DACoN: DINO for Anime Paint Bucket Colorization

Reference image

Figure 1. Visual comparison of zero-shot colorization by foundational models. The top row shows the results of consecutive frame
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colorization, while the bottom row presents those of keyframe colorization.

Table 1. Quantitative comparison of zero-shot colorization by foundation models. “Ours (SD)” indicates the results obtained by replacing

DINOV2 in our method with Stable Diffusion during training and evaluation.
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Keyframe (3D rendered, 1-shot)

Consecutive frame (Hand-drawn)

Method Acc  Acc-Thresh Pix-Acc Pix-F-Acc  Pix-B-MloU Acc  Acc-Thresh Pix-Acc Pix-F-Acc  Pix-B-MIoU
CLIP 36.72 38.95 86.76 60.46 88.37 67.13 69.56 97.07 88.65 99.00
SAM2 34.54 36.96 85.06 54.12 95.62 82.44 85.51 98.35 94.68 99.18
Stable Diffusion 49.72 53.80 89.84 71.10 84.12 87.33 98.46 95.56 99.03
DINOvV2 57.49 61.86 95.35 87.24 97.45 80.64 83.39 98.79 95.35 99.78
Ours 67.87 72.58 96.99 91.00 99.08 87.44 90.48 99.19 96.91 99.83
Ours (SD) 62.26 66.88 93.88 82.13 98.43 87.27 90.46 98.89 96.54 99.29
Ours (SD) w/o L. 60.96 65.52 93.43 80.57 98.79 86.93 90.23 98.64 95.99 99.74

1. Comparisons with Foundation Models

To evaluate the impact of DINOv2 features [6] on the
proposed method, we assess zero-shot colorization perfor-
mance using only DINO features—that is, without any ad-
ditional training or fine-tuning. Additionally, we compare
DINOv2 with other visual foundation models to explore
how their feature representations contribute to automatic
colorization. For this comparison, we select Stable Diffu-
sion (SD) [10], which captures part-level semantic infor-
mation similar to DINOv2 [12], as well as SAM2 [9] and
CLIP [7], which are widely used foundation models.

Segment pooling, as employed in our method, is applied
to each model’s feature map to enable segment correspon-
dence and color propagation between the reference and tar-
get images. The feature extraction methods for each model

are as follows:

* DINOv2: We use the Large model with an input size of
518 x 518, and features are extracted from the final en-
coder layer.

* SD: We use the Stable Diffusion v2-1 model with an in-
put size of 768 x 768. The input text prompt is “a photo
of an anime character.” The feature map is extracted via
the correspondence method proposed in [11] from the
first layer of upsampling, with the dimensional step set
to 261,/1000.

* SAM2: We use the Large model of SAM2.1 with an input
size of 1024 x 1024, and features are extracted from the
final encoder layer.

e CLIP: We select the ConvNext-Large model from Open-
CLIP, as used in BasicPBC [3], with an input size of
224 x 224, and features are extracted from the final en-



Table 2. Comparison of inference time and memory usage during
consecutive frame colorization on 3D synthetic test data. “Time”
represents the average colorization time per sample, “FPS” de-
notes the number of frames colorized per second, ‘“Params” in-
dicates the model’s parameter size, and “Peak Mem” refers to the
peak memory usage during inference. “Ours*” corresponds to the
configuration with segment pooling fixed at 512 x 512. All exper-
iments were conducted on an NVIDIA GeForce RTX 4090 GPU.

Method Time FPS Params Model Size Peak Mem
[ms] M] [GB] [GB]
BasicPBC 145452 0.69 26.33 0.10 2.62
Ours 264.37 378 339.85 1.30 6.01
Ours* 249.11 4.01 339.85 1.30 3.20
Ours w/o DINOv2 — — 35.49 0.14 —

Table 3. Quantitative comparison of different segment pooling
sizes. “Ours” uses the same size as the input image, while “Ours*”
is fixed at 512 x 512.

Method Keyframe (3D rendered, 1-shot) Consecutive frame (Hand-drawn)

Acc  Acc-Thresh  Pix-Acc Acc  Acc-Thresh  Pix-Acc
Ours 67.87 72.58 96.99 87.44 90.48 99.19
Ours* 67.79 72.49 96.98 87.48 90.61 99.21

coder layer.
In all models, both the reference and target images are line
drawings.

The quantitative results are presented in Table 1. DI-
NOV2 achieves the highest accuracy in keyframe coloriza-
tion, while SD outperforms the others in consecutive frame
colorization, suggesting that DINOv2 excels at capturing
semantic, part-level information, whereas SD effectively
leverages spatial details. SAM2, as shown in Figure 1, per-
forms well in consecutive frame colorization, likely due to
its training on high-resolution images, which helps capture
fine-grained details.

Further experiments replacing DINOv2 with SD in the
proposed method reveal that although SD performs well
in zero-shot consecutive frame colorization, DINOv2 still
achieves higher accuracy when integrated into our method.
This result indicates that the U-Net, which learns spatial
features, complements DINOv2’s strength in capturing se-
mantic details. In contrast, since both SD and the U-Net
excel at capturing spatial information, their strengths over-
lap, thereby reducing the added benefit of using SD in this
context.

In addition, ablation results show that our proposed Fea-
ture Consistency Loss improves performance not only with
DINOV?2 but also with other foundation models such as SD,
which capture semantic information.

2. Inference Time and Memory Usage

To evaluate the implementation cost for anime production,
we measure the inference time and memory usage of the
proposed method and compare it with BasicPBC [4], which
serves as our baseline. A comparison with AnT [2], which

also utilizes segment correspondence, is not possible be-
cause the internal processing details of the Cadmium ap-
plication [1] are not publicly available. For this compari-
son, consecutive frame colorization is performed on a test
set of 2,850 samples of 3D rendered data. The measure-
ments are taken from the moment the images are fed un-
til the predicted color information for each segment is pro-
duced, with segment information pre-prepared and models
preloaded into memory.

The results are presented in Table 2. Our proposed
method is capable of colorizing approximately three sam-
ples per second, making it roughly five times faster than
the baseline method. This improvement can be attributed to
the absence of optical flow estimation, which is required by
previous approaches in addition to feature extraction. How-
ever, since the segment region and color information are
provided in advance for this dataset, the measured speed
does not fully reflect the actual cost of automatic coloriza-
tion. In the case of test images where all segment regions
are completely enclosed by line drawings, it takes an aver-
age of 1.67 seconds to extract the segment areas and corre-
sponding colors. As a result, the average time for complete
automatic colorization is 3.12 seconds for BasicPBC and
1.9 seconds for our method. According to prior research [5],
professional animators reported that automatic colorization
of 20 to 30 frames within 5 to 10 minutes—accounting for
manual correction time—is considered acceptable. There-
fore, both methods are practically viable in terms of speed.

On the other hand, in terms of memory consumption,
our method relies on a large foundation model, resulting
in a significantly larger model size than the baseline. In
particular, during segment pooling, the DINO feature map
(with a feature dimension of 1024) is expanded to match the
input image size, leading to a peak memory usage of over
6 GB during inference. This suggests that memory usage
may become a bottleneck when processing high-resolution
target images.

To address this issue, we apply max pooling to down-
scale the segment masks to a resolution of 512x 512, consis-
tent with training conditions, and evaluate the performance
under this setting (see “Ours*” in Tables 2 and 3). As a re-
sult, we reduce the peak memory usage to approximately
3 GB—about half—without significantly sacrificing col-
orization accuracy. This indicates that the proposed method
can perform robust automatic colorization under memory
constraints regardless of input resolution, further enhancing
its practicality.

3. Clip-Wise Colorization

To further demonstrate the practical applicability of our
method, we evaluate a scenario where only the first frame
of each clip is provided as a reference. As shown in Ta-
ble 4, this setting significantly reduces accuracy compared



Table 4. Quantitative comparison of colorization using only the
first frame of each clip or with additional reference images.

3D rendered Hand-drawn

Method ~ Ref. data

Acc  Acc-Thresh  Pix-Acc Acc  Acc-Thresh  Pix-Acc
Ours first frame 69.91 73.59 97.30 65.85 69.22 93.50
Ours first frame + 1 shot 74.59 78.67 98.20 — — —
Ours first frame + 5 shot 76.81 80.82 98.38 — — —
Ours first frame + max shot 77.28 81.28 98.39 — — —
Ours —1 frame 84.66 88.23 99.27 87.44 90.48 99.19

Table 5. Ablation results on architecture design.

Keyframe (3D rendered, 1-shot) Consecutive frame (Hand-drawn)

Method

Acc  Acc-Thresh  Pix-Acc Acc Acc-Thresh  Pix-Acc
Ours (MLP based) 67.87 72.58 96.99 87.44 90.48 99.19
DPT (alt. dim.red.) 66.55 71.30 96.51 86.96 90.10 99.11
Cross Atten. (alt. fusion) 47.60 50.69 66.45 85.59 88.79 98.41
Multiplex Transformer (add. agg.) 66.54 71.47 96.81 87.08 89.99 99.09

to the consecutive frame colorization setting, where the pre-
vious frame (i.e., the —1st frame) is used as the reference.
Nevertheless, supplementing the first frame with additional
color design sheets helps mitigate this gap, particularly im-
proving accuracy in regions not visible in the first frame
and highlights the strength of our multi-reference approach.
Improving performance under such limited-reference con-
ditions remains a challenging problem, and leveraging tem-
poral consistency across frames will be a key direction for
future work.

4. Ablation for Architectures

We further investigate alternative architectures within our
framework. Specifically, we evaluate the following three
variants:

e DPT-based dimensionality reduction: Following
DPT [8], we aggregate features from multiple layers of
DINOV2 (i.e., layers 5, 12, 18, and 24) and project them
into a 128-dimensional space. The output resolution is set
to 296 x 296.

* Cross-attention-based feature fusion: Instead of using
simple concatenation followed by an MLP, we adopt a
cross-attention mechanism to fuse CNN and DINO fea-
tures. In this setup, CNN features serve as queries, and
DINO features are used as keys and values. The module
consists of 4 attention heads and 9 layers.

¢ Multiplex Transformer integration: We incorporate a
Multiplex Transformer module—commonly used in prior
work but deliberately not employed in our proposed
method—to jointly process and aggregate segment fea-
tures from both reference and target images for compar-
ison purposes. This module also uses 4 attention heads
and 9 layers.

As summarized in Table 5, our MLP-based design con-
sistently outperforms these more complex alternatives, in-
cluding Transformer-based modules. Given that the eval-
uation dataset consists of 11,345 samples, with character
diversity limited to 12 identities and the domain restricted
to line drawings, we suggest that lightweight architectures

with fewer parameters, such as MLPs, may offer a better
trade-off under such constraints compared to heavier mod-
els like CNNs or Transformers.
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Figure 2. Additional qualitative comparisons of keyframe colorization results.
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