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1. Design choices

We provide further details of the exact transformer model
used here. Transformer blocks We find the claims regard-
ing the naive transformer architecture to be unstable for im-
age generative tasks to be true. We use QK-Norm to stabi-
lize the transformer block. We use 24 transformer blocks
with an embedding dimension of 1024. In addition to this,
different from LVSM, we use attention biases at all layers
and include the bias for the last transformer block, as we
find this design choice particularly stable with linear learn-
ing rate decay. We use a patch size of 8 for all experiments.

1.1. Enhancing 3D generative models for 3D consis-
tent generation

The use of diffusion models has been widely explored for
generating 3D scenes. Multiple works in the literature
adapt pretrained text-to-image and image-to-video models
for 3D-consistent scene generation. Most of these works
condition the diffusion model on camera parameters and
learn the conditional distribution of multiple views given the
camera poses. Given the ability to cherry-pick and sample
through the diffusion model multiple times, these models
produce high-quality results. However, existing 3D scene
generation models cannot mass-produce synthetic data for
fine-tuning substream models for high-fidelity generation.
Until now, no generalizable models with high-fidelity re-
sults have been proposed that can directly utilize the data
generated by diffusion models. We argue that this draw-
back is caused by a lack of analysis of the inference-time
generation process of diffusion models. Although extensive
studies have been performed on different training strategies
for 3D-consistent generation using diffusion models, much
less effort has been put into improving inference-time gen-
eration quality.

Most 3D generative models generate N views of a scene,
each of dimension (H x W x (), in parallel to preserve
3D consistency. The generation process starts with random

isotropic Gaussian noise of dimension N x H x W x C,
which undergoes a diffusion process of 1" steps. This either
converts it into a latent representation, which is then de-
coded by a VAE decoder to produce multiview images, or
generates images directly. These multiview images are fur-
ther used to train a NeRF or a Gaussian Splat model to gen-
erate novel views of the scene. When the diffusion model
generates high-quality, 3D-consistent images, this frame-
work works perfectly. However, in reality, diffusion models
are sensitive to input noise. Even for the simple case of
image generation, different noise inputs produce different
quality results. Recent works have shed light on inference-
time scaling laws for generation, claiming that the quality of
diffusion model outputs can be controlled by selecting the
correct input noise via rejection sampling. Similar claims
have been made for video generation models, where per-
formance improves significantly by refining the input noise
schedule.

To understand this, consider a toy example: Suppose we
want to generate an image (/1) using the diffusion model
conditioned on a text prompt. Starting with Gaussian noise
Ny, if we want to generate another image (/2) close to (17),
the desired noise is most likely closer to N;. Previous works
have demonstrated enhanced video generation results by se-
lecting starting noises that are close across different frames.

In our case, we use the image-to-multiview variant of
CAT3D as the base model for generating multiview images.
For choosing the initial noise, we follow a specific heuris-
tic. Specifically, we ensure that the noise across different
views remains 3D-consistent. CAT3D is a multiview diffu-
sion model that generates eight views simultaneously, con-
ditioned on the camera poses. CAT3D allows conditioning
on a particular view to generate the remaining views. Given
the view to be conditioned, we select a random noise for
this view, denoted as V7, with its noise represented as Ny
and the corresponding rotation-translation matrices denoted
as Ry, ;. To estimate the starting noise for other views, we
perform a warping operation on Ny, denoted by:
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N; = warp(Ny, inv([R;, t;])[R1, t1]) )

where the warp operation transforms the coordinates of
Ny to N;. However, we noticed that such a warping op-
eration fails in regions outside the scene. To handle these
cases while enhancing consistency, we marginally modify
the noise. Specifically, for these cases, we assign the noise
as:

NQZOZN1+(170£)N(O,I) (2)

Thus, our effective starting noise is defined as:

Noo oo N1, overlapping regions
final N3, non overlapping regions

We perform the effective noising operation parallely with
respect to the reference view. First we take view 1, warp to
view 2. then add noise, then we Although we use CAT3D,
our method is generalizable across any 3D scene generation
model.

Understanding the value that synthetic data from gen-
erative models can bring, we propose a method to en-
hance diffusion-based 3D generative models to produce
high-quality, 3D-consistent results.

1.2. Loss functions

Similar to LVSM, we utilize Mean Square Error (MSE) loss
for training our network. Instead of using Perceptual Loss,
we utilize LPIPS loss for training. Given the ground-truth
target view of dimension I € R¥*WxC and the recon-
structed target view I, the effective objective function used
for optimization is defined as:

L=MSEI,I)+\-LPIPS(I,I) (3)
where ) is a scaling factor set to 0.5 for all experiments.

1.3. Emergent Properties

One surprising emergent property of our newly proposed
transformer block is its ability to disentangle the source
and target tokens, which allows it to scale better for syn-
thetic data compared to a naive transformer block. We
present these results in Figure X, where we observe sig-
nificant improvements. We hypothesize that this emergent
property arises because synthetic data is generally prone to
artifacts and out-of-distribution noise. When transformer
blocks cannot distinguish between source and target tokens,
the model learns using both real and synthetic data, leading
to reconstructions that inherit these artifacts. However, in
our case, only the relevant information from clean images
is used for backpropagation, allowing the model to utilize
useful context from synthetic data while discarding artifacts
during token fusion for target view generation.

2. Limitations

Our model struggles when regions occluded in the source
images become visible in the target view. As shown in ??,
when a new object enters the scene, the model hallucinates
the affected region. We argue that this phenomenon is in-
herently ill-posed and lacks a definitive solution. Addition-
ally, the model uses a token size of 8 for all blocks, result-
ing in 1024 tokens per source image, which demands sig-
nificant memory. We leave further architectural optimiza-
tions, such as hierarchical transformers and more efficient
networks like linear attention and state-space models (e.g.,
Mamba [1], [2]), for future work.

3. Failure cases of our method

‘We notice that our method contains two main failure modes
(1) when an new object comes into the view in between the
conditioned frames. (2) When too many shiny artifacts are
present in the image
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Figure 1. Figure illustrating results from DL3DV dataset trained with our synthetic data. The first 2 images represent the input views.
third presents results of LVSM, Fourth represents our results and fifth the ground truth



Figure 2. Figure illustrating results from Rel0k dataset trained with our synthetic data. The first 2 images represent the input views.
third presents results of LVSM, Fourth represents our results and fifth the ground truth
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Figure 3. Figure illustrating results from ACID dataset trained with our synthetic data.
third presents results of LVSM, Fourth represents our results and fifth the ground truth
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The first 2 images represent the input views.



Figure 4. Figure illustrating the regions where our method works better than LVSM for Rel0K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and Ours
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Figure 5. Figure illustrating the regions where our method works better than LVSM for Rel0K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and Ours



Figure 6. Figure illustrating the regions where our method works better than LVSM for Rel0K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and Ours

Figure 7. Figure illustrating the regions where our method works better than LVSM for Rel0K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and Ours



Figure 8. Figure illustrating the regions where our method works better than LVSM for Rel0K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and Ours

Figure 9. Figure illustrating the regions where our method works better than LVSM for Rel0K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and
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Figure 10. Figure illustrating the regions where our method works better than LVSM for Rel10K dataset. The figures are in the order
Row 1:- LVSM, Row 2:- OURS Row 3:- GT, Row 4:- Difference between LVSM and Ours

Figure 11

. Figure illustrating failure cases of our method. Our method fails to perform well if there are occluded objects coming into
the scene. Figure ordering is OURS, GT, DIFF



Figure 12. Figure illustrating failure cases of our method. Our method fails to perform well if there are occluded objects coming into
the scene. Figure ordering is OURS, GT, DIFF

Figure 13. Figure illustrating failure cases of our method. Our method fails to perform well if there are occluded objects coming into
the scene. Figure ordering is OURS, GT, DIFF



Figure 14. Figure illustrating failure cases of our method. Our method fails to perform well if there are occluded objects coming into
the scene. Figure ordering is OURS, GT, DIFF

Figure 15. Figure illustrating failure cases of our method. Our method fails to perform well if there are occluded objects coming into
the scene moreover, our method also fails to reconstruc tproperly when there are some shiny obejcts in the scene. Figure ordering is OURS,
GT, DIFF
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