
LV-MAE: Learning Long Video Representations through Masked-Embedding
Autoencoders

Supplementary Material

7. Implementation Details
Short-video segmentation. To optimize training time,
we pre-process all data once prior to pre-training. Specif-
ically, for each dataset, the process outlined in Sec. 3.1 is
applied only once. This ensures efficient handling of video
inputs during the training phase.

Architectural design. We adopt an asymmetric encoder-
decoder architecture inspired by [16]. The encoder pro-
cesses only the visible, unmasked tokens from the video
input. Positional embeddings are added to each token to en-
code temporal relationships. The embedded tokens are then
passed through a Transformer encoder with K layers, where
each layer includes a multi-head self-attention mechanism,
a multi-layer perceptron (MLP), and LayerNorm. Unlike
ViT architectures designed for fixed-size inputs, such as im-
ages, our encoder accommodates varying input lengths, en-
abling it to handle videos of arbitrary durations. Mask to-
kens are not used during this stage, ensuring computational
efficiency by focusing exclusively on visible tokens.

After the encoder processes the visible tokens, the de-
coder reconstructs the full sequence by introducing shared,
learned mask tokens to replace the missing inputs. These
mask tokens are inserted at their respective positions in the
sequence. To ensure that the mask tokens carry information
about their temporal location, positional embeddings are ap-
plied to all tokens in the decoder input, including the mask
tokens. Without these positional embeddings, the mask to-
kens would have no information about their location in the
video. The decoder processes the full sequence through a
series of Transformer layers. Following [16], it is designed
to be shallower than the encoder to maintain computational
efficiency while providing accurate reconstructions.

To manage videos of varying lengths, we adapt
sequence-processing techniques from BERT [8]. Each se-
quence of short-video embeddings is capped at 256 tokens,
with shorter sequences padded using a special [PAD] to-
ken. During the self-attention process, an attention mask
prevents these padding tokens from influencing training.
This design ensures that the model maintains computational
efficiency while supporting inputs of arbitrary length. Prac-
tically, our framework allows for increasing the maximum
token limit, enabling the processing of even longer videos.
However, since the benchmark datasets used in this study do
not exceed 20 minutes, we leave such extensions for future
exploration.

Table 5. Pre-training setting.

Config Value
optimizer AdamW
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum ω1,ω2=0.9, 0.95
batch size 16
learning rate schedule cosine decay
warmup epochs 40
epochs 150
number of tokens 256
short video length 5 sec

Table 6. Linear probing setting.

Config Value
optimizer Adam
base learning rate 1e-4
optimizer momentum ω1,ω2=0.9, 0.999
batch size 16
epochs 30

Table 7. Attentive probing setting.

Config Value
optimizer Adam
learning rate 1e-3
learning rate schedule ExponentialLR, ε=0.9
optimizer momentum ω1,ω2=0.9, 0.999
batch size 16
epochs 20

Finally, during pre-training, an auxiliary [CLS] token is
appended to the input sequence in the encoder. This token
serves as a representation of the entire video sequence and
is specifically used for downstream tasks, such as classifi-
cation. In attentive probing fine-tuning, this [CLS] token
is adapted to generate task-specific predictions.

Pre-training hyperparameters. Our pre-training hyper-
parameters are detailed in Table 5. We closely follow the
hyperparameter settings from [16] with a few adjustments.
Specifically, we use a smaller batch size and reduce the
number of epochs during pre-training. We set the limit
for the number of tokens to 256. Finally, we set the short
video segment length to five seconds. The choice of a five-
second segment length balances two considerations: it is

Table 8. Additional LVU benchmark results. In the main paper, we provided the average Top-1 accuracy results obtained by LV-MAE
with linear probing (LP) and attentive probing (AP) with random masking. Here, we provide extended results per task. Masking indicates
the masking technique that was applied. “Dir.” and “Rel.” refer to “Director” and “Relationship,” respectively.

Method Masking Metadata → Content → Avg.Dir. Genre Writer Year Scene Speak Rel.
LV-MAEInternVideo2(LP) Semantic 55.14 58.56 49.40 43.26 72.84 37.77 51.22 52.60
LV-MAEInternVideo2(LP) Random 57.01 57.36 52.38 49.65 70.37 39.89 48.78 53.63
LV-MAEInternVideo2(AP) Random 54.21 66.95 55.36 56.03 80.25 42.55 53.66 58.43
LV-MAELanguageBind(LP) Semantic 71.03 67.47 54.76 53.90 67.90 42.02 56.09 59.02
LV-MAELanguageBind(LP) Random 71.96 67.12 55.36 53.19 71.60 37.76 51.22 58.32
LV-MAELanguageBind(AP) Random 78.50 69.17 60.12 61.70 72.84 39.36 56.09 62.54

short enough to capture low-level spatiotemporal patterns
effectively using an off-the-shelf frozen model and suffi-
ciently long to reduce the number of tokens required for
longer videos. In future work, we plan to analyze the impact
of segment lengths (e.g., 10–15 seconds) on performance,
as longer segments could offer greater efficiency for pro-
cessing extended videos. However, this may risk reduced
performance from the frozen model due to challenges in
extracting representations from longer, more complex seg-
ments.

8. Training on Downstream Tasks
We experiment with two approaches to train our frozen
model to solve downstream tasks utilizing its latent repre-
sentations.

Linear probing. For linear probing, we append a simple
linear layer to the encoder. This layer operates on the global
average pooling of the latent representations Z . The linear
layer is optimized with cross-entropy loss. We report the
optimizer and other hyperparameters we use in Table 6.

Attentive probing. To implement attentive probing [24,
53], we add a lightweight transformer encoder layer to the
pre-trained model. This additional block consists of a multi-
head self-attention mechanism, an MLP, and LayerNorm.
The layer is fine-tuned exclusively on task-specific datasets,
focusing on adapting the [CLS] token to generate final
predictions through a linear classifier optimized with cross-
entropy loss. This approach minimizes computational over-
head while effectively tailoring the model for specific tasks.
We report the optimizer and other hyperparameters we use
in Table 7.

9. Extended LVU ablation
In Table 8, we provide full results of the LVU benchmark
for the reported average classification score from Table 3.

Impact of Segment Length. In the main paper, we re-
port results obtained by partitioning each long video into
five second clips. To assess the sensitivity of our method
to this design choice, we also trained models on longer
fixed-length clips (10 seconds and 15 seconds) as well as on
variable-length, shot-based segments. Table 9 summarizes
the average performance across all LVU downstream tasks.
The five second configuration remains the most effective,
achieving an average score of 63.40 and consistently out-
performing the longer and shot-based alternatives. Finally,
we examined the use of overlapping five second clips; this
introduces redundant context and reduces the average score
by 4.5, from 63.40 to 58.90.

Table 9. Impact of Segment Length. The average Top-1 accu-
racy results obtained by LV-MAE on the LVU benchmark using
different segment lengths.

5 seconds 10 seconds 15 seconds shots
63.40 61.43 61.05 62.17

Architecture and Clip-Length Ablations. Our perfor-
mance gains stem from both the two-stage architecture and
long-video training capability. While prior works are lim-
ited to ⊋60 frames, our method can process much longer
sequences. To highlight the importance of this capability,
we cap the training clips at five minutes, which lowers the
average LVU score to 55.58 %. Comprehensive ablations,
removing the MAE stage or replacing it with plain Trans-
former or Mamba backbones, are reported in Table 10. The
results demonstrate that both the MAE formulation and ex-
posure to extended temporal context are critical for achiev-
ing state-of-the-art performance.

Impact of Input Frame Count. To quantify the role of
temporal coverage, we trained models with varying num-
bers of input frames; the resulting trend is depicted in Fig. 5.

Table 10. Results on the LVU benchmark using different architectures and clip-length ablations.

Method FB Metadata → Content → Avg.Dir. Genre Writer Year Scene Speak Rel.
ViS4mer ✁ 62.61 54.71 48.80 44.75 67.44 40.79 57.14 53.7
VideoMamba ✁ 67.29 65.24 52.98 48.23 70.37 40.43 62.50 58.1
LanguageBind-Transformer ✁ 24.30 57.88 16.07 18.44 35.80 32.45 51.22 33.7
LanguageBind-Mamba ✁ 61.68 70.38 51.78 56.74 74.04 38.83 43.90 56.8
LV-MAE(frame-MAE feature extractor) ✂ 64.49 62.50 49.4 48.23 67.90 36.70 51.22 54.3
LV-MAELanguageBind(Ours) ✂ 77.57 71.57 64.28 58.15 72.84 40.95 58.53 63.4

Performance rises monotonically as the frame count in-
creases, confirming that a broader temporal window enables
the model to capture motion cues more effectively. We ex-
tract 5-second clip embeddings with clip count varying by
video length. All methods use identical input resolution, but
ours processes significantly more frames than prior work
(⊋60 frames limit) efficiently, which is a key contribution
enabling better temporal understanding.

Figure 5. Average performance of LVU benchmark rises mono-
tonically as the frame count increases.

10. Short-Video Performance
Our approach preserves performance on short-video under-
standing tasks. Specifically, we preserve the accuracy of
LanguageBind on Kinetics-400 (600) [22]. We achieved
78.2% on K400 and 79.1% on K600 compared to 77.6%
and 79.5% in LanguageBind.

11. Additional Interpretable Predictions Re-
sults

In Fig. 6, we attach additional examples of the interpretable
predictions experiment from Sec. 4.4.

12. Additional Related Work
Short-video understanding methods. Numerous models
have been proposed for short-video understanding, achiev-
ing remarkable performance on tasks such as action recog-

nition [2], video classification [11], text-video retrieval [33],
video captioning [50], and video question answering [25].
Multimodal models like CLIP [36], InternVideo [44], and
LanguageBind [55] have demonstrated strong capabilities
in aligning video and language representations. In this
work, we leverage the output embedding of these models
to learn long-video representations.

Long-video language understanding methods. Several
recent works have advanced the field of video understand-
ing using large language models. Video-XL [38] and
LongVLM [45] both tackle the challenge of processing
long-form videos, with Video-XL focusing on hour-scale
video understanding and LongVLM proposing efficient
mechanisms for extended video content. LongVILA [7]
further contributes to this direction by scaling visual lan-
guage models for long video comprehension. In the do-
main of efficient video processing, VoCo-LLaMA [52] ex-
plores video compression using large language models,
while LLaMA-VID [29] proposes a compact two-token rep-
resentation for video content. SlowFast-LLaVA [48] pro-
vides a training-free baseline approach for video large lan-
guage models. Addressing temporal aspects, TimeChat [37]
develops time-sensitive capabilities for video understand-
ing, while LITA [18] focuses on precise temporal localiza-
tion within videos. In contrast to these works that focus on
video-language integration, we explore long-video masked-
embedding autoencoders in long-form video classification
tasks and aim to find effective representation learning meth-
ods specifically designed for long-form videos.

!"#$%"&"'()*+#%,-.(/01"-"(12*-3"(#,(1,4+5"(%-(
*#6,7+2"$%1(7"##%-389

)*+#%,-.(/),4+5"(1,-&"$7"7(*#("5"3*-#(-%32##%6"(
3*#2"$%-389

!"#$%"&"'()*+#%,-.(/:-%36*#%1('4,(#$*&"$7"7(
35%7#"-%-3(5*-'71*+"89

!"#$%&
'($%)

!"#$%&
'($%)

)*+#%,-. /;<,(6"-(%-(2472"'(1,-&"$7*#%,-(%-('%6(
5%32#89

!"#$%"&"'()*+#%,-.(/=%65>(5%#($,,6(<%#2(6*-(<"*$%-3(
747+"-'"$789

!"#$%&
'($%)

)*+#%,-. /;<,(6"-("-3*3"'(%-(7"$%,47(
1,-&"$7*#%,-89

!"#$%&
'($%)

)*+#%,-. /?%$"@%32#"$(1$*<57(#2$,432(76,A"B@%55"'(
2*55<*>89

!"#$%"&"'()*+#%,-.(/C*-%1A"'("71*+"(#2$,432(
D4$-%-3(%-#"$%,$(7+*1"89

!"#$%&
'($%)

!"#$%"&"'()*+#%,-.(/E*-(%-(2*#(*++$,*12"7(D4$-%-3(
$,,689

!"#$%"&"'()*+#%,-.(/)0*11%2(3%04(12"-".(2*$(
2,-&"$1*#%,-(%-(5%0'"$-"1167

)*+#%,-.(/85,(+",+0"(2,-&"$1"(,-('91#:($9$*0(
$,*'67

!"#$%"&"'()*+#%,-.(/;*$<"(4*-(*-'(14*00"$(5,4*-(
%-(9*0(1"##%-<67

!"#$%&
'($%)

!"#$%&
'($%)

)*+#%,-. /=,9-<(5,4*->1(2,-2"$-"'("?+$"11%,-(%-(
'%4(0%<@#%-<67

)*+#%,-. /)9$0:A@*%$"'(%-'%&%'9*0(14%0"1(5*$40:(%-(
2,B:(1"##%-<67

!"#$%"&"'()*+#%,-.(/)9$0:A@*%$"'(+"$1,-(0%1#"-1(
%-#"-#0:(%-('%40:(0%#($,,467

!"#$%&
'($%)

!"#$%"&"'()*+#%,-./C%-#*<"(3%04(12"-".(D*-("-<*<"1(
%-(2,-&"$1*#%,-67

!"#$%"&"'()*+#%,-.(/D*-(2,-3$,-#1(1"*#"'("0'"$(%-(
'%40:(0%#($,,467

)*+#%,-. /D*-(%-('*$E(1@%$#(2,-#"4+0*#"1(%-(,$-*#"(
$,,467

!"#$%&
'($%)

!"#$%&
'($%)

Figure 6. Interpretable predictions – additional examples: Each row visualizes three consecutive five-second segments. Above each
segment, we show the original caption for the visible tokens and the retrieved caption for the reconstructed masked tokens. As shown,
the model successfully reconstructs the semantic meaning of the masked embeddings, offering insight into the model’s effectiveness and
capabilities.

	Introduction
	Related Work
	Method
	Short-video Representation
	Masked-embedding Autoencoder
	Training and Data
	Interpretable Predictions

	Experiments
	Benchmarks
	Main Results
	Main Properties
	Interpretable Predictions Experiment

	Discussion and Limitations
	Conclusions
	Implementation Details
	Training on Downstream Tasks
	Extended LVU ablation
	Short-Video Performance
	Additional Interpretable Predictions Results
	Additional Related Work

