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GenAI Multiple Video Synchronization Dataset
Gen-MVS Dataset Details
Gen-MVS is a dataset of 82 AI-generated videos synthesized using prompts and images via ChatGPT and KlingAI, as
described in the main paper. It contains 5 action classes with natural variation in visual style, motion speed, and subject
identity (e.g., different instances of the same animal category, such as a bulldog and a German shepherd performing the same
action). Each video is annotated with a Start, End, and one class-specific key event, supporting evaluation of multi-video
synchronization (MVS), as summarized in Table 1.

Table 1. List of all key events in the Gen-MVS dataset. Each action has a Start event and End event in addition to the key event.

Action #phases Key Event Train set Val set

Bench-press 2 Bar fully down 9 5
Deadlift 2 Bar fully lifted 11 6
Dips 2 Elbows at 90° 12 6
Pullups 2 Chin above bar 11 5
Pushups 2 Head at floor 11 6

Annotation. All videos were manually filtered for visual and temporal quality, and annotated with per-video phase progression
and key event frames. These annotations are used for both supervision and alignment evaluation.



Additional results
Joint alignment of video embeddings
The Temporal Prototype Learning (TPL) framework seeks to learn the joint alignment and temporal prototypes of video action
sequences. It is achieved via the Diffeomorphic Multitasking Autoencoder (D-MTAE). The output of the encoder, Ψencoder, is a
1-D representation of the multi-channel inputs, which are then jointly-aligned by a Diffeomorphic Temporal Alignment Net
(DTAN) [6], ΨDTAN. Figure 1 presents the alignment results on the Baseball swing and Golf swing actions.
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(a) Baseball swing 1-D Latent representation
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(b) After alignment
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(c) golf swing 1-D Latent representation
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(d) After alignment

Figure 1. Joint alignment of the one-dimensional representation for 20 randomly sampled videos of the Baseball swing (top) and golf swing
(bottom) action colored by the phase labels, before (left) and after alignment (right).



Multiple video synchronization

We provide qualitative results demonstrating the effectiveness of our Temporal Prototype Learning (TPL) for synchronizing
multiple unsynchronized videos of the same action. TPL leverages learned temporal embeddings to align sequences with high
temporal fidelity, even under challenging conditions such as viewpoint variation and subtle temporal misalignments. As shown
in Figure 2, Figure 3, Figure 4, and Figure 5, TPL accurately estimates temporal offsets and brings semantically corresponding
frames into alignment across multiple video sources.

Figure 2. Examples from Penn Action dataset (squat action), showing five equally spaced frames before and after synchronization. We
highlight mismatches in the original videos in red, and TPL matching in green. Alignment via TPL successfully synchronizes the key phases
of the squat action.



Figure 3. Examples from Penn Action dataset (baseball pitch action), showing five equally spaced frames before and after synchronization.
We highlight mismatches in the original videos in red, and TPL matching in green. Alignment via TPL successfully synchronizes the key
phases of the baseball pitch action.



Figure 4. Examples from Penn Action dataset (baseball swing action), showing five equally spaced frames before and after synchronization.
We highlight mismatches in the original videos in red, and TPL matching in green. Alignment via TPL successfully synchronizes the key
phases of the baseball swing action.



Figure 5. Examples from Penn Action dataset (tennis forehand action), showing five equally spaced frames before and after synchronization.
We highlight mismatches in the original videos in red, and TPL matching in green. Alignment via TPL successfully synchronizes the key
phases of the tennis forehand action.



Implementation Details
Diffeomorphic Multitasking Autoencoder (D-MTAE) modules architecture are presented in Table 2 and Table 3.

Table 2. D-MTAE modules architecture.

Operations Output Size Parameters
Encoder network – 𝜓encoder ( ·)

Conv1d 128 [input channels, 128, 3, padding=1]
BatchNorm1d 128 —

GELU 128 —
Conv1d 64 [128, 64, 3, padding=1]

BatchNorm1d 64 —
GELU 64 —
Conv1d 32 [64, 32, 3, padding=1]

BatchNorm1d 32 —
GELU 32 —
Conv1d 16 [32, 16, 3, padding=1]

BatchNorm1d 16 —
GELU 16 —
Conv1d 1 [16, 1, 3, padding=1]

Decoder network – 𝜓decoder ( ·)
ConvTranspose1d 16 [1, 16, 3, padding=1]

BatchNorm1d 16 —
GELU 16 —

ConvTranspose1d 32 [16, 32, 3, padding=1]
BatchNorm1d 32 —

GELU 32 —
ConvTranspose1d 64 [32, 64, 3, padding=1]

BatchNorm1d 64 —
GELU 64 —

ConvTranspose1d 128 [64, 128, 3, padding=1]
BatchNorm1d 128 —

GELU 128 —
ConvTranspose1d input channels [128, input channels, 3, padding=1]

Table 3. Joint alignment network - 𝜓Align (·)

Operations Output Size Parameters
Inception Block

Bottleneck Conv 32 [𝑐, 1, 32]
Conv 32 [32, 39, 32]
Conv 32 [32, 19, 32]
Conv 32 [32, 9, 32]

Max Pooling 𝑐 —
Conv 32 [𝑐, 1, 32]

Concatenation 128 —
Batch Norm 128 —

ReLU 128 —
Shortcut

Conv 128 [𝑐, 1, 128]
Batch Norm 128 —
Batch Norm 128 —

Addition 128 —
ReLU 128 —

Alignment Head
GAP 128 —

Flatten 128 —
Linear Projection dim(θ) [128, dim(θ)]

Training details
For 𝜓Align (·), we set the number of cells in the partition of the velocity field to 𝑁𝑝 = 16. We enforce the boundary condition
(𝑣θ [0] = 𝑣θ [16] = 0) and thus dim(θ) = 15. We use the InceptionTime backbone for the localization net [3] and use the
implementation from tsai [5]. As for the training procedure, we set the batch size to 64 with a learning rate of 10−4. We
jointly train the D-MTAE for all classes for 300 epochs using the AdamW optimizer [4] with a weight decay of 10−4. We use a
4090 RTX graphic card for the training of all models.

VAE Variant for OpenCLIP and DINO Features
For experiments involving pretrained embeddings from OpenCLIP [2] and DINO [1], we modify the D-MTAE architecture by
replacing the standard autoencoder with a Variational Autoencoder (VAE).

Latent Sampling. The encoder Ψencoder now produces a latent distribution per timestep, returning per-frame means 𝜇𝑖 ∈ R𝐿𝑖

and log-variances log𝜎2
𝑖
∈ R𝐿𝑖 . The latent trajectory 𝑍𝑖 ∈ R𝐿𝑖 is sampled as:

𝑍𝑖 [𝑡] = 𝜇𝑖 [𝑡] + 𝜖𝑖 [𝑡] · 𝜎𝑖 [𝑡], 𝜖𝑖 [𝑡] ∼ N (0, 1) (1)

Reconstruction Loss. After alignment, the decoder reconstructs𝑈𝑖 = Ψdecoder (𝑍𝑖) as in the main paper. To handle potential
missing or invalid inputs, we use a masked reconstruction loss:

Lrec =
1
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where 𝑀𝑖 ∈ {0, 1}𝐶×𝐿𝑖 is a binary mask and ⊙ denotes element-wise multiplication.

KL Divergence. To ensure the latent distribution is centered and standardized over time, we apply a masked KL divergence
loss:

LKL =
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where 𝑚 (𝑧)
𝑖

[𝑡] ∈ {0, 1} is a reduced (per-frame) validity mask.

Temporal Smoothness. To further regularize the temporal latent trajectories, we penalize sudden changes in 𝑍𝑖 via a
smoothness loss:

Lsmooth =
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Trajectory Variance Loss. To encourage coherent temporal dynamics across sequences in a batch, we introduce a trajectory
variance loss. For each sequence, we extract 𝑍sub

𝑖
∈ R𝐾 by uniformly sampling 𝐾 valid timesteps from the latent trajectory 𝑍𝑖 .

The loss penalizes deviation from the batch-wise mean trajectory:

Ltraj-var =
1
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where 𝑍sub
= 1
𝑁

∑𝑁
𝑖=1 𝑍

sub
𝑖

. This regularization encourages latent trajectories to evolve with similar temporal structure across
samples, without enforcing identity or similarity in content.

Final Objective. The total training loss used for OpenCLIP/DINO features becomes:

LTPL-VAE = 𝜆𝑡LICAE + Lrec + 𝛽 · LKL + 𝛾 · Lsmooth + 𝛼 · Ltraj-var (6)

where 𝜆𝑡 is the annealed ICAE weight, and 𝛽, 𝛾, 𝛼 are fixed hyperparameters.

Notes. - When using this variant, only the encoder and decoder are changed; the alignment module ΨAlign and CPAB
transformations remain as described in the main paper. - This change is only applied to experiments where input features are
obtained from pretrained OpenCLIP or DINO models.
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