A. Related Work
A.1. Diffusion-based Image Editing

Diffusion-based image editing strives to (1) preserve the vi-
sual content of a given source image while (2) modifying
specific regions as instructed by text prompts. Prompt-to-
Prompt (P2P) [13] pioneered this line of research by intro-
ducing cross-attention scheduling, which injects the cross-
attention maps obtained during the reconstruction of the
source image back into the editing process. Subsequent
works further refined attention manipulation: MasaCtrl [3]
imposes mutual self-attention control to maintain spatial
consistency, whereas Free-Prompt-Editing (FPE) [19] de-
composes cross-attention scheduling layer by layer for finer
control.

A complementary thread focuses on inversion, operating
under the intuition that an accurate inversion of the source
image yields higher-quality edits. Several methods optimize
text embeddings during inversion [5, 18, 21, 29, 30]; among
them, InfEdit [29] proposes a training-free Virtual Inversion
technique that achieves state-of-the-art results on multiple
benchmarks.

Despite these advances, multi-object image editing re-
mains under-explored. ZRIS [9] handles multi-object cases,
but segments objects for referring image segmentation,
not editing. Editing multiple target objects sequentially is
straightforward but computationally expensive, as each ob-
ject requires a separate diffusion pass. Our work addresses
this gap by proposing a training-free framework that si-
multaneously handles multiple editing prompts and aligns
user intent with the attention mechanism, enabling efficient
multi-object edits without sacrificing quality.

A.2. Mitigating Attribute Leakage

Attribute leakage occurs when a diffusion model assigns
an attribute to an unintended object. Early work addressed
the problem by injecting explicit linguistic structure: Struc-
tureDiffusion Guidance [10] constrains generation with
a constituency tree or scene graph, while Attend-and-
Excite [4] and SynGen [23] refine cross-attention so that
each word attends to a single spatial region. These meth-
ods focus on the attention maps themselves, yet leakage
can also stem from fext embeddings: even a perfect atten-
tion map fails if the prompt embedding is semantically en-
tangled.

ToMe [14] tackles embedding-level entanglement via
End Token Substitution (ETS). It replaces the EOS embed-
ding of the full prompt (e.g., “a yellow cat and a white dog”)
with the EOS embedding of a stripped prompt that omits
attributes (e.g., “a cat and a dog”), thereby suppressing
color—attribute leakage (“yellow dog”, “white cat”). How-
ever, ETS does not address noun-to-noun confusion (“cat”
versus “dog”) and, being designed for pure image genera-

tion, offers no guarantee of consistency with a given source
image—an essential requirement for editing. DPL [30] re-
duces leakage by iteratively optimizing token embeddings
at inference time to align cross-attention maps with the
prompt, yet this costly optimization still leaves leakage
when EOS embeddings remain entangled (see Figure 3).

In summary, existing approaches either leave EOS
embeddings untouched or require high-cost optimization.
Our method instead offers a lightweight, optimization-free
pipeline that simultaneously disentangles embeddings and
aligns attention, achieving lower attribute leakage while
preserving faithfulness to the source image.

B. Benchmark Construction Details

Benchmark overview Our benchmark is designed to eval-
uate attribute leakage in image editing tasks using diffu-
sion models. Unlike existing benchmarks that focus on im-
age quality and background preservation, our benchmark
emphasizes preventing unintended changes in both target-
external and target-internal regions. It consists of 20 diverse
images, semi-automated object masks, and succinct prompt
pairs for various editing types. To comprehensively evalu-
ate models, we generate 10 random edit prompts for each
combination of 5 edit types and 1-3 edited objects per im-
age, resulting in a total of 3,000 diverse editing scenarios.
By covering diverse editing scenarios and offering precise
evaluation metrics, our benchmark provides a robust frame-
work for improving the precision of image editing methods.
Figure 6 illustrates examples, showing the source images,
object masks, and associated editing prompts.

Image selection We curated a dataset of 20 images, evenly
split between natural and artificial scenes, to provide diverse
and challenging editing scenarios. All images were drawn
from both free image repositories and the PIE-bench dataset
[29]. To ensure complexity, we included only images con-
taining at least three distinct objects.

Prompt construction ALE-Bench provides five editing

types. The prompt templates for different editing types are

as follows:

1. Color change: “{color}-colored {object}” (e.g., “car” —
“red-colored car”).

2. Object change: “{new object}” (e.g., “car” — “bus”).

3. Material change: “{object} made of {material}” (e.g.,
“car” — “car made of gold”).

4. Color and object change: “{color}-colored {new ob-
ject}” (e.g., “car” — “blue-colored bus”).

5. Object and material change: “{new object} made of
{material}” (e.g., “car” — “bus made of gold”).

We intentionally excluded combinations like “color and ma-

terial” and “color, object and material” because such cases

often lead to unrealistic or ambiguous prompts, such as

“silver-colored car made of gold”. These kinds of descrip-



tions are inherently challenging to interpret or generate,
even for a human, making them impractical editing scenar-
ios.

For each image, we generated 10 unique and random edit
prompt instances for every combination of edit type and
number of objects to edit. These prompts were created using
attribute dictionaries containing target instances for colors,
objects, and materials, with the assistance of ChatGPT to
ensure diversity and consistency. This approach results in a
systematic exploration of the attribute space across 20 im-
ages, 5 edit types, and varying numbers of objects, covering
a total of 3,000 unique editing scenarios. Additionally, we
emphasize the importance of user convenience by designing
minimal prompt pairs that specify only the intended modi-
fication, avoiding the verbosity commonly seen in previous
benchmarks.

Evaluation metrics In addition to standard metrics from
PIE-bench—such as structural distance, background preser-
vation (PSNR, SSIM, LPIPS, MSE), and editing perfor-
mance (CLIP similarity)—we propose two novel metrics
specifically designed to evaluate attribute leakage. The
Target-External-Leakage Score (TELS) metric quantifies
unintended changes to background regions during editing.
This is calculated by measuring the CLIP scores between
the background regions of the edited image and the target
prompt. Lower TELS indicate minimal impact on the back-
ground, ensuring that non-target regions remain unaffected.
The Target-Internal-Leakage Score (TILS) metric captures
unintended cross-influence between multiple edited objects.
For each edited object, we compute the CLIP scores be-
tween its edited region and the prompts intended for other
objects, then take the mean scores across all object pairs.
Lower TILS indicate that edits are confined to their respec-
tive objects without unintended interactions or overlaps.

Comparison with LoMOE-Bench LoMOE-Bench [7]
evaluates overall fidelity in multi-object editing using ap-
proximately 1k edits across 64 images. In contrast, ALE-
Bench focuses on probing attribute leakage, generating 3k
edits from just 20 carefully selected images. Rather than
scaling the dataset broadly, ALE-Bench emphasizes depth
by designing diverse, leakage-prone scenarios for each im-
age. Since each additional image requires new object masks
and source—target prompt pairs, annotation costs grow lin-
early. As a result, the two benchmarks serve complementary
purposes: LOMOE-Bench measures broad editing fidelity,
while ALE-Bench targets leakage robustness.

C. Experiments Details

Prompt construction For methods such as MasaCtrl and
FPE that require only a single target prompt, the target
prompt was constructed by concatenating all target object
prompts with “and” to form a prompt. For methods like P2P

Method P2P MasaCtrl FPE InfEdit ALE (Ours)
Runtime (sec) | 61.2 63.6 509 541 4.31

Table 4. Average runtime per edit on an RTX 6000 Ada Gen.

and InfEdit that require both a source and a target prompt,
the source prompt was similarly created by concatenating
the source object prompts, while the target prompt was con-
structed by concatenating the target object prompts.

Hyperparameters For our method, we set the inference
steps to 15 and the mask dilation ratio to 0.01, correspond-
ing to a dilation of seven pixels. The self-attention control
schedule was adjusted according to the type of edit: 1.0 for
colors, 0.5 for objects, color+object, and material+object,
and 0.6 for material. The same self-attention control sched-
ule was applied to InfEdit and P2P, as this hyperparame-
ter is shared. For all other hyperparameters of the baseline
methods (MasaCtrl, FPE, P2P, InfEdit), we used the default
settings provided in their official implementations.

D. Additional Results

Runtime comparison As shown in Table 4, ALE and
InfEdit achieve significantly faster runtimes compared to
other baselines, requiring only a few seconds per edit.
This efficiency comes from leveraging virtual inversion via
DDCM. In contrast, methods like P2P, MasaCtrl, and FPE
rely on more expensive DDIM or null-text inversion pro-
cesses, resulting in runtimes of nearly one minute per edit.

By object count Tables 5, 6, and 7 present the quantita-
tive evaluation of our method and baselines on ALE-Bench
across different numbers of editing objects. For the base-
line methods, TELS and TILS decrease as the number of
edited objects increases, as editing more objects provides a
more detailed description of the image, reducing ambigu-
ity. This trend highlights the baselines’ dependence on long
and detailed prompts. However, their editing performance
decreases with an increasing number of edited objects, re-
vealing their limitations in handling complex edits. In con-
trast, our method demonstrates robust performance across
all object counts, consistently achieving the lowest leakage
values, preserving structure and background, and maintain-
ing competitive or superior editing performance.

By edit type We compare our methods with baselines
across different edit types in Tables 8, 9, 10, 11, and 12.
Across all edit types, our method consistently outperforms
baselines by achieving lower leakage, better structural and
background preservation, and strong editing performance.
We provide more qualitative examples on ALE-Bench for
each edit type in two objects editing in Figure 14.



E. Ablation Study Results

Ablation on EOS embedding methods To evaluate the
effect of EOS embeddings, we studied several methods of
modifying EOS embeddings: (1) Naive: No modification,
using the original EOS embeddings; (2) Zeros: Replac-
ing EOS embeddings with zero-valued vectors; (3) BOS:
Substituting EOS embeddings with BOS (beginning-of-
sequence) embeddings; (4) Empty String: Using EOS em-
beddings derived from an empty string. In Figure 4, our
method demonstrates robust results across various scenar-
ios, while the other methods often produce images that fail
to follow the edit prompt or exhibit attribute leakage. A de-
tailed quantitative comparison is provided in Table 13.

Another EOS modification method is proposed in [14],
named End Token Substitution (ETS). ETS substitutes an
embedding of EOS in a full prompt into an embedding of
EOS in a rephrased prompt, which deletes all attribute ex-
pressions, e.g. “a yellow cat and a white dog” into “a cat
and a dog”. In Figure 10, TI leakage in ETS is observed,
e.g. cats are generated instead of a cat and a dog, and jar is
generated in a region where ghost should be. RGB-CAM is
applied for both methods, therefore the cross-attention map-
pings are aligned with the prompt.

Our method consistently achieves the best editing perfor-
mance while maintaining competitive structure and back-
ground preservation metrics. In contrast, the other methods
reveal a trade-off between reducing leakage and maintain-
ing high editing performance, highlighting the effectiveness
of our approach in balancing these objectives.

Ablation on RGB-CAM and BB The results in Table 14
demonstrate the complementary strengths of RGB-CAM
and BB in our method. While RGB-CAM effectively re-
duces TI leakage by confining edits to the targeted objects,
its impact on TE leakage and background preservation is
limited. Conversely, BB significantly lowers TE leakage by
preserving non-target regions, improving background qual-
ity but slightly reducing editing performance. Combining
all components (Ours) achieves the best overall balance,
minimizing leakage while preserving structure and back-
ground, and maintaining strong editing performance, high-
lighting the synergy of these components.

Evaluation on PIE-Bench We also evaluated our method
on the existing PIE-Bench [17] in addition to ALE-Bench.
Since our method does not support all edit types in PIE-
Bench, we conducted experiments on the four edit types
that are compatible: object change, content change, color
change, and material change.

PIE-Bench only considers scenarios with a single object
editing, so we excluded the TI Leakage metric. When run-
ning our method, we used the blend word provided by PIE-
Bench as the SAM prompt for mask generation. In cases
where mask segmentation failed, we edited the image with-

out cross-attention masking and background blending.

In Table 15, the results show that our method demon-
strated the lowest attribute leakage and high editing perfor-
mance among all methods, even on PIE-Bench. These find-
ings further validate the robustness and versatility of our ap-
proach across different benchmarks. We also provide qual-
itative examples for each edit type from the PIE-Bench ex-
periments in Figure 15.

Ablation on self-attention injection schedule The de-
gree to which the structure of a source image needs to be
preserved varies depending on the edit type. For edits like
color changes, maintaining the original structure is crucial,
while object changes may require more deviation from the
source. Figure 8 shows the effect of the self-attention sched-
ule across various scenarios. Adjusting the schedule from
0.0 to 1.0 shows that higher values preserve more structure,
while lower values allow greater flexibility. Thus, selecting
the appropriate self-attention schedule depends on the spe-
cific goals of the task. The hyperparameters we used were
chosen based on these experimental findings.

F. Limitations

ALE-Bench While our benchmark provides a robust frame-
work for evaluating attribute leakage in image editing, it
has certain limitations. First, the range of editing tasks is
currently limited to basic and mixed edits such as color,
object, and material changes. More complex editing types,
such as style transfer or pose modifications, are not covered
in ALE-Bench. However, defining attribute leakage in ed-
its like style transfer is inherently ambiguous, as such edits
often involve holistic changes to the image, making it un-
clear which regions should remain unaffected. Addressing
these challenges would require redefining attribute leakage
for these contexts and designing new evaluation metrics tai-
lored to these specific tasks. Second, the dataset size (20 im-
ages) may limit the evaluation of models trained on larger or
more diverse datasets. Future updates of ALE-Bench could
expand its scope by incorporating additional images, and
more diverse editing types to overcome these limitations.
Failure cases Our framework leverages two backbone
models, a pre-trained diffusion model and a segmentation
model, Grounded-SAM. Consequently, it may fail when
the task exceeds the capabilities of these backbone mod-
els. For instance, overly rare or complex prompts that the
pre-trained diffusion model cannot handle (Figure 12), ob-
jects that are difficult for the segmentation model to recog-
nize, or incomplete segmentation masks generated by the
model (Figure 13) can lead to unsatisfactory results. How-
ever, since our method operates in parallel with advance-
ments in these backbone models, we anticipate that such
failure cases will decrease as these models continue to im-
prove.



Source Edit prompt/Type ALE Naive Zeros BOS

floor > beige-colored floor
couch = red-colored couch
tree > khaki-colored tree

Color

chair 2 bench
floor > lawn
table > coffee table

Object

yellow car = car made of asphalt
red car = car made of ivory
green car - car made of glass

Material
= yellow macaron - red-colored muffin
g— plate = rust-colored tureen
\—) pink macaron - black-colored cookie
Color + Object
-

yellow paprika = rock made of granite
green paprika = dragon head made of linen
red paprika - dragon head made of aluminu

Object + Material

Figure 9. Qualitative examples from the EOS ablation study. While our method produces convincing results, other methods fail to generate
the target object or exhibit attribute leakage. For instance, using the naive EOS to edit an object generates plants in place of the chair. This

occurs due to attribute leakage from the word lawn to bench, resulting in chair-shaped flowers.

Original Image

Figure 10. ETS, which is proposed in [14], fails to generate in-
tended results. Edit prompt: (up) yellow paprika — yellow cat, red
paprika — white dog. (down) cup — jar, steam — ghost.



Self-attention Schedule
Task 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Color

Material

Object

Color +
Object

Object +
Material

Figure 11. Ablation study on self-attention injection schedule. A schedule value specifies the fraction of early denoising steps during which
self-attention maps from the source image are injected (e.g., 0.3 — first 30 % of steps). Larger values preserve more of the source structure
and content, whereas smaller values grant greater freedom to satisfy the edit. The optimal schedule therefore varies by edit type. Prompts for
each editing type are: (1) color: wolf — cream-colored wolf, mountain — crimson-colored mountain, (2) material: mountain — mountain
made of crystal, moon — moon made of gold, (3) object: wolf — cat, moon — UFO, (4) color + object: moon — navy-colored soccer
ball, mountain — crimson-colored hill, (5) object + material: cat — wolf made of rubber, mountain — wave made of ivory.

I

(a) Source image (b) Editing result (c) Generation result
Figure 12. Failure case due to the base model’s inability. Editing
prompt: cloud — cloud made of chrome. Figure 12c¢ illustrates the
generation result when given the prompt “cloud made of chrome”.

2

(a) Source image (b) Editing result (c) Segmentation mask

i) ‘\

Figure 13. Failure case due to SAM segmentation fail. Editing
prompt: ... cat ... — ... panda .... Figure 13c shows the un-

successful segmentation of SAM.



Structure Editing Background Preservation
Method TELS ] pDistance |  Performancet  PSNRT LPIPS| MSE| SSIM 1
P2P 2491 0.1513 21.53 10.29 0.5306  0.10342 0.4737
MasaCitrl 23.36 0.1012 20.58 13.74 0.3671 0.05250 0.6645
FPE 24.42 0.1172 22.94 11.66 0.4677 0.08009 0.5194
InfEdit 21.98 0.0504 22.71 15.34 0.2495 0.04359 0.7057
ALE 16.41 0.0088 22.62 30.01 0.0405 0.00167 0.9049
Table 5. Quantitative evaluation of editing one object for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNR1T LPIPS| MSE| SSIM?
P2P 20.87 17.52 0.1499 20.41 11.11 0.4506  0.08699  0.5560
MasaCtrl 19.58 16.90 0.0911 19.92 14.99 0.2886  0.04058 0.7357
FPE 20.44 17.68 0.1141 21.72 12.81 0.3880  0.06439  0.6050
InfEdit 19.16 16.86 0.0485 21.52 16.69 0.2026  0.03288 0.7719
ALE 16.00 15.42 0.0165 22.06 30.06 0.0360 0.00146 0.9235
Table 6. Quantitative evaluation of editing two objects for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS!  yctance|  Performance?  PSNRT LPIPS| MSE| SSIM{
P2P 18.80 17.00 0.1531 20.05 12.05 0.3674  0.07318  0.6469
MasaCtrl 17.60 16.58 0.0866 19.53 16.26 0.2231 0.03245 0.8037
FPE 18.36 17.09 0.1180 20.99 14.00 0.3153 0.05247 0.6911
InfEdit 17.62 16.51 0.0463 21.10 18.18 0.1580 0.02540 0.8350
ALE 15.89 15.36 0.0246 22.19 30.01 0.0323  0.00154 0.9426
Table 7. Quantitative evaluation of editing three objects for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNR1T LPIPS| MSE| SSIM?
P2P 23.20 18.02 0.1467 21.94 11.03 0.4529  0.0898  0.5753
MasaCtrl 21.70 17.35 0.0964 21.64 14.59 0.3113  0.04557 0.7283
FPE 22.33 17.94 0.1065 23.23 12.66 0.3926  0.06901 0.6266
InfEdit 19.68 17.31 0.0343 23.16 18.54 0.1401  0.02695 0.8347
ALE 17.63 16.21 0.0089 23.12 32.97 0.0288  0.00079  0.9309
Table 8. Quantitative evaluation of the color change edit type for ALE and baselines on ALE-Bench.
Structure Editin; Background Preservation
Method TELS!  TILSL ) ctance | Performafce +  PSNRT LPIPS| MSE| SSIM7
P2P 20.65 17.78 0.1535 20.38 11.23 0.4457  0.08750  0.5485
MasaCtrl 19.52 17.33 0.0901 19.72 15.48 0.2744  0.03801 0.7417
FPE 19.76 17.58 0.1221 21.30 13.12 0.3732  0.06236 0.6103
InfEdit 18.67 17.12 0.0504 21.10 16.59 0.2114  0.03381 0.7607
ALE 15.86 16.25 0.0197 21.82 29.03 0.0386  0.00182 0.9218

Table 9. Quantitative evaluation of the object change edit type for ALE and baselines on ALE-Bench.



Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNR1T LPIPS| MSE| SSIM?
pP2P 21.40 17.07 0.1549 20.75 11.07 0.4417  0.08674  0.5429
MasaCtrl 20.82 17.00 0.0866 20.93 15.39 0.2755 0.03763  0.7418
FPE 21.91 17.68 0.1151 22.64 13.14 0.3781  0.05908  0.5943
InfEdit 20.33 16.87 0.0387 22.59 17.71 0.1753  0.02559 0.7862
ALE 17.15 15.96 0.0118 22.94 30.63 0.0339  0.00120  0.9248
Table 10. Quantitative evaluation of the material change edit type for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS!  yctance|  Performance?  PSNRT LPIPS| MSE| SSIM 1
P2P 21.62 17.10 0.1483 20.71 11.12 0.4586  0.0896  0.5786
MasaCtrl 19.59 16.15 0.0986 19.18 14.43 0.3142  0.04634 0.7281
FPE 20.82 17.11 0.1159 21.40 12.42 0.4079  0.07175 0.6081
InfEdit 19.92 16.11 0.0619 21.23 15.04 0.2543  0.04503 0.7333
ALE 15.30 14.01 0.0231 22.15 28.60 0.0407  0.00205 0.9206

Table 11. Quantitative evaluation of the color and object change edit type for ALE and baselines on ALE-Bench.

Structure Editin; Background Preservation
Method TELS ! TILS|  pctance | Performafce +  PSNRT LPIPS| MSE| SSIM1{
P2P 20.76 16.31 0.1538 19.54 11.29 0.4488 0.0857 0.5490
MasaCtrl 19.28 15.86 0.0929 18.57 15.07 0.2893  0.04166 0.7332
FPE 20.55 16.62 0.1224 20.86 12.77 0.3998  0.06604 0.5865
InfEdit 19.34 16.03 0.0567 20.80 15.81 0.2356  0.03842 0.7394
ALE 14.55 14.51 0.0196 21.42 28.88 0.0393 0.0019 0.9201

Table 12. Quantitative evaluation of the object and material change edit type for ALE and baselines on ALE-Bench.

Structure Editing Background Preservation
Method TELS | TILSL  ytance |  Performance?  PSNRT LPIPS | MSE| SSIM 1
Naive 16.02 15.81 0.0156 21.86 30.14  0.0359 0.0014 0.9232
Zeros 15.74 15.23 0.0107 20.78 3122 00327  0.0011 09254
BOS 15.76 15.27 0.0115 20.87 31.09 00334 00011 0.9241
Empty String 15.86 15.33 0.0139 21.25 30.61  0.0342  0.0013 0.9248
ALE 16.03 15.28 0.0167 22.20 3004 00361 0.0014 09228

Table 13. Ablation study on different strategies for handling EOS embeddings in the prompt. While ALE shows slightly higher leakages
compared to others, it achieves the best editing performance. All experiments were conducted with both RGB-CAM and BB applied.

Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNRT LPIPS| MSE| SSIM7T
ORE 20.05 16.87 0.0521 21.81 16.16 0.2182  0.0380 0.7591
ORE+RGB 18.99 15.46 0.0436 22.42 17.48 0.1805 0.0291 0.7887
ORE+BB 16.12 16.58 0.0164 21.56 29.88 0.0368  0.0015 0.9219
ALE 16.03 15.28 0.0167 22.20 30.04 0.0361 0.0014 0.9228

Table 14. Ablation study comparing the components of our method: object-restricted embeddings (ORE), region-guided blending cross-
attention masking (RGB), and background blending (BB). RGB markedly reduces TILS, whereas BB substantially lowers TELS. When
ORE is used without RGB, it relies solely on the base embedding Ey,. (i.e., the ORE and ORE + BB cases). Integrating all three components
(ALE) yields the best overall performance across nearly every metric, underscoring their complementary strengths.



Structure Editing Background Preservation

Method TELS ! pictance |  Performance?  PSNR1T LPIPS| MSE| SSIM 1

pP2P 26.20 0.1571 23.74 11.11 0.4270  0.0919  0.4600
MasaCtrl 24.48 0.0856 22.16 15.81 0.2540  0.0334  0.6803
FPE 25.64 0.1265 23.89 13.35 0.3499  0.0581 0.5346
InfEdit 2451 0.0446 22.92 19.41 0.1519  0.0168 0.7581
ALE 22.94 0.0238 22.87 28.77 0.0580  0.0046 0.8865

Table 15. Evaluation results on PIE-Bench for compatible edit types (object change, content change, color change, and material change).
Our method achieves the lowest TELS and demonstrates the best structure and background preservation while maintaining competitive
editing performance.



Source Edit Prompt/Type ALE InfEdit MasaCtrl FPE P2P

table - black-
colored table,

chair > crimson-
colored chair

sunglass = purple-
colored table,

watch - maroon-
colored chair

cocktail > whiskey
highball,
sea > meadow

sun = balloon,
parasol >
mushroom

box > box made of
copper,
blue globe > globe
made of gold

Material

book > book
made of wool,
cup = cup made
of steel

Material

flowerpot = blue-
colored bucket,
floor > cream-
colored carpet

Color+Object

yellow paprika >

black-colored ice,
red paprika = rust-
colored dragon head

Color+Object

yellow car - convertible
made of linen,
red car > truck made of
silver

house > shack made of
graphite,
lighthouse > water
tower made of turquoise

Figure 14. Qualitative examples of editing results for each edit type on ALE-Bench. Two examples are provided for each edit type. The left

side of — represents the source prompt, and the right side represents the target prompt.



Source

Edit Prompt/Type ALE InfEdit MasaCtrl FPE pP2p

bread on a wooden
table with tomatoes
and a napkin > meat

a digital art woman with
curly hair standing in
front of buildings = -
straight hair -

Content

a black bird with a
yellow beak and
yellow feet >

a green bird -+

tomatoes in

a bowl on a table
9

-+ a plastic bowl -

Material

Figure 15. Qualitative examples of editing results for the four compatible edit types on PIE-Bench: object change, content change, color
change, and material change. In edit prompt column, the left side of the arrow — represents the source prompt, and the right side represents
the target prompt, with unchanged parts omitted as “...” for brevity. Baseline methods exhibit attribute leakage or fail to preserve the source
image structure, while our method achieves more precise edits with minimal leakage.
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