58 72.52 +2.37 66.89 +1.74  23.14 +2.56 45.98 +1.99 51.98 £3.25 63.27 £7.51
Importance-Based Gradient Pruning
SO (k = 1%) 41.94 +1.16  75.87 £1.70 69.98 *1.55  24.26 +2.62 47.76 £1.47 55.59 +2.12 60.71 £9.17
SO (k = 2%) 43.02 £411  77.35 %180 70.69 £1.02 22.54 +1.75 49.28 £1.87 56.21 +1.55 60.19 £8.50
SO (k = 5%) 44.88 488 T78.63 +1.54 71.41 +1.00  23.83 +1.87 50.19 +1.41 56.20 +1.99 61.54 +9.50
SO (k = 8%) 45.36 £4.66 78.69 +1.43 71.20 +1.20 23.55 *1.77 50.68 *+1.23 56.78 12.35 61.47 £7.88
SO (k = 10%) 46.63 +3.50 78.84 +1.45 71.58+1.24 23.24 +2.35 51.19 £1.72 57.10 1.88 60.13 +9.21
Random Gradient Pruning

16 SO (k = 1%) 48.60 £0.68 78.99 +1.39 71.94 +1.57 27.21 2.55 52.85 *+1.19 55.93 +1.68 62.12 +9.50
SO (k = 2%) 48.38 £0.49  78.64 £1.66 71.90 +1.24  26.77 +2.35 52.15 £1.43 55.51 +2.19 62.69 £8.24
SO (k = 5%) 48.45 t0.82 79.45 +1.46 T71.44 +1.66 27.06 +2.65 51.77 +1.62 56.38 +1.80 61.15 +9.45
SO (k = 8%) 48.74 +o.71 79.17 £1.58  71.79 +1.43  25.25 *1.84 51.71 +1.12 56.71 +1.81 63.97 £8.25

SO (kv = 10%) 48.77 +1.07  79.06 £1.53 71.90 +1.3¢4  25.50 £2.39 51.77 £1.19 56.81 +1.58 60.51 £10.17




Table 21. Few-shot classification performance on 6 datasets using a two-layer fully-connected architecture after pretraining on MNIST.
Results are the average top-1 accuracy over 10 executions =+ standard deviation.

Shots  Strategy EMNIST FMNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMINIST
Importance-Based Gradient Pruning
SO (k = 1%) 30.81 +1.75  59.46 +2.45  24.87 £3.73 35.45 +2.31 44.15 +3.04 60.71 +7.35
SO (k = 2%) 31.25 +1.25  59.37 +2.65  23.00 £2.96 36.52 +1.83 44.72 £3.01 61.03 +38.59
SO (k = 5%) 32.17+1.69 59.44 254  22.84 £3.37 36.91 £1.56 44.40 £3.12 60.13 £7.87
SO (k = 8%) 32.02 4242 60.23 £2.18  23.01 £3.31 36.54 +1.94 44.84 +1.62 61.28 +6.62
SO (k = 10%) 31.7241.46 60.124251  22.77 +2.92 36.12 +2.00 44.60 +2.65 60.26 +9.27
Random Gradient Pruning

4 SO (k = 1%) 31.18 £1.53 57.36 £2.54  27.90 £1.35 33.67 +1.79 43.86 +2.07 60.77 +6.91
SO (k = 2%) 31.38 £1.48 57.82 42.54  27.29 £2.03 34.73 £1.80 44.13 +2.37 60.96 +6.95
SO (k =5%)  31.69 +1.16 58.36 +2.57  25.17 +1.70 35.60 +2.16 44.76 t2.73 60.58 +7.93
SO (k = 8%) 32.22 +1.15  58.80 £2.68  25.36 £3.25 35.78 +1.66 44.64 +2.10 61.99 +7.72
SO (k = 10%) 31.58 £1.45 58.87 4233 24.39 £1.71 36.01 £1.48 45.02 +2.29 60.77 £7.75
Importance-Based Gradient Pruning
SO (k = 1%) 39.95+1.05 64.84 +1.37 25.48 £3.08 41.26 +2.03 51.78 +2.86 63.27 7.98
SO (k = 2%) 40.75 +0.98  65.27 £1.57  24.56 +3.18 40.95 +1.58 51.52 £+3.13 63.33 £7.27
SO (k = 5%) 40.56 +2.61  65.26 +1.23  23.03 £3.33 41.51 +1.33 51.09 +3.33 63.53 +7.27
SO (k = 8%) 41.60 £0.91  65.49 +1.20 23.22 £2.82 42.22 +1.81 51.21 4-2.46 63.91 +7.80
SO (k = 10%) 40.51 £2.64 65.70 +£1.50 23.04 £3.13 41.68 *+1.30 50.64 +4.60 63.72 £7.15
Random Gradient Pruning

8 SO (k = 1%) 40.11 +1.09  62.62 +1.06  30.10 £2.60 39.62 +1.27 51.08 +2.88 63.27 +5.68
SO (k = 2%) 40.75 +0.98  63.29 +1.15  29.57 £2.19 40.45 +1.53 51.10 +2.93 63.78 +6.62
SO (k = 5%) 41.14 o097 63.71 £1.19  27.79 £2.47 40.88 *1.20 51.45 +3.05 63.91 +38.36
SO (k = 8%) 41.17 112 64.71 £1.18  26.80 +2.24 41.09 +1.23 51.76 £3.13 64.87 £7.45
SO (k = 10%) 41.3941.01 64.26 £0.96  26.46 +2.49 41.57 +1.04 51.65 +3.46 63.53 +7.02
Importance-Based Gradient Pruning
SO (k = 1%) 47.81 +1.56  70.38 +1.43  27.52 £2.30 47.18 +1.83 55.51 +1.98 60.58 +9.49
SO (k = 2%) 48.19 £1.12 70.60 £1.32  26.73 £2.46 48.50 +1.75 55.62 11.89 60.71 £7.15
SO (k = 5%) 49.99 4081 70.55 £1.19  26.21 +2.48 48.67 +2.55 55.39 £1.70 60.83 £s8.18
SO (k = 8%) 48.68 +3.76  71.07 +1.55  25.14 +2.53 49.12 +2.02 56.01 +1.85 60.96 +9.06
SO (k = 10%) 48.51 +4.02 T71.24 +1.28 24.62 +2.64 49.02 +1.42 55.79 £1.71 63.72 +7.20
Random Gradient Pruning

16 SO (k = 1%) 49.33 +o.76  68.91 +1.63  32.79 £1.99 47.86 +1.65 55.70 £1.31 61.28 1-10.38
SO (k = 2%) 49.95 +0.68 69.55 £1.43  31.72 +2.13 48.09 +2.05 56.01 £1.14 62.88 £7.74
SO (k = 5%) 50.59 +0.64 69.92 166 30.21 +2.25 48.27 +1.99 56.16 +1.47 61.92 +38.78
SO (k = 8%) 50.55 +0.81  70.16 +1.77  29.34 +1.57 49.42 +1.78 56.41 +1.31 61.03 t10.07

SO (k = 10%) 50.68 +0.56 70.30 £1.66 28.04 £1.87 49.23 +1.67 56.41 £+1.19 62.18 +10.51




Table 22. Few-shot classification performance on 6 datasets using a two-layer fully-connected architecture after pretraining on FMNIST.
Results are the average top-1 accuracy over 10 executions =+ standard deviation.

Shots  Strategy EMNIST MNIST PathMNIST OrganMNISTAxial BloodMNIST BreastMNIST
Importance-Based Gradient Pruning
SO (k = 1%) 31.08 0.86 57.27 £3.66  24.99 +2.72 36.25 +1.71 42.15 +3.21 57.50 £8.22
SO (k = 2%) 31.44 +1.06 58.28 +3.61  25.26 £2.91 36.74 +1.81 42.56 +3.83 57.12 +7.89
SO (k = 5%) 32.12 +1.28 59.20 £3.82  23.97 £2.64 37.71 £1.49 43.18 +2.93 58.01 £7.08
SO (k = 8%) 31.48 +2.11 59.55 +2.78  22.94 +2.38 37.20 +2.13 42.36 +2.86 56.79 +7.75
SO (k = 10%) 33.1941.36 58.83 4385 23.68 +2.32 37.61 +1.74 42.50 +2.92 58.21 +9.28
Random Gradient Pruning

4 SO (k = 1%) 31.05 £1.01  55.36 £2.85  27.46 £2.12 35.61 f1.47 39.69 +2.40 57.44 +7.47
SO (k = 2%) 31.47 122 56.00 £3.43  26.97 +2.03 36.23 £1.46 40.68 +2.43 57.12 £7.61
SO (k = 5%) 32.46 +1.14 57.86 +2.49  25.76 +1.88 36.34 +1.57 41.65 +1.89 57.88 +8.14
SO (k = 8%) 32.67 £1.24 57.55 +2.98  25.53 £2.17 37.00 2.29 41.86 +2.43 57.12 +7.66
SO (k = 10%) 32.90 £1.22 59.1243.30 25.32 £1.42 36.86 £1.63 42.25 +2.30 57.88 £7.52
Importance-Based Gradient Pruning
SO (k = 1%) 39.35 +0.80 69.48 £3.00  26.29 £3.45 43.11 +o0.96 48.56 £3.74 58.53 £7.07
SO (k = 2%) 40.43 087 70.04 £3.47  25.17 +3.80 43.81 +1.92 48.28 +3.25 62.37 £5.42
SO (k = 5%) 41.58 +1.07  70.74 +2.67  24.87 £2.93 44.67 +1.25 49.41 +3.84 62.24 +5.64
SO (k = 8%) 41.84 +1.22 7147 £2.92 23.81 £2.85 44.51 +1.80 48.14 t4.27 59.42 £7.51
SO (k = 10%) 41.12 4207 77.20+1.34 24.02 £3.65 44.34 +1.52 49.04 +3.98 62.63 £8.34
Random Gradient Pruning

8 SO (k = 1%) 40.63 +0.91  67.70 £3.16  29.45 +1.99 42.27 +1.38 45.77 £3.55 58.78 +6.46
SO (k = 2%) 41.29 +1.07  68.03 £3.00  28.80 £2.54 42.52 +1.29 46.74 +3.32 58.21 +6.67
SO (k = 5%) 41.95 +0.89 69.18 £2.98  27.42 £2.42 42.92 +1.69 47.33 £2.89 60.00 +6.49
SO (k =8%)  42.09 4+0.95 69.60 £3.03  26.97 £2.90 43.53 +1.30 47.70 £3.51 60.96 +7.88
SO (k = 10%) 42.08 +1.09 69.60 £3.09 26.36 +2.68 44.15 +1.67 48.85 +3.58 61.09 +6.93
Importance-Based Gradient Pruning
SO (k = 1%) 47.09 +o0.84 7747 +1.42  27.23 £1.35 48.99 +1.67 55.20 +1.95 60.64 +s8.21
SO (k = 2%) 47.38 £1.85 78.00 £1.48  26.75 £1.96 49.79 +1.85 55.08 1.91 60.26 4-9.99
SO (k = 5%) 48.87 +2.36  78.51 £1.51  25.77 +1.92 49.23 +1.72 55.33 £1.80 60.00 £9.27
SO (k = 8%) 48.07 +3.95 78.96 +1.03  23.89 £3.07 50.07 +1.48 55.06 +2.25 61.03 +38.49
SO (k = 10%) 50.14 +0.75 78.16 +3.82  24.68 +2.11 50.81 +1.69 54.09 £3.10 61.92 48.95
Random Gradient Pruning

16 SO (k = 1%) 49.54 +0.51  76.59 £1.36  32.65 £1.72 48.88 +1.85 52.08 *1.42 60.38 +8.87
SO (k = 2%) 49.62 +0.60 77.41 £1.38  31.35 *1.19 49.17 +1.33 52.91 £+1.53 59.23 £9.47
SO (k = 5%) 50.36 +0.60 78.14 +1.42  29.88 +1.75 49.25 +1.74 53.62 +1.72 60.64 +9.06
SO (k = 8%) 50.06 0.908 78.25 £1.65  29.38 £2.01 50.01 £1.50 53.81 +1.18 59.36 £9.51

SO (k = 10%) 50.21 +0.90 78.83 £1.32 27.86 £2.20 49.66 +1.55 54.79 +1.43 60.71 £8.31




Figure 5. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Gradient Rank Evolution in Few-Shot
Learning (4 shots) on EMNIST Dataset.
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Figure 6. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Loss Evolution in Few-Shot Learning
(4 shots) on EMNIST Dataset.

3.51

Loss Evolution - EMNIST - 4 Shots

3.0 1

2.54

2.01

Loss

154

1.0+

0.5 1

0.0 4

A

T
200

Sparsity 1.0%, Randomness
Sparsity 2.0%, Randomness
Sparsity 5.0%, Randomness

Sparsity 8.0%, Randomness
Sparsity 10.0%, Randomness

T
300

Steps
4.0 4

T T
400 500

3.5

Loss Evolution - EMNIST - 4 Shots

3.04

2.5

2.01

Loss

1.5 4

1.0+

0.5 4

0.0 1

200

400

660
Steps

— Sparsity 1.0%, Importance
- Sparsity 2.0%, Importance
—— Sparsity 5.0%, Importance
—— Sparsity 8.0%, Importance

—— Sparsity 10.0%, Importance

800




Figure 7. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Gradient Rank Evolution in Few-Shot
Learning (8 shots) on EMNIST Dataset.
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Figure 8. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Loss Evolution of SO in Few-Shot
Learning (8 shots) on EMNIST Dataset.
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Figure 9. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Gradient Rank Evolution in Few-Shot
Learning (16 shots) on EMNIST Dataset.
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Figure 10. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Loss Evolution in Few-Shot
Learning (16 shots) on EMNIST Dataset.

Loss Evolution - EMNIST - 16 Shots
401 —=—- Sparsity 1.0%, Randomness
——- Sparsity 2.0%, Randomness
=== Sparsity 5.0%, Randomness
3.5+ === Sparsity 8.0%, Randomness
===+ Sparsity 10.0%, Randomness
3.0+
2.5+
E 2.0+
1.5
1.0
0.5 4
0.0 4 Lt it et s 8 e st e e o e e
0 1000 2000 3000 4000
Steps
Loss Evolution - EMNIST - 16 Shots
104 — Sparsity 1.0%, Importance
- Sparsity 2.0%, Importance
—— Sparsity 5.0%, Importance
—— Sparsity 8.0%, Importance
—— Sparsity 10.0%, Importance
84
6 4
]
0
S 4
24
o
0 1000 2000 3000 2000 5000 6000 7000
Steps




Figure 11. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Gradient Rank Evolution in
Few-Shot Learning (4 shots) on MNIST Dataset.
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Figure 12. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Loss Evolution in Few-Shot

Learning (4 shots) on MNIST Dataset.
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Figure 13. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Gradient Rank Evolution in
Few-Shot Learning (8 shots) on MNIST Dataset.
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Figure 14. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Loss Evolution in Few-Shot
Learning (8 shots) on MNIST Dataset.
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Figure 15. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Gradient Rank Evolution in
Few-Shot Learning (16 shots) on MNIST Dataset.
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Learning (16 shots) on MNIST Dataset.

Loss Evolution - MNIST - 16 Shots

Figure 16. Comparison of Random and Importance Gradient Pruning in Sparse Optimization (SO) — Loss Evolution in Few-Shot
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