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Supplementary Material

A. Additional Related Work

Datasets and benchmarks. Observations from space
have significantly enhanced our understanding of astronom-
ical phenomena and played a crucial role in advancing solar
physics. For example, star tracking and localization have
improved thanks to recent advances like Chin et al.’s event-
based pipeline [12] and the StarNet dataset [15] for narrow-
field star localization. In fields like satellite pose estimation,
datasets such as SPEED [36] and SwissCube [31] address
challenges such as scale variations and adverse illumina-
tion. Similarly, in remote sensing, datasets like DOTA [70]
and EarthNet2021 [44] are used to study dynamic terres-
trial processes. These examples highlight the importance
of tailored benchmarks for developing and evaluating task-
specific methods.

Solar flare prediction. Numerous methods have been
proposed for solar flare prediction, including early ap-
proaches using Multi-layer perceptrons (MLPs) and more
recent methods employing Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks, such as Long
Short-Term Memory networks (LSTMs). DeFN incorpo-
rates 79 features extracted from sunspot images, including
features related to coronal hot brightening and X-ray inten-
sity trends specifically chosen for operational forecasting.
Subsequently, Li et al.[40] propose a CNN model trained
on Spaceweather HMI Active Region Patch (SHARP) mag-
netograms to predict flares, leveraging the ability of CNNs
to extract spatial features. Concurrently, [42] develops an
LSTM to capture the temporal evolution of active regions
using both magnetic parameters and flare history, demon-
strating the importance of temporal dynamics in flare pre-
diction. However, these traditional approaches, including
MLPs, CNNs, and LSTMs, while demonstrating potential
for solar flare prediction, primarily rely on heuristic phys-
ical features or often have limitations in capturing long-
range spatio-temporal dependencies.

More recently, Transformer-based models have been
explored.  For example, SolarFlareNet [1] utilizes a
transformer-based framework to predict flares from time se-
ries of SHARP parameters, extending the prediction win-
dow to 72 hours.

Despite their strength in modeling long-range dependen-
cies, the computational cost of Transformers scales quadrat-
ically with sequence length. This cost is a significant
challenge when applying Transformers to the long, multi-
channel, full-disk solar image time series considered in our

Table 4. Correspondence between flare classes and peak X-ray
flux intensities

Flare Class Peak X-ray Flux (I) [W/mz]
X I>107"
M 10°5<71<107
C 10%<1<107°
o) 1<10°¢

work, where computational and memory demands can be-
come prohibitive.

Masked autoencoders. The Masked Autoencoder
(MAE) approach introduced by He et al.[29] has inspired
a wide range of extensions and adaptations across various
domains. Following the MAE, numerous extensions have
explored diverse applications and architectures, geospatial
representation learning [55], motion forecasting [11], 3D
point clouds [71], and facial landmark estimation [72].
For instance, Traj-MAE [10] adapts MAE for trajectory
prediction in autonomous driving, using diverse masking
strategies and a continual pre-training framework to capture
social and temporal interactions. In the realm of video
understanding, several MAE-based methods have been
proposed [26, 64, 67, 69]. VideoMAC [53] addresses the
resource-intensive nature of many Vision Transformer-
based approaches by combining masked autoencoders with
ConvNets, using a dual encoder architecture for inter-frame
consistency.

Deep SSMs. Deep SSMs are founded on the Linear State-
Space Layer [23], inspired by classical state space models in
control theory [33]. They achieve efficient sequence mod-
eling by leveraging the HiPPO matrix [22], which enables
the memorization of input sequences through optimal poly-
nomial approximation. For example, S4 [25] introduces a
method for learning the HiPPO matrix. Building upon S4,
S5 [61] proposes a new state space layer that utilizes a sin-
gle multi-input, multi-output SSM instead of S4’s bank of
single-input, single-output SSMs. Furthermore, S5 uses an
efficient parallel scan for computation, removing the need
for the convolutional approach used in S4 and its associated
convolution kernel computation.

B. Flare Class Definitions

Table 4 shows the standard classification of solar flares
based on their peak X-ray flux, I, measured in the 1-



8 A wavelength range by the X-ray Sensor (XRS) on
board the Geostationary Operational Environmental Satel-
lites (GOES). This classification is widely used in solar
physics and space weather forecasting.

Within the X-class, flares are further categorized by a lin-
ear scale. An X1.0 flare corresponds to a peak flux of 10~*
W/m?. The number following the X’ indicates a multiple
of this base value. For example, an X2.0 flare has a peak
flux of 2 x 10~ W/m?, an X3.0 flare has a peak flux of
3% 10~* W/m?2, and so on. This same linear scaling applies
within the M and C classes as well.

C. Deep Space Weather Model

C.1. Multi-channel Representation Beyond Con-
ventional RGB

Our approach is analogous to how the three channels of an
RGB image represent colors within the visible spectrum.
However, by incorporating HMI and AIA images, we ex-
tend the concept of multi-channel representation to higher
dimensionality, encompassing a broader range of the elec-
tromagnetic spectrum.

C.2. Parallel 2D and 3D Convolutions

The DCSM begins by applying two parallel convolutional
operations to hgs):

Fiused = Conv3D(h{)) + Conv2D(hY{)), (4

where Conv3D and Conv2D denote a 3D convolution and
a 2D convolution applied independently to each frame,
respectively. The 3D convolution is intended to cap-
ture spatio-temporal patterns across channels. By con-
trast, the 2D convolution focuses on spatial features within
each channel (e.g., sunspot structures). Their outputs are
summed element-wise to produce the fused feature map

Ffused~
C.3. Justification for Adopting S5

We adopt the S5 [61] to model these multi-channel solar
images accurately based on the following considerations:

Time-invariance for continuous modalities. Time-
variant SSMs, such as Mamba [21], introduce selection
mechanisms that may degrade performance on continuous
modalities like solar images, especially multi-wavelength
observations. By contrast, time-invariant (LTT) SSMs are
suggested to perform better on continuous signals [21].
Supporting this, the experiment on YouTubeMix in [21]
indicates that LTT models, such as S5, may be more suitable
when the input is a continuous modality.

MIMO structure for multi-channel efficiency. Single-
input, single-output (SISO) setups, commonly used in pre-
vious deep SSM architectures (e.g., [24, 25]), cannot fully

leverage the multi-channel nature of the input. In contrast
to the SISO approach, the multi-input multi-output (MIMO)
structure of S5 permits direct modeling of inter-channel de-
pendencies and offers improved computational efficiency.

C.4. S5 Mathematical Formulation

The core of the S5 layer is a MIMO SSM, which can be
represented in continuous time. Drawing inspiration from
continuous system equations, an input u(t) € R”, a latent
state x(¢) € R, and an output y(t) € R are considered.
The general form of a continuous-time linear SSM can be
defined as:
dx(t)

% = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), (5)
where A € CP*P B € CP*P, C € CP*P and D €
RP*D denote the state matrix, input matrix, output matrix,
and feedthrough matrix, respectively. To enable efficient
parallel computation, A is diagonalized as A = VAV !,
where A € CP*P is a diagonal matrix and V € CF*7 is
the matrix of eigenvectors, enabling us to rewrite the system
dynamics as:

B Ax()+Bulr). (1) = €x(1) + Du(t). ©

where X(t) = V~'x(¢), B = V7B, and C = CV. This
is the reparameterized system with a diagonal state matrix,
which is crucial for the efficiency of S5.

This diagonalized system is then discretized using the
Zero-Order Hold (ZOH) method with learnable timescale
parameters A € R”. The ZOH method assumes that the
input function remains constant over each interval defined
by the timescale parameter. In practice, the feedthrough
matrix D is restricted to be diagonal. Thus, the S5 layer
has the learnable parameters B € CP*P C e CP*P,
diag(D) € RP, diag(A) € C, and the timescale parame-
ters A € R”. The performance of S5 is sensitive to the ini-
tialization of A.. It is initialized with a diagonalized HiPPO-
N matrix.

C.5. Loss Function

Our loss function comprises three components: the con-
ventional cross-entropy loss (Lcg), the BSS loss (Lpss),
and the GMGS loss (Lgmags). We employ the BSS and
GMGS losses, introduced by [34]. The BSS loss is used
to optimize the BSS, a proper scoring rule that comprehen-
sively evaluates probabilistic predictions. Furthermore, the
BSS loss is differentiable, enabling efficient optimization
through gradient-based methods. The GMGS loss is used
to improve the GMGS using its own score matrix for the
weights in the loss calculation.



Table 5. Experimental setup for the proposed method.

Epoch (first stage) 20

Epoch (second stage) 15

Batch size 32

Optimizer AdamW
(81 =0.9, B2 =0.95)

Learning Rate (first stage) 4.0 x 107°

Learning Rate (second stage) 4.0 x 107°

Weight decay (first stage) 5.0 x 1072

Weight decay (second stage) 5.0 x 1072

#Lssk 3

#Lir 1

#D 64

#AcE 1

#ABss 2

#Acmas 1

#k 4

#m 672

The BSS loss is defined as:
1 N I 5
Lpss = v ; ;(p(ym) - ym) ) @)

and the GMGS loss is defined as:

N I
Laves = —% D sio > unilog (p(@m‘)), ®)
n=1 i=1
where

i* = argmax; (Yn;), 9)
J* = argmax; (p(Jnj)), (10)

N and I denote the number of samples and the number of
classes, respectively. y,,. is the label-smoothed version of
Yni» D(Uni) 18 the predicted probability for the i-th class of
the n-th sample, and s;- ;- denotes the element from the
GMGS score matrix corresponding to the true class ¢* and
the predicted class j*, respectively.

Our overall loss function is a weighted sum of these three
components:

L = Lcg + AamasLamas + AsssLsss,  (11)

where A\gmas and Apgs are the loss weights controlling the
contributions of the GMGS and BSS losses, respectively.

D. FlareBench

Data sources and composition. In this study, we con-
structed FlareBench by combining solar observation data

Table 6. Experimental setup for the Sparse MAE.

Epoch 20

Batch size 32

Optimizer AdamW
(81 =0.9, B> =0.95)

Learning Rate 4.0 x 1073

Weight decay 5.0 x 1072

#a 20

#Lenc 8

# Lec 12

#Dpre 128

#7"1 0.3

#rp, 0.5

#Tf 0.5

from the Joint Space Operations Center (JSOC)' with X-
ray flux measurements from the Geostationary Operational
Environmental Satellites. Our dataset includes:

1). AIA [39] level 1 images in nine wavelengths:
— Extreme ultraviolet (EUV): 94 A, 131 A, 171 A, 193
A, 211 A, 304 A, and 335 A
— Ultraviolet (UV): 1600 A
— Visible light: 4500 A
2). High-resolution (1K) magnetograms from the HMI
[58], also obtained from JSOC.

We used the long-wavelength channel (1-8 A) X-ray flux
data from the GOES X-ray Sensor for class labels. Specif-
ically, we collected Science-level data from GOES-15 for
the period 2011-2020 and from GOES-16 for 2021-2022.

E. Experimental Setup

E.1. Implementation Details

Deep SWM. Table 5 illustrates the experimental settings
of the proposed method. Our model had approximately
1.59M trainable parameters and 4.64G multiply-add oper-
ations. The proposed model was trained on an Nvidia H200
with 140GB of GPU memory and an Intel Xeon PLAT-
INUM 8580 processor. It took approximately three hours
to train our model. The inference time was approximately
12 ms per sample.

We used the training set to train our model, the validation
set for tuning the hyperparameters, and the test set for eval-
uating the model’s performance. We computed the GMGS
score on the validation set every epoch. The performance on
the test set was given by the model that achieved the highest
GMGS score on the validation set.

lhttp ://Jjsoc.stanford.edu.



Sparse MAE. Sparse MAE, as described in Section 4.4,
uses an encoder-decoder architecture with a reconstruction
loss, similar to the original MAE [29]. Here, we provide
details of the specific configurations used in our implemen-
tation.

The encoder of our pretraining model, composed of Le,,.
Transformer layers, is trained to encode the masked input
resulting from the two-phase masking process applied to
V., into an intermediate feature representation. This repre-
sentation is then processed by a decoder consisting of L e
Transformer layers, which aims to reconstruct the original
image. The reconstruction loss is calculated as the mean
squared error between the original image and the recon-
structed image. Following [29], the loss is computed only
over the masked pixels.

The experimental setup for MAE pretraining is shown
in Table 6. For MAE pretraining, the number of trainable
parameters and the number of multiply-accumulate opera-
tions for the proposed method are 2.56M and 27.68G, re-
spectively. For MAE pretraining, we followed the same
procedure using the training, and validation sets.

E.2. Preprocessing and Data Augmentation

We pre-processed the datasets by performing the following
steps sequentially:

1. Resize all images from 1024 x 1024 to 256 x 256 to
reduce computational complexity.

2. For HMI images, mask the timestamp information in the
bottom-left corner.

3. To align the solar scales between AIA and HMI images,
crop the edges of the AIA images, followed by resizing
to match the HMI resolution using bilinear interpolation.

4. Perform standardization on each channel of all images in
the dataset.

5. Synchronize the HMI images, AIA images, and class la-
bels to a 1-hour cadence through temporal resampling to
maintain a consistent time series.

For data augmentation, we applied random rotations, scal-
ing, brightness and contrast adjustments, Gaussian blur, and
channel-specific noise addition.

E.3. Classifier Re-training

Given the class imbalance in our dataset, sampling is nec-
essary during training to ensure an equal number of sam-
ples across classes. However, oversampling can lead to
overfitting, especially for the X-class, which has few sam-
ples. Consequently, our proposed method incorporates a
two-stage approach. In the first stage, we train the model
on the original dataset. In the second stage, we perform
model retraining based on Classifier Re-training[35]. This
two-stage process mitigates overfitting while addressing the
class imbalance.
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Figure 7. X-ray flux transitions leading up to an X1.0 flare event.

E.4. Evaluation Metrics

As described in Section 5.1, we use GMGS, BSS, and TSS
to evaluate the performance of our model. These metrics
are defined below.

The GMGS is defined as the trace of the product of a
scoring matrix S and a contingency table P:

GMGS = tr(S7 - P), (12)

where S and P denote the I-rank scoring matrix with an
element s;; and the I-categorical contingency table with an
element p;, ;, respectively. The GMGS is an important met-
ric in recent solar flare prediction studies [17]. The elements
s;; of the symmetric scoring matrix S are defined as:

1 i—1 I-1
si = 77 [Za,;l +Y ax| (1<i<I), (13)
k=1 k=i

L[ j-1 -1
Sij = 71 Lz_:l a, + kzz:z( 1)+ Zak] a4

k=j
(1<i<j<I),
1— 7
aizw 1<i<I), (15)
> k1P
I
pi=Y_py (1<i<I). (16)
j=1

The BSS, a standard metric for evaluating the reliability
of solar flare forecasts [48], is defined as:

BS — BS.

BSS= —— 17
0 Bs. (17)

N I
BS =Y ) " (0(ijni) — yni)?, (18)

n=11=1

N I
BS.=> > (f =), (19)

n=1i=1
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Figure 8. Reconstruction results obtained from the baseline MAE [29] (p = 0.5) and our proposed Sparse MAE. Rows (a), (b), (c), (d),
(e), and (f) show 94 A, 171 A, 304 A, 1600 A, 4500 A AIA, and HMI images, respectively, captured three hours before an upcoming
X-class flare. Columns (i), (ii), (iii), (iv), and (v) present the original image, the baseline reconstruction, a visualization of patches with the

top a% highest standard deviation highlighted, the spatial-level masking of the Sparse MAE, and the reconstruction of the Sparse MAE,
respectively.



Model Masking GMGS?T BSS>mtT TSS>mt MSE (r < 0.65)] MSE]
(1-i)  MAE [29] (p=0.75) 0.286 £0.090 0.067 £0.306  0.428 4-0.173 9.837 +0.365 4.147 +o0.378
(1-i)) MAE [29] (p=0.5)  0.420 £+0.062 0.354 f+0.163 0.402 4-0.100 7.583 +0.372 5.887 +0.329
(1-iii)) Sparse MAE (Ours) 0.582 +0.032 0.334 +0.299 0.543 +0.074 3.255 +0.180 2.461 to0.115

Table 7. Ablation study: impact of masking strategies.

Model Architecture GMGS?T BSS>mT TSS>m™T

(3-i) Attention [66] 0.311 +0.177 0.753 + 0.117 0.287 £ 0.151
(3-ii) Mamba [21] 0.364 £ 0.070 0.663 + 0.032 0.364 + 0.087
(3-iii) S5 [61] 0.582 £ 0.032 0.334 £ 0.299 0.543 £ 0.074

Table 8. Performance comparison of different architectures.

where N, I, ypni, p(Jni), and f are the number of samples,
the number of classes, the true label of the i-th class for the
n-th sample, the predicted probability of the ¢-th class for
the n-th sample, and the climatological event rate, respec-
tively.

The TSS is given by:

TP FP

TSS = - ,
TP FN FP + TN

(20)

where TP, FP, FN, and TN denote the number of true pos-
itives, false positives, false negatives, and true negatives in
the contingency table, respectively.

F. Additional Experiments

F.1. Performance of Human Forecasters

The performance of human experts in daily solar flare fore-
casting operations from 2000 to 2015 was reported by Kubo
et al. [37], and is summarized in Table 1. These hu-
man experts were engaged in the same forecasting problem
as FlareBench: predicting the maximum solar flare class
within a 24-hour period. To issue daily forecasts, they uti-
lized solar indicators, including the current and historical
X-ray flux, sunspot magnetic field configurations, and chro-
mospheric brightenings in active regions, highlighting their
expertise in operational solar flare prediction.

F.2. X-ray Flux Transitions for a Challenging Case

Fig. 5 (d) illustrates a failed X-class prediction. Fig. 7
shows the X-ray flux transitions for this event, including the
24-hour period leading up to the X1.0 flare. Appendix B de-
fines the flare classes, including the notation where a num-
ber follows the class letter (e.g., X1.0, M2.5). During the
24 hours preceding the X-class flare, there were two distinct
peaks in X-ray flux, each corresponding to M-class flares.
Furthermore, the X-class flare represented the boundary be-
tween X-class and M-class flares. These factors likely con-
tributed to the difficulty in accurately classifying the flare
class.

F.3. Qualitative Results for Pretraining

Fig. 8 illustrates the reconstruction results obtained from
the baseline MAE [29] with a mask ratio (p) of 0.5 and our
proposed Sparse MAE. Rows (a), (b), (c), (d), (e), and (f)
show 94 A, 171 A, 304 A, 1600 A, 4500 A AIA, and HMI
images, respectively, captured three hours before an upcom-
ing X-class flare. Columns (i), (ii), (iii), (iv), and (v) present
the original image, the baseline reconstruction, a visualiza-
tion of patches with the top a% highest standard deviation
highlighted, the spatial-level masking of the Sparse MAE,
and the reconstruction of the Sparse MAE, respectively.

As depicted in subfigures (a-ii) and (a-v), and the oth-
ers, the Sparse MAE reconstructs features in and around
sunspots with high fidelity. By contrast, the baseline
method struggles to reproduce fine details in these regions.
These observations suggest that the enhanced representa-
tion of sunspots in the Sparse MAE reconstructions can be
attributed to its two-phase masking strategy, which empha-
sizes preserving essential features such as sunspots.

F.4. Additional Ablation Study

Pretraining ablation. Table 7 presents an ablation study
comparing the impact of different pretraining methods on
solar flare prediction performance. We evaluate three mod-
els: (2-i) using MAE with a mask ratio (p) of 0.75, (2-ii)
using MAE with p = 0.5, and (2-iii) our proposed Sparse
MAE. The table presents the GMGS, BSS> )1, and TSS>
scores for the solar flare prediction task, and the MSE(r <
0.65) and MSE from the pretraining phase. MSE(r < 0.65)
and MSE are computed as the mean squared error over the
masked patches. MSE(r < 0.65) is restricted to patches
within a defined solar region: a circle centered at the image
center with a normalized radius of 0.65 (where the distance
from the image center to a corner is normalized to 1.0). In
this context, a normalized radius of 0.65 defines the bound-
ary of the solar disk. We focus on MSE(r < 0.65) because
accurate reconstruction of the solar disk is more critical for
solar flare prediction than reconstruction of the surrounding
non-solar regions.

The results reveal differences in performance across the
evaluated models. Models (2-i) and (2-ii) underperform
Model (2-iii) in terms of both GMGS and MSE(r < 0.65).
Specifically, Model (2-i) underperforms Model (2-iii) by
0.296 and 6.582 points in GMGS and MSE(r < 0.65), re-
spectively, while Model (2-ii) underperforms Model (2-iii)
by 0.162 and 4.328 points in GMGS and MSE(r < 0.65),



Predicted Flare Class

(0] C M X

O | 5953 1110 29 167
C 1427 2307 1211 2329
M | 111 321 433 1394
X | 10 32 30 139
Table 9. Confusion matrix for the test set of the third fold.

Observed flare class

Observed class  Predicted class GMGS _influence
C X 0.1007
C O 0.0560
(0] C 0.0435
C M 0.0281
M X 0.0278

Table 10. The error analysis on the third fold’s test set using the
GMGSInﬂuence .

respectively. These results indicate that the improved recon-
struction of crucial solar regions, such as sunspots in sparse
solar images, achieved with Sparse MAE, leads to extract-
ing features more relevant for solar flare prediction.

Deep SSM ablation. Table 8 presents the performance
impact of different architectures in the temporal modeling
components. We compared models using the following ar-
chitectures for capturing temporal dependencies: (3-1) At-
tention [66], (3-ii)) Mamba [21], and (3-iii) S5 [61]. In our
method, these architectures replace the ST-SSM, LT-SSM,
and their integration mechanism. From Table 8, Models
(3-1) and (3-ii) underperformed Model (3-iii) in GMGS by
0.271, 0.218 points, respectively. These results suggest that
S5 [61] accurately captures temporal dependencies in solar
images.

FE.5. Error Analysis

Table 9 presents the confusion matrix obtained using our
method on the test set of the third fold. Given the signif-
icant impact of X-class solar flares, our model prioritizes
their accurate prediction. This prioritization results in more
false positives for the X-class, as illustrated in the confusion
matrix because correctly identifying these impactful events
is paramount.

We defined samples that were incorrectly predicted as
failure cases. There were 8,832 failure cases identified
in the third fold of the time-series cross-validation. Ta-
ble 10 categorizes the failed cases. We used the metric
GMGSifiuence (as introduced in [34]) to calculate the influ-
ence of failure cases on the GMGS. The influence for each
element (i,j) of the confusion matrix is defined as:

cij(sii — 8ij)

GMGSfuence;; = N ,

2y

where ¢;;, s;;, and N represent element (3, j) of the confu-

sion matrix, element (7, j) of the GMGS score matrix (de-
tailed in Subsection 5.1), and the total number of samples,
respectively. This metric provides a quantitative measure of
how much each type of error negatively impacts the overall
GMGS.

Table 10 indicates that the bottleneck is the misclassifica-
tion of C-class flares as X-class. Given the potential for se-
vere consequences, the model prioritizes predicting X-class
flares. This prioritization reduces the risk of missing true
X-class events (false positives) but may increase false neg-
atives, as shown in the confusion matrix (Table 9). This
trade-off is a deliberate design choice to reduce the likeli-
hood of failing to identify high-impact events.



