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Figure S1. Example of part texture editing.

In this supplementary material, we present additional
technical details and more experimental results that could
not be included in the main manuscript due to page limita-
tions. The contents are summarized below:

• S1. Additional applications
• S2. Plug-in for other reconstruction methods
• S3. Texturing based on GT human geometry
• S4. More ablation studies
• S5. Implementation details
• S6. More comparison results
• S7. Limitations and future work

S1. Additional applications

Part texture editing. Fig. S1 shows that our framework al-
lows part-aware texture editing, allowing modifications to
a specific human part. Given a 3D textured human surface
and a part-segmented human surface, PartTexturer can edit
one of the part textures. Specifically, after projecting the 3D
human surface into 2D space, we can modify the projected
image on a target human part via image inpainting meth-
ods [68]. Then, the modified image serves as an input for
PartDiffusion, which drives PartTexturer. By running Part-
Texturer, we can obtain a new 3D textured human surface
where the target part is updated. Since our proposed Part-
Texturer takes not only text prompts but also an image as
guidance, it enables more precise and detailed 3D editing
by referencing the image.
3D cloth decomposition. Fig. S2 shows that our frame-
work enables the decomposition of cloth surfaces from the
reconstructed result of our framework. Our framework pro-

Input mage 3D cloth assetsReconstruction results

Figure S2. Example of 3D cloth decomposition.

duces 3D human part segmentation as an intermediate out-
put during reconstruction. Since reconstructed textures are
well-aligned with their corresponding parts, 3D cloth sur-
faces can be obtained by cutting their regions based on the
part segmentation. This decomposition is made possible
because our framework provides accurate human part seg-
mentation and ensures the reconstructed human textures are
aligned with the part segmentation.

S2. Plug-in for other reconstruction methods

Tab. S1 shows that integrating our PARTE with various
3D human reconstruction methods, including 2K2K [23],
SiTH [27], HumanRef [94], and SIFU [97], improves tex-
ture quality. In this experiment, we utilize the geometry
outputs from the 3D human reconstruction methods and ap-
ply our framework for part-guided texturing. In the results,
our PARTE achieves superior texture reconstruction com-
pared to the original texturing of each method. Our frame-
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Figure S3. Qualitative comparisons of PartDiffusion with other
diffusion models for texturing on GT human geometry.

work can be integrated into various 3D human reconstruc-
tion pipelines in a plug-and-play manner, enhancing texture
quality without altering or modifying the geometry recon-
struction process.

S3. Texturing based on GT human geometry
Fig. S3 and Tab. S2 demonstrate that our framework
achieves superior texture reconstruction compared to other
diffusion models when evaluated on GT human geometry of
THuman2.1 [91]. To evaluate texture reconstruction while
eliminating the influence of geometric errors, we compare
our framework with other texturing approaches based on
GT human geometries. Specifically, we remove textures
from the GT human geometries of THuman2.1 and use
them as inputs to texturing frameworks. As a result, our
framework outperforms other diffusion models in both tex-
ture fidelity and alignment across human parts.

S4. More ablation studies
Effectiveness of SegmentNet design. Fig. S4 shows that
incorporating front-view part segments enhances the part
segmentation. The reconstructed 3D textureless human sur-
face exhibits indistinct boundaries between different human
part regions, making it challenging to accurately segment
each part. Accordingly, without front-view part segments,
SegmentNet produces incorrect 2D part segments, which
lead to failures in 3D part segmentation. To address this,
we incorporate front-view part segments for the segmen-
tation, which capture semantic cues that are not explicitly
represented in the normal map. By leveraging these addi-
tional semantic cues, our approach enables more accurate
part segmentation.

Texture reconstruction

Methods PSNR↑ LPIPS↓ Part IoU↑

2K2K [23] 20.373 0.131 0.515

2K2K [23] + PARTE(Ours) 20.692 0.128 0.574

SiTH [27] 20.692 0.120 0.535

SiTH [27] + PARTE(Ours) 21.449 0.108 0.585

HumanRef [94] 21.302 0.113 0.576

HumanRef [94] + PARTE(Ours) 22.153 0.101 0.623

SIFU [97] 21.491 0.108 0.588

SIFU [97] + PARTE(Ours) 22.412 0.095 0.639

TeCH [34] 21.089 0.108 0.588

TeCH [34] + PARTE(Ours) 22.175 0.096 0.641

Table S1. Impact of applying PARTE to different 3D recon-
struction methods on THuman2.1 [91].

Texture reconstruction

Methods PSNR↑ LPIPS↓ Part IoU↑

StableDiffusion [68] (DreamFusion [63]) 27.422 0.048 0.772

Reference U-Net (HumanRef [94]) 27.659 0.042 0.815

DreamBooth [70] (TeCH [34]) 28.337 0.039 0.835

PartDiffusion (PartTexturer, Ours) 29.315 0.039 0.857

Table S2. Comparisons of texturing results between different
diffusion models based on textureless GT human geometry of
THuman2.1 [91].

Effectiveness of PartDiffusion design. Tab. S3 and Fig. S7
show that PartDiffusion effectively generates human images
that are accurately aligned with both the input image and
part segments, compared to other diffusion networks. For
quantitative comparison, we measure PSNR, LPIPS, and
Part IoU between generated images and GT counterparts.
All other diffusion networks except PartDiffusion struggle
to preserve both the human part structure and human ap-
pearance from the input image. This limitation leads to in-
consistent 3D human texturing, resulting in misaligned tex-
tures across human parts. In contrast, our PartDiffusion ef-
fectively integrates the input image and part segments, en-
suring proper part alignment while generating visually co-
herent human images. This indicates that PartDiffusion pos-
sesses precise prior knowledge of both human part structure
and human appearance, enabling more accurate 3D human
texturing in PartTexturer. Fig. S5 additionally shows that
PartDiffusion is capable of generating human images while
preserving the appearance of the input image, even when
given in-the-wild images with diverse clothing styles.

S5. Implementation details

We provide an explanation of the implementation details
of PartSegmenter and PartTexturer below. PyTorch [60] is
used for all implementations.



Input image 3D textureless human 3D part-segmented humanOutputs of SegmentNet 3D part-segmented humanOutputs of SegmentNet

(a) w/o front-view image (b) PartSegmenter (Ours)

Figure S4. Ablation study for SegmentNet design.

UPPER “blue and white button up shirt”

LOWER “tan khaki shorts pants” FACE&HAIR “woman face, brown hair”

OTHERS “human skin” UPPER “red paisley blouse”

LOWER “blue jeans pants” FACE&HAIR “woman face, brown straight hair”

OTHERS “human skin”

UPPER “floral pattern blue shirt”

LOWER “white cut off jeans pants” FACE&HAIR “woman face, brown hair”

OTHERS “human skin” UPPER “yellow and black lion t shirt”

LOWER “blue jeans pants” FACE&HAIR “man face, black short hair”

OTHERS “human skin”

Input image Part segments Generated images from PartDiffusion (Ours) Input image Part segments Generated images from PartDiffusion (Ours)

UPPER “red and black sport jacket”

LOWER “gray sweatpants” FACE&HAIR “man  face, black short hair”

OTHERS “human skin” UPPER “purple and white windbreaker”

LOWER “blue jeans pants”

FOOTWEAR “white tennis shoes” FOOTWEAR “black  flats shoes”

FOOTWEAR “white shoes” FOOTWEAR “gray sneakers shoes”

FOOTWEAR “white socks” FOOTWEAR “white socks”

FACE&HAIR “woman face, black ponytail hair”

OTHERS “human skin”

Figure S5. Image generation examples of PartDiffusion.

S5.1. PartSegmenter

Geometry reconstruction. To reconstruct a 3D textureless
human surface from a single image, we employ an off-the-
shelf reconstruction method, TeCH [34]. TeCH uses Deep
Marching Tetrahedra [74] (DMTet) as a geometric repre-
sentation of a 3D human. DMTet represents 3D geome-
try based on a tetrahedral grid structure, where each 3D
query point on the tetrahedral grid predicts a signed distance
from the 3D geometry surface. Based on the 3D represen-
tation, we initially optimize it based on the naked human
body, SMPL-X [61] human mesh, which is estimated from
PIXIE [18]. After initialization, the geometry is optimized
to capture fine human details, with three types of losses: re-
construction loss, SDS loss, and regularization loss. Recon-
struction loss is defined as the L2 distance between the nor-
mal rendering results of DMTet and the predicted normal
maps based on Sapiens [38] normal estimator. SDS loss en-

forces the geometry’s normal rendering results to match the
real image knowledge learned by the diffusion model [69].
Regularization loss inhibits implausible geometry through
Laplacian smoothing [7]. We used Adam [40] optimizer
with a base learning rate 1 × 10−3 with a weight decay of
5× 10−4. The optimization was done for 10,000 steps with
a single NVIDIA A100 40GB GPU. After the optimization,
we convert the DMTet into a textureless 3D human surface
with Marching Tetrahedra (MT) [15] algorithm.

3D part segmentation. For 3D part segmentation from a
3D textureless human surface, we first render multiple nor-
mal maps from 30 uniformly distributed viewpoints. Then,
the normal maps are forwarded into SegmentNet to obtain
part segments corresponding to the viewpoints. For the
front viewpoint, which aligns with the input image, we uti-
lize the image segmentation method Sapiens [38] instead of
SegmentNet. The pixel labels of the part segments are un-
projected onto the 3D human surface and used for voting.



Image generation

Methods PSNR↑ LPIPS↓ Part IoU↑

StableDiffusion [68] 10.719 0.491 0.138

InstanceDiffusion [81] 16.125 0.202 0.563

PartDiffusion w/o image segments 15.391 0.234 0.492

PartDiffusion w/o text prompts 19.422 0.134 0.803

PartDiffusion (Ours) 20.109 0.119 0.854

Table S3. Ablation studies on image generation quality among
different diffusion networks on THuman2.1 [91].

Methods PSNR↑ LPIPS↓ Part IoU↑

SiTH [23] 20.200 0.155 0.480

HumanRef [80] 20.896 0.143 0.442

TeCH [29] 21.090 0.123 0.489

PARTE (Ours) 21.698 0.113 0.512

Table S4. Quantitative comparisons with existing 3D human
reconstruction methods, on 4D-DRESS [79].

By aggregating the 30 part segments, we assign each sur-
face vertex the most frequently occurring part label as the
final label, resulting in a 3D part-segmented human surface.
Training details of SegmentNet. Our SegmentNet is de-
signed by modifying the off-the-shelf image segmentation
network, Sapiens-1b [38]. We apply the publicly released
pre-trained weights to all Transformer layers of Segment-
Net while keeping them frozen. Then, we insert self-
attention layers after the first L = 10 Transformer layers
out of the total 40 layers in Sapiens. For training Segment-
Net, we utilize weighted cross-entropy loss by following
Sapiens. Data augmentation, including scaling, rotation,
flipping, and color jittering, is performed in training. The
weights are updated by AdamW [52] optimizer with a batch
size of 2. The initial learning rate is set to 5× 10−4 and lin-
early reduced to 0 over training. We train SegmentNet for 5
epochs with a single NVIDIA A100 40GB GPU.

S5.2. PartTexturer
3D human texturing. In 3D human texturing, we optimize
an MLP network that predicts an RGB color value at the
input 3D coordinate. The MLP network is implemented by
using a fully-connected layer with 32 hidden dimension and
ReLU activations. It takes 3D coordinates of the human
surface as input, after applying the hash positional encoding
with a maximum resolution of 2048. In Eq. (2), we use the
classifier-free guidance [28] strategy with a guidance scale
of 100 for noise estimation. The noise levels are defined at
randomly selected timesteps within the range [0.02, 0.98].
We used Adam [40] optimizer to optimize the network with
an exponentially decaying learning rate starting from 1 ×
10−2. We optimize the network for 4,000 steps with a batch
size of 4 on a single NVIDIA A100 40GB GPU.
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Figure S6. Failure case of our proposed framework.

Training details of PartDiffusion. We use three types
of encoders in our PartDiffusion. Part encoder uses a
ConvNeXt-T [51] architecture following [81]. For the im-
age encoder, we design a new module which consists of 4
ConvNeXt blocks, where the layer depths of each block
are [3, 3, 3, 1] and the feature sizes of each block being
[16, 32, 64, 12]. The prompt encoder follows the structure
of CLIP [66] encoder. For training PartDiffusion, we adopt
the pre-trained weights of InstanceDiffusion [81] as the ini-
tial weights for the part encoder and the subsequent self-
attention layer. The prompt encoder and all layers of the
diffusion network are initialized with pre-trained CLIP [66]
and StableDiffusion [68], respectively, and are kept frozen
during training. To train the network, we acquire sets of
front-view images, novel-view images, novel-view part seg-
ments, and text prompts. The front- and novel-view im-
ages are obtained by rendering 3D human scans from two
randomly selected viewpoints. Then, novel-view part seg-
ments are extracted from the novel-view images using Sapi-
ens [38]. The text prompts are automatically generated from
the front-view images using the off-the-shelf text captioning
model BLIP [44]. Using these data, we train the network by
minimizing the L2 distance between the estimated noise and
the target noise, following the conventional training strat-
egy of diffusion networks. AdamW [52] optimizer is used
for the training with a base learning rate of 5 × 10−5. We
train PartDiffusion for 36,000 steps with a batch size of 4
on a single NVIDIA A100 40GB GPU.

S6. More comparison results

We provide more qualitative results of our PARTE on
THuman2.1 [91] and SHHQ [19]. Fig. S8 demonstrates
that PARTE achieves significantly superior texture recon-
struction compared to previous 3D human reconstruction
methods, demonstrating better part alignment and visual fi-
delity. Figs. S9, S10, and S11 illustrate that our framework
effectively handles in-the-wild scenarios. Tab. S4 shows
that our PARTE also outperforms the existing reconstruc-
tion methods on 4D-DRESS [79], a dataset that has accurate
3D part labels. For evaluation on 4D-DRESS, we uniformly
sample 16 GTs from its test set.
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Figure S7. Qualitative comparison of image generation with various diffusion networks and PartDiffusion, on THuman2.1 [91].

S7. Limitations and future works

Unseen cloth types. Fig. S6 illustrates the failure cases
of our framework when reconstructing unseen cloth types
(e.g., dresses) that are not included in the training dataset.
Our training set is labeled based on the pre-defined part
categories of Sapiens [38], which is limited to classifying
clothes into two types, upper- and lower-clothes. However,
this categorization does not include dresses or multi-layered
outfits, resulting in segmentation failures for such cases.
These segmentation failures lead to incorrect human tex-
turing. We aim to extend our framework to handle various

cloth styles by enriching the training data with more diverse
cloth samples.
Fine-grained part segmentation. Our framework seg-
ments the human into n = 5 part categories, primarily
focusing on broad regions. However, real-world human
appearance includes detailed human body parts (e.g., hair
and eyes) with various accessories (e.g., hat, glasses, and
watch), which are not explicitly segmented in our frame-
work. A potential future direction is to incorporate fine-
grained part segmentation to improve texture reconstruction
by accurately distinguishing these intricate elements.
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Figure S8. Qualitative comparison of PARTE with SiTH [27], HumanRef [94], and TeCH [34], on THuman2.1 [91] and SHHQ [19].
We highlight their representative failure cases with red circles.
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Figure S9. More qualitative results of PARTE on in-the-wild images of SHHQ [19].



Input image 3D textureless human 3D part-segmented human 3D textured human

Figure S10. More qualitative results of PARTE on in-the-wild images of SHHQ [19].
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Figure S11. More qualitative results of PARTE on in-the-wild images of SHHQ [19].


