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Supplementary Material

Appendix

In this supplementary material, we first provide precise def-
initions of the evaluation metrics used in the paper (Sec.
A). Next, we provide a detailed introduction and discussion
of the related work (Sec. B). Then, we offer a detailed de-
scription of the training and test datasets (Sec. C), including
their partitioning method. Additionally, we describe the net-
work architecture and implementation details (Sec. D). We
also conduct additional experiments (Sec. E) such as fur-
ther metric measurements and runtime analysis. Finally, we
present more visualization results on multiple datasets to il-
lustrate the performance of the proposed method intuitively
(Sec. F).

A. Evaluation Metrics

Inlier Ratio (IR): We follow [7] to compute the indicator
inlier ratio. The Inlier Ratio for cross-modal registration
measures the proportion of point-to-pixel correspondences
(xi,¥yi) € C that are within a certain residual threshold un-
der the ground truth transformation 7_}P. Here, C denotes
the estimated correspondence set between the 3D point set
I and the image pixel set P, and 7{F represents the ground
truth transformation from I to P. A correspondence pair is
considered an inlier if the Euclidean norm of its residual is
less than the threshold 7; = 10cm. The Inlier Ratio for the
cross-modal pair I and P is computed as:
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where I[-] is the indicator function that counts the num-
ber of correspondences with residuals less than the thresh-
old 7, and K~ is a function that unprojects a pixel to a 3D
point.
Feature Matching Recall (FMR): The Feature Matching
Recall is used to evaluate the result of feature matching by
determining the fraction of cross-modal pairs where the In-
lier Ratio exceeds a given threshold, 72 = 5%. This met-
ric reflects the probability of accurately recovering the cor-
rect transformation using the estimated correspondence set
C, typically with the aid of a robust pose estimation algo-
rithm such as RANSAC [2]. For a dataset D containing |D|
cross-modal pairs, the Feature Matching Recall is defined
as follows:
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where I[-] is the indicator function that counts the num-
ber of cross-modal pairs for which the Inlier Ratio exceeds
the threshold 7. This metric provides insight into the over-
all robustness and accuracy of the feature matching process
across the entire dataset.
Patch Inlier Ratio (PIR): PIR [5] represents the fraction
of patch correspondences whose overlap ratios, under the
ground-truth transformation TF . are above 0.3. This metric
reflects the quality of the estimated patch correspondences.

The overlap ratio between an image patch y; and a
point cloud patch (superpoint) X; can be calculated in each
modality. The definition of point-cloud-side overlap is:
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where X is the up-sampled points of the superpoint X;,
73 = 3.75cm is the 3D distance threshold, and the definition
of image-side overlap is:
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where ); is the up-sampled pixels of the image patch y;,
T4 = 8 pixels is the 2D distance threshold. We take the
smaller one of two overlaps and compute the PIR indicator
by:
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where C denotes the estimated set of patch correspondences,
I[-] is the indicator function that returns 1 if the condition
inside is true and O otherwise, and 75 = 0.3 is the overlap
threshold.
Registration Recall (RR): The Registration Recall is a
metric used to evaluate the accuracy of cross-modal regis-
tration between a 3D point cloud and an image. It measures
the fraction of image-point cloud pairs for which the Root
Mean Square Error (RMSE) is below a certain threshold,
denoted as 7 = 0.1m. For a dataset D containing |D| pairs
of image-point cloud pairs, the Registration Recall is de-
fined as follows:
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where I[-] is an indicator function that counts the number
of image-point cloud pairs with an RMSE below the thresh-



old 75. The RMSE for each pair (I, P) € D is calculated
as:
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where TF represents the predicted transformation from
Ito P, and 7/ denotes the ground truth transformation
from I to P. This metric provides an indication of the preci-
sion of the cross-modal registration process across the entire
dataset.

B. Detailed Introduction and Discussion on Re-
lated Works

B.1. Baseline

2D3D-MATR. 2D3D-MATR [5] is a detection-free method
for accurate and robust image-to-point cloud registration. It
adopts a coarse-to-fine manner where it first forms a coarse
correspondence set between downsampled patches of the
input image and the point cloud, then extends them into
dense correspondences within the patch. In coarse-level
matching, a transformer facilitates contextual sharing be-
tween image and point cloud features. Then a multi-scale
feature matching module is designed to match each point
patch with its most suitable zoomed image patch to avoid
the scale ambiguity problem. Finally, the PnP-RANSAC is
applied to the fine-level dense correspondences to estimate
the transformation. Though the design of the transformer
block and the multi-scale matching improve the quality of
the extracted correspondences and contribute to accurate
2D-3D registration, the registration process remains hin-
dered by the inherent modality gap between images and
point clouds. This gap often results in poor feature match-
ing accuracy, ultimately leading to registration failures.

B.2. Closely Related Work

FreeReg. FreeReg [8] adopts a pretrained diffusion model
with monocular depth estimators for cross-modality feature
extraction. Specifically, it constructs two types of features
for establishing correspondences: diffusion features and ge-
ometric features. The diffusion features are the intermedi-
ate representations of the depth-controlled diffusion model,
which shows strong consistency across RGB images and
depth maps. The geometric features capture distinct local
geometric details on the RGB image and depth map using a
monocular depth estimator. The combination of these two
features enables accurate cross-modal correspondence esti-
mation for registration. However, it still heavily relies on
the explicit feature of the pretrained depth-controlled diffu-
sion model, requiring manual selection of the feature layers.
Additionally, its computational cost is significantly higher.

VP2P-Match. VP2P-Match primarily focuses on registra-
tion in outdoor scenes, with point clouds mainly captured by
LiDAR, which differs from the benchmarks used by other
baseline methods and our approach. VP2P-Match [11] pro-
pose to learn a structured cross-modality latent space to rep-
resent pixel features and 3D features via a differentiable
probabilistic PnP solver. Specifically, it designs a triplet
network to learn VoxelPoint-to-Pixel matching, where the
3D elements are represented using both voxels and points,
enabling learning of the cross-modality latent space with
pixels. The entire framework is trained end-to-end by ap-
plying supervision directly to the predicted pose distribution
using a probabilistic PnP solver. Although using VoxelPoint
for 3D feature extraction provides more descriptive local
features, the registration still fails to bridge the modality
gap. Note that VP2P-Match still follows the dense matching
convention while leveraging the Monto Carlo strategy to ap-
proximate the KL divergence loss of the predicted pose dis-
tribution and ground truth pose distribution. It may require
more computational overhead to achieve the differentiabil-
ity, and the large search space of dense matching makes it
prone to difficulty in finding the correct correspondences.

C. Datasets

We train and evaluate Diff>I2P on two indoor datasets 7-
Scenes [3] and RGB-D Scenes V2 [4], and compare it
with the baselines. We also provide simple evaluation of
Diff?I2P on KITTI [6], which contains dynamic outdoor
scenarios. The detailed information are as follows.

C.1 7-Scenes

The 7-Scenes dataset [3] contains RGB-D scans of seven in-
door scenes: Chess, Fire, Heads, Office, Pumpkin, Kitchen,
and Stairs. Each scene includes multiple sequences. We use
preprocessed data from [5], with the preprocessing steps as
follows. For each scene, we select 25 consecutive depth
maps to generate a dense point cloud, which is then down-
sampled using a voxel size of 2.5 cm. After generating
the point cloud data, we extracted each point cloud’s first
frame’s corresponding image to form an image-point cloud
pair. This process is repeated to generate the entire dataset.
After data generation, a selection step is applied: each im-
age is unprojected into 3D space to create a virtual point
cloud, and its overlap ratio with the actual point cloud is
calculated. Pairs with an overlap ratio below 50% are re-
moved. The final dataset includes 2,304 test samples and
5,059 training samples, with the training data further split
into 80% for training and 20% for validation. Since the
images and depth maps in the 7-Scenes dataset are not cal-
ibrated, we follow [10] by rescaling the images by a factor

of 252 to achieve an approximate calibration.



C.2 RGB-D Scenes V2

The RGB-D Scenes V2 dataset [4] contains 14 indoor
scenes, labeled from Scene-1 to Scene-14. We follow the
same data generation method as for 7-Scenes, but in this
dataset, we remove image-point cloud pairs with an overlap
ratio below 30%. Compared to 7-Scenes, RGB-D Scenes
V2 has a smaller data volume, so we increase the proportion
of training data accordingly. The dataset was randomly split
into training, validation, and test sets, containing 1,978,
117, and 386 samples, respectively.

C.3KITTI

The KITTI-DC dataset [6] contains dynamic image-point
cloud pairs. The sparse point clouds are obtained with a 64-
line LiDAR scan. The distance between image and point
cloud pair is less than 10 meters. We follow RreeReg [8]
Kitti benchmark for evaluation.

D. Implementation

D.1. Differentiable BPnP Solver

BPnP [1] efficiently derives accurate gradients of the PnP
solver based on the Implicit Function Theorem [1] with
excellent numerical stability, we employ it as the differ-
entiable PnP solver in our pipeline. Following BPnP, we
first construct the constraint function as f(x,y, 7', K) =
[f1, f2, -, fm]T, where x and y are the input correspon-
dences, 7' = [R/|t'] is the predicted transformation, m is
the number of its variables, and K is the camera intrinsic
matrix. And for all ¢ € {1,...,m}, f; is defined as
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Then given the output gradient Vz, the input gradients Vx
and Vy can be derived as
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D.2. Depth Densification

The sparse depth projected from the point cloud is densified
using simple morphology operations like dilation. Specifi-
cally, we first invert the depth values below a threshold (0.1)
to match a reference maximum depth value (15.0), enabling
a more consistent interpolation. Then a diamond-shaped
dilation with a size of 7x7 is utilized to fill empty areas
while preserving significant depth features. After that, Hole
closing is performed using erosion and dilation operations
with smaller kernels (3x3 and 5x5) to clean up the depth
map and remove noise or isolated points. Finally, a me-
dian blur and a Gaussian blur filter are applied with a kernel

Table 1. The comparison of RRE and RTE results between
Diff?I2P and 2D3D-MATR [5] on the 7-Scenes [3] dataset.

Method | RRE (m) RTE (m)
2D3D-MATR [5] | 3.053 0.072
Diff2I2P (ours) 2.743 0.065

size of 5 to help smooth out the depth map. The depth map
is inverted again to return to the original depth scale, en-
suring that all valid depth values correspond to real-world
distances.

D.3. Loss Functions

Here we provide the detailed calculation of the circle loss.
Following 2D3D-MATR [5], we define the general circle
loss £; of an anchor descriptor d; as:
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where DF and D are the descriptors of its positive
and negative pairs, d{ is the ¢o feature distance, ﬂ;’j =
SN (df - Ap) and BiF = SXGF (A, — dP) are the in-
dividual weights for the positive and negative pairs, where
A;;j and \%F are the scaling factors for the positive and neg-
ative pairs.

We follow the hyperparameter configuration in [5]. On
the coarse level, we generate the ground truth based on bi-
lateral overlap. A patch pair is considered positive if the 2D
and 3D overlap ratios between them are both at least 30%,
and negative if both overlap ratios are below 20%. The over-
lap ratio between the 2D and 3D patches is used as A, and
An is set to 1. On the fine level, a pixel-point pair is posi-
tive if the 3D distance is below 3.75 cm and the 2D distance
is below 8 pixels, and negative if the 3D distance is above
10 cm or the 2D distance exceeds 12 pixels. The scaling
factors are all set to 1. All other pairs are ignored during
training on both levels as the safe region. The margins are
setto A, =0.1and A, = 1.4.

E. Additional Experiments

E.1. Relative Rotation Error and Relative Transla-
tion Error

Relative Rotation Error (RRE) and Relative Translation Er-
ror (RTE) are commonly used to assess the alignment accu-
racy between two point clouds. In cross-modal registration
tasks, these metrics can also evaluate the alignment between
a point cloud and an image. Specifically, the input point
cloud and the point cloud projected from the depth map cor-
responding to the image are treated as the two point clouds
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C. Deformable Correspondence Tuning
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Figure 1. The network architecture of our proposed Diff>I2P.
for evaluation, and their RRE and RTE are computed. Tab. | the baseline, 2D3D-MATR, where the evaluation dataset is

shows the RRE and RTE results of Diff2I2P compared to 7-Scenes [3].



Table 2. Registration under noise and sparse data conditions. Ran-
dom shifts are sampled from a normal distribution A(0, 0.1) (m).

conditions | IR(%)t FMR (%)t RR (%)t
(a) random shifts for all points 53.1 91.8 82.5
(b) randomize 1% points’ coordinates 52.7 91.2 82.0
(c) random remove 10% points 53.0 91.8 81.8
(d) w/o additional conditions 53.2 92.1 83.0

As shown in the table, Diff?I2P significantly outper-
forms the baseline method in both RRE and RTE metrics.
This demonstrates that our method not only accurately esti-
mates the transformation in most scenarios but also achieves
high-quality results, ensuring tight alignment between the
point cloud and the image.

E.2. Noise and sparse data conditions

To validate the robustness of Diff2I2P under noisy scenar-
ios and sparse data conditions, we simulate these conditions
by randomizing point coordinates and removing a subset of
points. As shown in Tab. 2, Diff?I2P maintains stable per-
formance in these simulated scenarios.

E.3. Outdoor and dynamic scenarios evaluation

Our method has been primarily evaluated in static scenar-
ios. To further assess its performance in dynamic and out-
door environments, we conduct experiments on the KITTI
dataset. As shown in Tab. 3, Diff>I2P outperforms base-
lines across nearly all metrics while maintaining an infer-
ence speed comparable to that of the fastest method, 2D3D-
MATR [5].

E.4. Comparison with Diff-Reg

Diff-Reg [9] serves as a baseline method that performs the
diffusion denoising process at the correspondence set. Al-
though it is not specifically designed for image-to-point
cloud cross-modal registration, it can still be applied to this
task. Here, we provide a detailed comparison with Diff-
Reg. We continue to use 7Scenes as the primary bench-
mark dataset and report three key metrics: IR (Inlier Ratio),
FMR (Feature Matching Recall), and RR (Registration Re-
call). We train Diff-Reg on 7-Scenes and select the best-
performing checkpoint on the validation set for testing as
shown in Fig 2.
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Figure 2. Detailed comparison with Diff-Reg.

Table 3. Comparison experiments with baselines on KITTI.

Method ‘ FMR (%)t IR (%)! RRE(°), RTE(m)| RR (%)t Time (s)|
2D3D-MATR [5] 99.7 59.1 3.334 0.838 75.4 0.061
FreeReg [8] 99.7 58.3 5.987 2414 70.5 8.763
Diff212P (ours) 99.7 62.9 2.836 0.773 82.2 0.062

E.5. Detailed comparison with FreeReg

Owing to space constraints, we present a simple comparison
with FreeReg in the main paper. Additional detailed results
on 7-Scenes and RGB-D Scenes V2 are provided in Fig 3.
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Figure 3. Detailed comparison with FreeReg.

F. Visualizations

We present additional qualitative results to compare
Diff2I2P with the baseline method, 2D3D-MATR [5]. For
clarity, we visualize the correspondences extracted by both
methods, selecting the top 500 correspondences with the
highest feature matching scores. Fig. 4 illustrates the re-
sults on the 7-Scenes [3] dataset, while Fig. 5 highlights
the results on the RGB-D Scenes V2 [4] dataset. The find-
ings show that Diff?I2P extracts more accurate correspon-
dences, delivering robust and superior scene-agnostic regis-
tration performance.
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Figure 4. Correspondence visualizations on 7-scenes
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Figure 5. Correspondence visualizations on RGB-D Scenes V2.



