
GeoDiffusion: A Training-Free Framework for Accurate 3D Geometric
Conditioning in Image Generation

Supplementary Material

A. GeoDiffusion Methodology Details
A.1. Preliminary on Diffusion Models
Diffusion models are generative models that create data by
reversing a gradual noising process. In the forward diffu-
sion process, we repeatedly add Gaussian noise ϵt ∼ N
to the original image x0 ∈ [−1, 1]3×H×W t ∈ [1, T]
timesteps. This results in a sequence of noisy image repre-
sentations xt, where xT approximates pure Gaussian noise
xT ∼ N (0, 1).

To synthesize novel images, we gradually denoise a sam-
ple xT by training a neural network θ(xt, t) to predict the
original data from noisy inputs. For latent diffusion models,
such as Stable Diffusion [35], this process is carried out in a
lower dimensional latent space z instead of the image space
x. zt therefore denotes our latent variable at timestep t.

At each timestep t, we calculate the less noisy latent
zt−1 from zt by predicting the added noise for the timestep
through ϵθ(zt, t). The neural network ϵθ is typically im-
plemented using a U-Net architecture [36]. The U-Net is
a convolutional neural network architecture that effectively
decomposes the latent representation into different feature
levels, capturing both local and global image structures by
progressively downsampling the input to capture contextual
information, and subsequently upsampling it to recover the
spatial resolution.

A.2. 3D Object Rendering
In Section 3.1, we introduce the methodology for rendering
a selected viewpoint of the 3D object in Blender. Represent-
ing any object with a known viewpoint is essential for accu-
rate, 3D geometric modifications in image space. To allow
for maximum flexibility, we opt to utilize a single 3D ob-
ject as a starting point. Domain-specific 3D objects can be
obtained from publicly available datasets such as ShapeNet
[6], Objaverse [8] or OmniObject3D [48]. There also ex-
ist domain-specific 3D databases like DivAerNet [12] for
cars. Inspired by the approach in [27], our approach loads
the 3D object into a Blender scene and subsequently defines
the desired position of the camera c through its distance to
the object r, its elevation angle θ and the azimuth angle ϕ:

c =

xc

yc
zc

 = r ·

sin(θ) · cos(ϕ)sin(θ) · sin(ϕ)
cos(θ)

 . (9)

The camera’s forward direction f , it’s right vector r and its
true up vector u are defined as:

f =
−c

∥c∥
, r =

uworld × f

∥uworld × f∥
, and u = f × r. (10)

The synthesis of the reference image Iref , that later acts as
input for the style transfer and geometric modification, is
defined as:

Iref = R(O, c,K, L), (11)

where R is the rendering function and K and L are the
camera intrinsic parameters and lighting conditions respec-
tively.

Within the Blender scene, we additionally define the
points that are later used for geometric control of the object.
Since they are defined in 3D, we need to project them into
the 2D image space. To project the points P ref in the global
3D coordinate system into pixel coordinates, we first trans-
form them into camera coordinates P cam = R·(P ref−c),
where R is the cameras rotation matrix. Given the princi-
pal point (cx, cy) set to the center of the image, the pixel
plane coordinates u and v of the points are calculated as
u = f · x′ + cx and v = f · y′ + cy with x′ =

xcam

zcam
, y′ =

ycam
zcam

.

A.3. Motivation for using 3D points as prior
We are aiming to manipulate the 3D spatial structure of an
object within a 2D image, as explained in Section 3.1. For
example, this could be the length of a car that should be set
precisely. Therefore, we have to derive where to place or
guide the keypoints of the object, such that the desired spa-
tial structure is fulfilled. Achieving this with only 2D points
is challenging as not all geometric modifications of 3D fea-
tures can be accounted for in 2D image space. Figure 7
shows an example of this, where it is possible to modify the
object’s geometry in x-and y-direction, i.e. making it longer
or higher, in both the side view (top row) and the diagonal
front view (bottom row). When the modifications are addi-
tionally supposed to include the z-dimension (e.g. making
the object higher and wider), this is only possible for the
viewpoint in the bottom row.

A.4. Point Translation Function
A key contribution of our framework is the possibility to de-
fine a point translation function that allows the user to mod-
ify the geometry by editing features of the object instead of
manually defining handle and target points in an image. For
a specific object category, the geometric points need to be
defined in accordance with the 3D object used.

In the vehicle domain, we define 22 points in 3D space.
The points mark the centers of the four wheels, the head
and rear lights, the bumpers in the front and in the back, the

Figure 7. Translations of the geometric points. Depending on the
viewpoint, geometric modifications of the object in 3D are pos-
sible or not. While making the object ”longer” and ”higher” is
possible in both viewpoints, making it ”higher and wider” is only
possible in the bottom viewpoint.

lower ends of the front and rear windshields and the high-
est points of the roof. The translation logic defines that for
modifications in length, the points marking the lights and
the bumpers, both in the front and in the back, are moved
evenly along the y-axis. The points in the front are moved
in the positive y-direction while the ones in the back are
moved in the negative y-direction. For modifications of the
width, all points on either side of the object are moved ac-
cordingly along the x-axis. If the height of the object is
edited, all points except the wheels and the bumpers are
moved along the z-axis. An exemplary case is given in Fig-
ure 8.

Dimensions are specified in real-world units (meters).
However, images lack absolute scales—the car depicted in
Figure 8 could represent a length of either 5m or 0.5m. To
correlate user inputs with image modifications, we define
base dimensions for the reference object. For the exam-
ple in Figure 8, we utilize real-world dimensions. During
rendering, we normalize the 3D object so that its largest di-
mension corresponds to one unit length in the scene. For
the car example, this is its length. Knowing that one unit
in the scene represents, for example, lengthref = 5m,
we derive the conversion factor between scene units and
real-world measurements. In this example it means that
1unit = 5m⇒ 1m = 0.2units. This conversion factor al-
lows us to translate user-specified geometric modifications
into movements of points in the 3D scene.

If a user wants to increase the car’s length to 6m, the dif-
ference from the base length is 1m. Since we extend the car
evenly at both the front and rear, we move the correspond-
ing points by 0.5m each. Using the conversion factor, this
translates to moving the points by 0.5m × 0.2units/m =
0.1units. By applying this conversion, we adjust the po-
sitions of points in the 3D space according to user inputs,
maintaining real-world scale relationships.

Figure 8. Example of the point translation function for the vehicle
domain. In this case. The dimensions of the reference object (left
column) are widthr = 1.89m, lengthr = 4.79m,heightr =
1.39m and the target dimensions of the vehicle are width =
1.95m, length = 5.391m,height = 1.544m. For δlength.
This results in the points marking the front lights and bumpers
being moved by +0.3005m along the y-axis and the points for the
rear lights and bumpers by −0.3005m. The change in width of
δwidth = 0.06m leads to all points on the left half of the car be-
ing moved by +0.03m along the x-axis and all points on the right
by −0.03m. For δheight = 0.154m, all points except for the
wheel centers and the bumpers are moved for +0.154m in z. De-
pending on the viewpoint, the visible geometry points are affected
by the point translation function.

A.5. Keypoint Detection with Diffusion Hyperfea-
tures

As stated in Section 3.2, we modify the style of the ren-
dered reference image Iref with PnP [42] image translation
to obtain the image I∗. For consistent geometric modifica-
tions of I∗, we need to re-detect the annotated points Pref .
We therefore use Iref and Pref as references to detect the
points P in the image I∗, using Diffusion Hyperfeature de-
tection [26]. An example of the detected points in a style-
transferred image is shown in Figure 9.

Figure 9. Geometric reference points before and after the style-
transfer using Plug-and-Play Diffusion Features [42]. In the style-
transferred image, the points have been detected using Diffusion
Hyperfeatures [26] with the original image as reference.

B. Details on GeoDiffusion
B.1. Implementation Details
In our experiments, we utilize Stable Diffusion 2.1 [35].
Sampling and inversion are performed using DDIM [41]
with 50 steps. For image-to-image style transfer, we em-
ploy the PnP method [42], utilizing the implementation pro-
vided by Diffusers [44]. Feature and attention maps are in-
jected over 35 timesteps, applying classifier-free guidance
[15] with a setting of 7.5. For geometric conditioning with
GeoDrag, I∗ is inverted to timestep 38. As done in existing
drag-based methods [39, 54] to improve image consistency,
we finetune the diffusion model on the input image using
LoRA with rank 16 for 70 steps. We then perform K = 70
total optimization steps, with the number of iterations per
timestep set to B = 7, resulting in 10 timesteps in which
dragging is conducted. For every optimization step k, we
do J = 3 motion supervision steps. For the optimization,
we employ the Adam optimizer [21] with a learning rate of
η = 0.02. The dragging step size per optimization is β = 4.
For the comparison with existing approaches, we use the
default parameters from the publications.

B.2. Inference Speed
For assessing the speed of our framework, we consider the
average durations of the steps on the geometry guidance
dataset. All experiments are conducted on an NVIDIA RTX
6000 Ada GPU, featuring 48 GB of VRAM. Running the
framework utilizes 21 GB on average.

The duration for modifying the geometry of an object
in an image with our GeoDiffusion framework depends on
multiple factors and parameters. When the framework is
used from scratch, the duration for defining the geometri-
cal reference points and the parametric relationships (point
translation functions) depends on the complexity and the
users’ proficiency with Blender. Rendering the reference
image in the desired viewpoint takes 3 seconds in our ex-
periments.

The extraction of the feature and attention maps of the

Figure 10. Image-to-image style transfer with different configura-
tions of the feature- and attention injection thresholds τf and τA.

reference image using the PnP-method takes 70 seconds on
average. For use cases where the same reference image is
used repeatedly, the feature and attention maps can be pre-
computed and cached, effectively reducing the time to zero.
This is especially important for applications in industrial
settings where the user only modifies the geometry of an ex-
isting object, as this reduces the skill barrier and increases
efficiency. The subsequent PnP-feature injection and point
detection take a combined 16 seconds.

The duration for geometric modification with our Geo-
Drag approach depends on the parameter configuration and
the quantity of geometric points. As summarized in Table 7,
our approach allows for a trade-off between accuracy and
speed. The LoRA-finetuning step used in most dragging-
based image editing methods consistently takes about 20
seconds in our experiments. Image refinement with SDXL
adds 5 seconds to the inference time.

B.3. Image-to-Image Style Transfer

Within our GeoDiffusion framework, test various configu-
rations of the PnP-method [42] with regards to its ability to
change the objects’ style according to the user input while
maintaining geometry and viewpoint, measuring the MD
of the keypoints in the rendered reference image and the
style-transferred image, CLIP- and HPSv2-scores and visu-
ally examining the results. High threshold values τf and
τA indicate low impact of the feature and attention maps,
as they are not injected into most of the generation process.
We find setting the injection thresholds for the feature and
self-attention maps to τf = 15, τA = 15, and the classifier-
free guidance [15] strength to 7.5 to produce the best re-
sults. When τf is set to a higher value, the fidelity of the
style-transferred image suffers. For high τA5, the attention
injection is not sufficient to accurately guide the viewpoint.
Some examples of this are visualized in Figure 10.

Figure 11. Modifications of geometries conducted on different viewpoints of the same object. The dragging instructions are set once for the
3D object and then carried out for the different viewpoints. The same text prompt is used for each viewpoint. Stylistic differences between
different angles of the same object stem from the image-to-image translation with PnP [42] and image refinement with SDXL [34].

Table 3. Per-category quantitative metrics of GeoDiffusion on the
Geometry Guidance Dataset.

MD↓ CLIP↑ Time↓

Dataset GoodDrag GeoDrag GoodDrag GeoDrag GoodDrag GeoDrag Samples Points

Cars 9.760 8.626 25.024 25.131 76.950 74.327 40 8-15
Bikes 12.871 10.504 25.455 25.685 57.438 43.771 18 6
Airplanes 15.386 10.031 23.175 23.245 44.111 36.761 12 4
Chairs 13.293 9.802 25.889 26.490 64.413 43.414 10 9
Buildings 11.823 8.236 24.460 25.975 46.935 30.906 10 4

B.4. Experiment Details
Qualitative Results: In addition to Figure 4a, we provide
qualitative comparisons with additional dragging frame-
works in Figure 15. We also provide more qualitative results
of geometry-guided image generations with GeoDiffusion
in Figure 16 and Figure 17.

Quantitative Results: The Geometry Guidance dataset
benchmarks the GeoDiffusion framework with cases from
the application in engineering concept design. We added
detailed per-category results in Table 3. Our improvements
consistently hold across all categories tested, not merely
cars. To robustly demonstrate general applicability beyond
the engineering design domain, we separately evaluated
our core GeoDrag module, responsible for accurate geo-
metric modifications, using the general-purpose DragBench
dataset, which addresses diverse object categories (animals,
buildings, faces, etc.) and modification tasks (Figure 5, Fig-
ure 18). We provide new experimental examples for non-
linear and more complex geometric conditions.

B.5. Comparison of GeoDiffusion to Object Editing
Frameworks

In Table 1, we compare GeoDiffusion to other frameworks
that allow editing of object features. By using a class-
specific 3D object as a prior for the generation, we enable
the user to freely select a custom viewpoint. Staying true
to the desired viewpoint is essential for accurate modifica-
tions of 3D object features in 2D image space, but remains
a challenge in text-conditioned image generation, as shown
in Figure 12.

Figure 12. Attempting to generate specific viewpoints of objects
in image generation remains a challenge when relying on text-
conditioning. For this example, Stable Diffusion 2.1 was used.

GeoDiffusion is the only framework that enables the user
to implement parametric relations, i.e. in the form of equa-
tions, to correlate the geometric keypoints. This allows to
directly introduce design rules into the geometric modifi-
cation process. Other approaches require either manually
setting the dragging instructions or modifying the 3D geom-
etry by hand. Additionally, we allow editing the geometry
in image space instead of relying on a 3D environment that
poses a high skill barrier.

By utilizing a single, class-specific 3D object and subse-
quently modifying it, GeoDiffusion is essentially training-
free. Other approaches require training of specialized em-
bedding models or network adapters, limiting their direct
applicability in custom domains for practitioners.

B.6. Multi-View Image Modification
GeoDiffusion is able to perform the modification of 3D ob-
ject features in 2D images for multiple viewpoints, seen in
Figure 11. The geometry of the object is modified consis-
tently. Minor semantic and stylistic changes between differ-
ent viewpoints of an object stem from uncertainty in the uti-
lized Plug-and-Play [42] style transfer. This is because there
is no information flow between different viewpoints of the
same object. Each viewpoint is generated separately. With
this example, we aim to demonstrate that the geometry of
the object is consistently modified according to the provided
modification instructions. To achieve increased semantic

Figure 13. Failure cases in geometric modifications due to poor
PnP image quality.

Figure 14. Utilizing multiple geometric points (bottom row) to
move large object features over longer distances is advantageous
compared to only using a single point (top row).

style consistency between the viewpoints, our method could
be applied to dedicated multi-view image generation mod-
els such as SV3D [43].

B.7. Limitations and Failure Cases
While GeoDiffusion effectively guides image viewpoint
and geometry, it occasionally fails to achieve the desired
results due to limitations in individual steps. For exam-
ple, the PnP method may not fully align with the prompt.
Occasionally, the poor quality in the PnP image cannot be
rectified by image refinement alone, as shown in Figure 13.
Severe perturbations in the PnP image cause keypoint detec-
tion to fail, leading to unsuccessful dragging. These issues
are more prevalent in the airplane domain and occasionally
with bikes.

Additionally, we observe instances where the dragging
step does not fully succeed. This occurs in some bike test
cases from our benchmark, where the wheels are not cor-
rectly moved to their target positions. A likely explanation
is that large dragging distances make a single point insuf-
ficient for precise guidance. Our proposed solution is to
leverage multiple points and increase the number of opti-
mization steps to strengthen guidance toward the target ge-
ometry. This approach leads to the desired output as shown
in Figure 14.

C. Details on GeoDrag
C.1. Methodology Details
We present a summarized representation of our GeoDrag
algorithm for accurate dragging-based image modifications
in the form of pseudo code Algorithm 1.

Table 4. Evaluation of GeoDrag configurations on the geome-
try guidance benchmark. The configurations are in the format
(K,B, r1, r2, l, u). Other parameters are kept consistent. The
radii for the gradient mask and copy-&-paste mechanism are set
to rgrad = rcp = r1.

Method MDout↓ CLIPout↑ HPSv2out↑ Time↓

GoodDrag [54] 11.77 25.21 25.93 66.30s

GeoDrag(64,8,2,4,4,6) 14.19 25.21 25.78 40.77s
GeoDrag(70,7,2,7,4,6) 12.63 25.10 25.88 41.43s
GeoDrag(70,7,2,7,4,4) 11.89 25.65 25.84 44.40s
GeoDrag(64,8,4,8,4,4) 11.79 25.29 25.77 49.29s
GeoDrag(64,8,4,10,2,4) 11.51 25.58 25.75 53.84s
GeoDrag(70,7,4,10,2,4) 10.80 25.31 25.71 60.03s

C.2. Comparison to Alternatives
This section quantitatively evaluates GeoDrag and existing
alternatives more in-depth. The results are summarized in
Table 5, which is an extension to Section 4.3.2. In addition
to the quantitative metrics presented in Table 2, we addition-
ally measure MD, CLIP-score and HPSv2 before the image
refinement with SDXL. We observe that the refinement de-
creases the dragging accuracy consistently for all evaluated
methods. For GeoDrag, the MD is increased by 1.45 pixels
on average, which yields a 13.4% decrease in accuracy.

Among all evaluated approaches, GeoDrag remains the
most accurate before and after image refinement. Compared
to GoodDrag, the MD improves by 2.17 pixels when mea-
sured before refinement and by 0.97 pixels when measured
after refinement.

In terms of CLIP-score and HPSv2, we observe that im-
age refinement increases both metrics for all approaches.
For GeoDrag, CLIP-score increases by 0.36 points while
HPSv2 increases by 1.49 points. This increase in image
fidelity is verified by visual examination. In alignment
with the discussed results in Section 4.3.2, we emphasize
again that, although the scores for image fidelity are higher
for DragonDiffusion [31], the achieved accuracy is signif-
icantly lower and viewpoint consistency and structural in-
tegrity of the dragged objects are not ensured.

Table 7 presents an extension to Table 4. We com-
pare more parameter configurations of GeoDrag and mea-
sure accuracy, prompt alignment, image fidelity and in-
ference speed. We confirm that setting the thresholds for
the point fixation mechanism more tightly consistently im-
proves dragging accuracy at the cost of inference speed.
There is no significant influence on prompt alignment and
image fidelity.

C.3. Hyperparameter Configurations
Table 4 is an extension to Section 4.4. We evaluate the quan-
titative performance of different GeoDrag hyperparameter
configurations and compare it to GoodDrag. K denotes
the total number of optimization steps for conducting the
geometric modifications via dragging, B are iterations per

Table 5. Evaluation results of different dragging methods on the geometry guidance dataset. The best result for each metric is marked in
bold. For the two methods marked with an asterisk GoodDrag∗ and GeoDrag∗, the optimization is performed for 200 iterations.

Method MDdrag↓ MDout↓ CLIPdrag↑ CLIPout↑ HPSv2drag↑ HPSv2out↑ Time↓

DragDiffusion 43.61 44.38 22.25 23.09 20.52 22.61 50.53s
DragonDiffusion 26.09 27.62 26.73 26.83 26.10 27.15 21.63s
SDE-Drag 22.79 23.49 24.89 25.43 25.05 26.35 25.95s
FreeDrag 21.00 22.15 24.82 25.19 24.34 25.41 68.28s
EasyDrag 19.67 21.13 25.44 25.75 24.57 25.82 54.36s
DragNoise 22.62 23.33 24.95 25.32 24.08 25.21 64.63s
GoodDrag 11.52 11.77 24.82 25.21 24.35 25.93 66.30s
GoodDrag∗ 10.20 11.24 24.71 24.90 24.07 25.56 122.91s

GeoDrag 9.35 10.80 24.95 25.31 24.22 25.71 60.03s
GeoDrag∗ 10.72 10.47 25.13 25.22 24.12 25.73 87.09s

Table 6. Image Identity Scores: CLIP-similarity-, SSIM []- and LPIPS between the style-transferred image and the final image for
GoodDrag and GeoDrag on our benchmark dataset. Non-Vehicle Benchmark: Quantitative results on 20 non-vehicle cases.

Image Identity Scores Non-vehicle Benchmark

Method CLIP-similarity ↑ SSIM ↑ LPIPS ↓ MD ↓ CLIP ↑ HPSv2 ↑ Time ↓

GoodDrag 0.9202 0.8067 0.4112 12.55 25.18 23.54 55.68s
GeoDrag 0.9167 0.8055 0.4249 9.02 26.23 24.06 37.16s

∆ 0.38% 0.15% 3.28% +32.7% +4.1% +2.2% +39.9%

Table 7. Evaluation of GeoDrag configurations on the geometry guidance benchmark. The configurations are in the the format
K,B, r1, r2, l, u and are GeoDrag1(64, 8, 2, 4, 4, 6), GeoDrag2(70, 7, 2, 7, 4, 6), GeoDrag3(64, 8, 2, 4, 4, 4), Geodrag4(70, 7, 2, 7, 4, 4),
Geodrag5(64, 8, 4, 8, 4, 4), Geodrag6(70, 7, 2, 7, 2, 4), Geodrag7(64, 8, 4, 10, 2, 4), Geodrag8(70, 7, 2, 4, 2, 4),
Geodrag9(70, 7, 4, 10, 2, 4). Other parameters are kept consistent. The radii for the gradient mask and copy-&-paste mechanism
are set to rgrad = rcp = r1. The number of copy-&-paste steps after the optimization is 15 and image-to-image refinement is performed
with a strength of 0.3 and a guidance scale of 4. LoRA finetuning is not accounted in the runtime.

Method MDdrag↓ MDout↓ CLIPout↑ HPSv2drag↑ HPSv2out↑ Time↓

GeoDrag1 11.72 14.19 25.21 24.27 25.78 40.77s
GeoDrag2 10.89 12.63 25.10 24.43 25.88 41.43s
GeoDrag3 10.44 12.01 25.55 24.46 25.90 43.86s
GeoDrag4 10.75 11.89 25.65 24.39 25.84 44.40s
GeoDrag5 9.71 11.79 25.29 24.23 25.77 49.29s
GeoDrag6 10.20 12.66 25.48 24.39 25.85 52.92s
GeoDrag7 9.38 11.51 25.58 24.27 25.75 53.84s
GeoDrag8 10.36 13.98 25.50 24.32 25.92 54.90s
GeoDrag9 9.35 10.80 25.31 24.22 25.71 60.03s

GoodDrag 11.52 11.77 25.21 24.35 25.93 66.30s

timestep, r1 and r2 are the radii defining the square patch
around the dragged points to obtain the feature maps asso-
ciated with the points. As expected, longer dragging du-
rations generally lead to better accuracy. We observe that
the average duration for the dragging operation is not solely
dependent on the number of iteration steps, but also corre-
sponds to the setting of the radii for point tracking and the
thresholds for the point fixation mechanism.

We further observe that our approach is consistent when
it comes to output image fidelity, measured as CLIP- and
HPSv2-scores. The variance between different GeoDrag
hyperparameter configurations and GoodDrag is 0.073
points, which is below 3% performance fluctuation.

Algorithm 1 Pseudocode for GeoDrag.

Input: Original latent image z0, handle points {h0
i }ni=1, target points {gi}ni=1, U-Net ϵθ, inversion timestep T , total

number of optimization steps K, total number of optimizations per denoising step B, number of motion supervision
steps per point tracking J , max copy paste steps N
Output: Dragged image ẑ0

1: LoRA finetuning(ϵθ, z0)
2: zT ← DDIM inversion(z0, T)
3: z0T ← zT
4: I0T ← [], M∇ ← ⊮
5: for k in range(K) do ▷ K optimization steps
6: t = T −

⌊
k
B

⌋
▷ timestep t for optimization k

7: zkt,0 ← zkt
8: for j in range(J) do ▷ J motion supervisions per optimization k
9: ▷ Update ignored points and gradient mask M∇ based on remaining distance

10: Ikt ,M∇ ← update ignored(Ikt ,M∇)
11:
12: zkt,j+1 = zkt,j − η ·M∇ ⊙∇zk

t,j
Lms(z

k
t,j) ▷ Motion supervision step Eq. 5 + 6

13: end for
14: zk+1

t ← zkt,J
15: Ik+1

t ← Ikt
16: {hk+1

i }ni=1 ← point tracking({hk
i }ni=1) ▷ Point tracking step

17:
18: if (k + 1) mod B = 0 then ▷ After B optimizations move to next timestep
19: zk+1

t ← copy paste(zk+1
t , Ikt) ▷ Copy & paste only ignored points

20: zk+1
t−1 ← denoise step(zk+1

t) ▷ Denoise step
21: Ik+1

t−1 ← I
k+1
t

22: end if
23: end for
24:
25: counter ← 0
26: for t in [T −

⌊
K
B

⌋
, . . . , 1] do

27: if counter = 0 then
28: zKt ← copy paste(zKt , {hK

i }ni=1) ▷ Copy & paste all points
29: else if counter < N then
30: zKt ← copy paste original(zKt , zt, {h0

i }ni=1) ▷ Copy & paste all points using
▷ original handle positions and latents

31: end if
32: zKt−1 ← denoise step(zKt)
33: counter + =1
34: end for
35: ẑ0 ← zK0
36: return ẑ0

D. Additional Examples

Figure 15. More qualitative examples for comparison of dragging results using GeoDrag and alternative methods. GeoDrag and GoodDrag
are the only approaches that achieve high dragging accuracy while maintaining the viewpoint and the integrity of the modified object.
DragonDiffusion does not provide viewpoint consistency in the vehicle example and fails to maintain the geometry in the case of the
airplane. EasyDrag and SDE-Drag also suffer from structural inaccuracies and FreeDrag achieves low dragging accuracy. In each of the
three cases, the left column presents the result after dragging and the right column shows the refined image.

Figure 16. More examples of geometric modification results using GeoDiffusion on engineering design objects from the geometry guidance
dataset. The 3D objects are taken from Objaverse [8]. Visualized examples are from the geometry guidance dataset. The prompt for the
image-to-image style transfer is shown in the left column.

Figure 17. More examples of geometric modification results using GeoDiffusion on engineering design objects from the geometry guidance
dataset. The 3D objects are taken from Objaverse [8]. Visualized examples are from the geometry guidance dataset. The prompt for the
image-to-image style transfer is shown in the left column.

Figure 18. More examples of geometric modification results using GeoDrag on the DragBench dataset.

	GeoDiffusion Methodology Details
	Preliminary on Diffusion Models
	3D Object Rendering
	Motivation for using 3D points as prior
	Point Translation Function
	Keypoint Detection with Diffusion Hyperfeatures

	Details on GeoDiffusion
	Implementation Details
	Inference Speed
	Image-to-Image Style Transfer
	Experiment Details
	Comparison of GeoDiffusion to Object Editing Frameworks
	Multi-View Image Modification
	Limitations and Failure Cases

	Details on GeoDrag
	Methodology Details
	Comparison to Alternatives
	Hyperparameter Configurations

	Additional Examples

