
Appendix
A1. Additional Experimental Results on ImageNet
To further verify the scalability of NAPPure, we conducted
a large-scale experiment on ImageNet dataset. We sam-
ple 512 samples for evaluation. For the diffusion model
in the adversarial purification method, we adopted the pre-
trained unconditional diffusion model provided by Karras et
al. (2022), and for the classifier, we followed the ResNet-50
framework used by Nie et al. (2022). As shown in Tab. 4,
we performed experiments using four types of attacks, with
the detailed configurations of these attack types as follows:
• Conv: A convolution-based blur attack using a 15×15

uniform kernel ε0, with attack parameters constrained by
∥ε− ε0∥∞ ≤ 0.025.

• Patch: The patch-based occlusion attack. The patch is
fixed at the center of the image with a fixed size 50x50.

• Flow: The flow-field based distortion attack. Parameters
are limited by ∥ε∥∞ ≤ 1.2 . To ensure natural-looking of
the distortion, we apply Gaussian smoothing with stan-
dard deviation 1.5 onto the parameters, before the flow-
field transformation. The kernel size is 29x29.

• Add: The traditional adversarial attack with additive per-
turbations. Parameters are limited by ∥ε∥∞ ≤ 4/255 .
Result. As shown in Table 4, our NAPPure method out-

performs DiffPure method by 8.19%. This indicates that
our method is also effective on large-scale datasets.

A2. More details of the experiments
Table 5 summarizes the detailed parameter settings used in
our evaluations on the GTSRB and CIFAR-10 datasets.

Specifically, this table outlines the number of iterations,
as well as the values of regularization parameters λ1 (con-
trolling the perturbation prior loss) and λ2 (governing the
image reconstruction loss), for each combination of dataset,
attack type (Additive, Blur, Flow, Patch), and defense
method (NAPPure and NAPPure-joint). The variations in
settings across different scenarios (e.g., fewer iterations for
Additive attacks on CIFAR-10 compared to non-additive at-
tacks) reflect the need to adapt to the distinct characteristics
of each perturbation type and dataset.

A3. Computational Cost Analysis
Purification efficiency holds significant importance for real-
world deployment scenarios. To delve into this, we con-
ducted an analysis of the trade-off between the number of
purification iterations and model robustness, using the GT-
SRB dataset under patch attacks as the test case. The de-
tailed results are presented in Table 1.

The findings reveal that NAPPure reaches a near-optimal
performance level within 200 iterations, achieving a robust
accuracy of 72.26%. This is merely 1.96% lower than the
74.22% robust accuracy obtained after 500 iterations. How-

ever, when the number of iterations is extended to 1000,
a noticeable performance degradation occurs, with the ro-
bust accuracy dropping to 60.74%. This decline is likely
attributed to the over-optimization of perturbation parame-
ters during the extended purification process.

Iterations Robust Acc

100 63.48%
200 72.26%
500 74.22%

1000 60.74%

Table 1. The robust accuracy under different numbers of purifica-
tion iterations (GTSRB, patch attack).

Auxiliary Model Robust Acc Clean Acc

3-layer CNN 74.22% 93.55%
small-scale ResNet 71.29% 93.16%

Table 2. Impact of auxiliary model architecture on NAPPure per-
formance (GTSRB, patch attack).

Attack Type Attack Parameter Robust Acc

Patch Attack
5×5 85.16%
7×7 74.22%
9×9 67.97%

Blur Attack 3×3 91.80%
5×5 86.91%

Table 3. Generalization of NAPPure to varying attack parameters
(GTSRB).

A4. The robustness verification of the NAPPure
auxiliary model for architectural changes
The auxiliary model in NAPPure (used for non-
differentiable perturbations like patch occlusion) is
designed as an image-to-image generative network. To
validate its robustness to architectural variations, we
compared two architectures: a lightweight 3-layer CNN
and a deeper small-scale ResNet.

Table 2 shows that replacing the 3-layer CNN with
small-scale ResNet results in a minor drop in robust accu-
racy (74.22% → 71.29%, a 2.93% difference), while clean
accuracy remains stable. This insensitivity to architecture
arises because the auxiliary model focuses on reconstruct-
ing perturbed images rather than discriminative tasks, mak-
ing it less vulnerable to architectural changes. Importantly,
both configurations outperform baselines (e.g., DiffPure’s



Defense Conv Patch Flow Add Avg
Method Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob

None 75.78 11.33 75.78 7.81 75.78 0 75.78 0 75.78 4.79

DiffPure∗ 69.92 20.83 69.92 42.97 69.92 7.81 69.92 46.88 69.92 29.62
LM∗ 67.97 12.11 67.97 6.25 67.97 17.97 67.97 59.38 67.97 23.93

NAPPure 69.11 21.48 65.26 48.05 68.35 21.48 69.33 60.16 68.01 37.79

Table 4. Clean accuracy (Acc %) and robust accuracy (Rob %) of different methods against adversarial attacks with different types of
perturbations on ImgNet dataset. Methods marked with * share identical implementation across attack types.

Dataset Attack Type Defense Method Iterations λ1 λ2

GTSRB

Additive NAPPure 100 0.1 3
Blur NAPPure 500 0.001 3
Flow NAPPure 500 0.01 1
Patch NAPPure 500 0.01 5

- NAPPure-joint 500 0.001 3

CIFAR-10

Additive NAPPure 20 0.1 5
Blur NAPPure 500 0.001 5
Flow NAPPure 500 0.01 1
Patch NAPPure 500 0.01 5

- NAPPure-joint 100 0.01 5

ImageNet

Additive NAPPure 10 0.1 3
Blur NAPPure 100 0.01 5
Flow NAPPure 100 0.01 1
Patch NAPPure 100 0.01 10

Table 5. Detailed parameter settings for NAPPure and NAPPure-joint under different attacks on GTSRB, CIFAR-10 and ImageNet datasets

46.29% robust accuracy for patch attacks), confirming the
reliability of NAPPure’s design.

A5. The generalization ability of NAPPure under
different attack parameters

A key advantage of NAPPure is its ability to maintain ro-
bustness under varying attack parameters, even when the
attack parameters differ from those used in defense con-
figuration. We evaluate this generalization capability for
two representative non-additive attack types: patch occlu-
sion and convolution-based blur.

For patch attacks, we test NAPPure with a fixed defense
model (configured for general patch occlusion) against
varying attack patch sizes. NAPPure achieves robust ac-
curacies of 85.16%, 74.22%, and 67.97% for attack patch
sizes of 5×5, 7×7, and 9×9, respectively. All results outper-
form baseline methods (e.g., DiffPure and LM) under the
same settings. This is because NAPPure features an adap-
tive learning mechanism for patch sizes, endowing it with
the ability to adapt to different attack scenarios. Such adapt-
ability ensures its effectiveness even when attack patch sizes

vary.
For convolution-based blur attacks, we use a defense

model with a fixed 5×5 kernel and evaluate against attacks
with different kernel sizes. As shown in Table 3, NAPPure
achieves 91.80% robust accuracy against 3×3 attack kernels
and 86.91% against 5×5 attack kernels. These results con-
firm that NAPPure remains effective as long as the attack
kernel size does not exceed the defense kernel size, validat-
ing its generalization to varying convolution parameters.


