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SUMMARY

This Supplementary Material provides extra material for the
paper “EgoMusic-driven Human Dance Motion Estimation
with Skeleton Mamba”. The material is organized as fol-
lows:

* Section 1 provides mathematical background for State
Space Models and Diffusion Model.

 Section 2 provides mathematical proof for our theory
in the main paper.

¢ Section 3 discusses the motivation and practical impact
of EgoMusic-driven Human Dance Estimation.

* Section 4 provides more details on our Human Tok-
enizer.

 Section 5 provides more examples and analysis of our
EgoAIST++ dataset.

 Section 6 outlines the detailed implementation of our
method and baseline setup.

» Section 7 presents the proposed MMV metrics and
additional experiments, including a user study, anal-
ysis of failure cases, extended visualizations of cross-
dataset experiments, and inference time.

e Section 8 demonstrates the detail implementation of
our Skeleton Mamba when we apply it to the text-to-
motion generation and human action recognition tasks.

* Section 9 discusses some interesting future directions.

1. Preliminary

State space models (SSM). SSM aims to transform an
input sequence x(¢) € R to the output sequence y(t) € R
using the following equation:

W (t) = Ah(t) + Ba(t),

y(t) = Ch(t), (1

where h(t) € RN*! represents the hidden state, and
A € RV*N B e R¥*! and C € RV serve as pro-
jection matrices, with N denoting the number of states.
To adapt this continuous-time formulation for deep learn-
ing applications with discrete data, consider a multivari-
ate input sequences X = [r1,...,27p] € RIXP with
V¢, z; € RP, Mamba [8] first generates parameters as
B,C = Wpx, Wex € RPX1 A = XW 4 € RE, where
Wi, We € RPXN W, € RPX! are learnable matrices.
To obtain a discrete-time variant of SSM, a zero-order
hold discretization is applied, leading to the following for-

mulation:
he =Ashi—1 + B/ a4,

2
yr =Cyhy,

where A; = eA4t € RVXN B, = (AA,) 1(eAA —
I)-AB, C; = C, y € REXD h € RN*D 1n this for-
mulation, A € RV*Y s a learnable diagonal matrix, and
all projection matrices A, By, C; enable the linear time-
variant discrete system that selectively attends to inputs x
and hidden state h of each timestamp ¢.

State Space Duality (SSD). The Structured State Space
Duality (SSD) model [4] builds upon the State Space Model
(SSM) [8], providing significant improvements in computa-
tional efficiency, particularly in terms of speed and mem-
ory usage. Instead of using a full diagonal evolution matrix
A, SSD simplifies it into a scalar form a € R, leading to
a € R” through an equivalent discretization process. With
this simplification, SSD reformulates Equation (2) into a
matrix transformation:

y=SSD(x,a,B,C)= (Mo (CB"))x, (3
[y an ifi>j,

if i = j, “)

0 ifi <7,

where M € REXL represents a transformation matrix, and
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© denotes the Hadamard product. This reformulation im-
proves efficiency while maintaining the expressive power
of the original model.

Diffusion Model. Denosing Diffusion Probabilistic
Models (DDPMs) [11] are a class of generative models that
learn to gradually remove noise from a noisy input x; over
a series of steps, where each step has a different noise level
t. The noise accumulation is described by

N(Vaixo, (1 = ag)I) ®)

where x, represents the original clean data, oy = HZ:1 (1-
Bs), and B, controls the noise schedule. The objective of the
conditional diffusion model is to learn the condition dis-
tribution pg(xo|C). As described in [6, 11], the denois-
ing model pg(x;—1|x:), C, parameterized by 6, is trained
to reverse this process by estimating the Gaussian posterior
q(x¢—1|x¢,X0).

q(xt[x0) =

:N(Xt—1§N0(Xt;t)v29(Xt7t)) , (6)

\/IOTt(X_ Bi —eg(x¢, 1)), @)

where &; = 22:1 ag, and X, is a variance scheduler of
choice. The training loss is typically defined as a recon-
struction loss for the mean or the clean input x(, which takes
the following simplified form:

Lsimple(e) = Et,e,xo |:||6 — €9 (\/éTtXO + m@ t) ||2:|
= Et e xo [HE €o(x¢, 1)l ]
(3)

Condition Diffusion Model. The objective of the condi-
tional diffusion model is to learn the condition distribution
po(%0|C). To achieve this, we modify the diffusion frame-
work by including the condition C as part of the input for
the reverse process, represented as:

pe(Xt—1|Xt)

p(xe, t) =

= N(thl; M@(Xta t7 C)) EQ(Xt, t; C)) s
)

Pe(Xt71|Xt7 C)

Lomple(8) = B cx, [He — e (\/Exo /1= dye,t, c) ||2}

= Et,e,x() |:||6 - 69(Xt7ta C)||2] .
(10)

2. Proof of Theorem 1

Proof. The Skeleton Mamba architecture can be simpli-
fied into three primary components: the Human Tokenizer
(HT), the Inverse Human Tokenizer (HT'), the Group
Scan (GS), and the Joint Scan (JS). This discussion fo-
cuses on the spatial processing capabilities of the Skeleton
Mamba architecture, excluding the Temporal Scan, as its
primary role is to handle temporal dependencies. The func-
tion f(-), derived from the Skeleton Mamba architecture,

processes a frame of motion x € R7*P as follows:

f(x) =HT ' (JS(GS(HT(x)))) - (11)
The function first tokenizes the human pose x € R”* into
G group tokens:

g =[g1,82,..-,8¢] = HT(x), (12)

where g; € RE*F with E = P x D. Then the Group
Scan is applied to the sequence g to achieve transformed
sequence y:

Yy =I[y1,y2,-..,yc] = GS(g)

= Mean([SSD(Concat(g™,...,g™))]) (13)

Given that each token at the ¢-th position can access previ-
ous tokens through the State space model mechanism, we
split the SSD into n smaller modules, denoted as SSD:

n -1

1 = m
GS(g)= > [SSDi(g™.....g™)] " . (4

i=1

Each group embedding y; to a sequence of individual joints
represented as 'y, € RT*F*D yging a linear layer and rear-
range operator. In Joint Scan, n SSD modules with shared
parameters are applied, where each module processes a to-
ken y; independently:

All outputs of the SSD modules are then concatenated and
fed to the Inverse Human Tokenizer to restore the original
pose shape t € RT*/*D,

t=HT" ye) . (16)

Let’s analyze the permutation equivariant property of GS(-).
With p € Sym(G), we have:

*((Concat(y{,y5, .

-1
5

Gs(gp):*Z{SSD m Pm)}

= {i [SSD /’m’,_.,gpni)} (Pwi)l}f)

7

#%d

—_

a7
It is evident that GS(-) lacks the permutation equivariant
property, which means that the function f(-) also does not
possess this property. Thanks to the universal approxima-
tion property of the state space model [35], we could ap-
proximate the GS(+) by the function with the permutation
equivariant property. We construct a function JF(-) that de-
rived base on n shared weight SSD module:

n

Flg)= S ssDig™) . a8)

=1



With p € Sym(G), we also have:
L™ (5D ()
=

1< -
=3 IssDy(gr))
i=1

F(g’)

19)

Assume that {pmy,...,pm,} = {m1,..., 7}, then we
have:
1O -
—Z [SSD; (g”™)
N4 (20)
=[F()" -

This indicates that the function F(-) is an H-equivariant
function. According to [35], the State Space Model is a
universal approximator. Therefore, it follows from [21] that
the function F(-), which is a frame averaging, is a univer-
sal approximator of H-equivariant functions from R%* ¥ to
RG xE .

To prove the universality of our model, we will choose
JS(-) to be the identity mapping. It is noted that, if our
model with this fixed JS(-) is a universal approximator, then
so is our model with parameterized JS(-). Since F(-) is
a universal approximator of H-equivariant functions from
REXE to RE*E | and HT(g(-)) is an H-equivariant func-
tions from RE*F to RE*F. We can choose a function F(-)
satisfies:

IHT(9(g)) — F(8)lle <

or consequently:

€
IS(FHTE))) e < 5
for all x € K C R7*P_ Moreover, the Group Scan, which
is basically an SSM, is also a universal approximator [35].
There is a Group Scan function such that:

€

llg(x) —HT™ (22)

1GS(g) — F(g)lles < 5 - (23)
for all g € HT(x), or consequently:
[1f(x) = HT~H(JS(F(HT(x))))l
= |[HT ' (JS(GS(HT(x)))) — HT ™' (JS(F(HT(x))))[oo
<%
24

for all x € K C R7*P. From Equation 22 and Equa-
tion 24, we have:

£ (%) = 9o < [If(x) = HT ' (IS(F(HT(x))))]]
+ |[HT ™' (JS(F(HT(x)))) — 9(%)||sc
<fal

=¢ Vxe K CR/P,
(25)
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Figure 2. An application of ego-music dance estimation.

Thus, the theorem is proven, demonstrating that the Skele-
ton Mamba architecture can represent complex human mo-
tions. This includes motions requiring precise coordina-
tion to align with both egocentric views and musical input
while preserving the equivariant properties inherent to hu-
man body symmetries. O

3. Task Motivation

Dance is a fundamental form of human expression, of-
ten driven by music and influenced by visual perception.
Estimating human motion from egocentric video and mu-
sic presents a novel and challenging research direction with
significant implications for both academic and real-world
applications. Current dance motion estimation method re-
lies on third-person cameras [1, 12, 23], which often suf-
fer from occlusion, viewpoint changes, and depth ambigu-
ity. This drawback makes it challenging to capture com-
plex dance movements accurately. To improve the motion
estimation accuracy, AR/VR systems incorporate external
sensors, such as HTC Vice base stations, controllers, and
motion trackers [29], as illustrated in Fig. 1. However, this
setup is expensive and less practical for widespread real-
world applications. As illustrated in Fig 2, VR dance games



demonstrate the potential of immersive experiences driven
by body movement, yet they still depend on external track-
ing systems. To overcome these challenges, a promising ap-
proach is to estimate dance poses directly from egocentric
video and music, eliminating the need for external hardware
while ensuring a more accessible and practical solution.

4. Human Tokenizer Details

Figure 3. Joint index of the human body.

We provide the joint indices of the human body in Fig. 3
for clarity and ease of reference. Let S; = Sym(J) be the
symmetry group of J elements and ¢ € S;. The Human
Tokenizer (HT) and Inverse Human Tokenizer are designed
such that they can reflect the human body’s symmetries. In
other words, the Human Tokenizer and Inverse Human Tok-
enizer are chosen such as the set H = {o € S;|HT(x?) =
HT(x)} is a non-empty subset of S;. For example, the
human body can be divided into five distinct groups, with
each group containing six joints. The joint indices for these
groups are as follows: i) Spine and head: (0, 3, 6, 9, 12,
15); ii) Right arm: (9, 14, 17, 19, 21, 23); iii) Left arm:
(9, 13, 16, 18, 20, 22); iv) Right leg: (0, 2, 3, 5, 8, 11), v)
Left leg: (0, 1, 3, 4, 7, 10). This grouping captures the in-
herent symmetries of the human body. For instance, groups
representing the left and right limbs (e.g., arms or legs) can
be interchanged without affecting the overall structural rep-
resentation. Such symmetrical grouping effectively mod-
els the bilateral relationships and similar movement patterns
between corresponding parts on either side of the body.

5. EgoAIST++ Dataset Visualization

Our EgoAIST++ dataset combines dance sequences
from the AIST++ dataset [17] with 3D mesh scenes from
the Replica dataset [30]. To construct the dataset, we di-
vide the motion sequences into multiple 5-second subse-
quences. Each subsequence is then positioned within the
3D mesh scene at a randomly selected location and ori-
entation. We ensure that the dancer’s feet maintain con-

tact with the floor of the 3D scene. To validate the place-
ment, we calculate a penetration score S, for each human
mesh in the subsequence relative to the 3D scene, using a
method by [34]. If the penetration score exceeds a prede-
fined threshold (S, > threshold), indicating potential col-
lisions between the motion and objects in the scene, the
current sequence is discarded, and a new random place-
ment is attempted. In practice, we set the threshold to
threshold = 2. All the valid motions are manually verified
before extracting the corresponding camera translation and
rotation. The camera is positioned at the mesh index located
between the eyes, simulating a forward-facing egocentric
perspective. In this setup, most of the human body is not
visible in the egocentric images, encouraging the model to
infer motion primarily from changes in the surrounding en-
vironment, even in the absence of explicit visual cues from
the human body. We illustrate examples of valid placements
in Fig. 4. We also provide more egocentric examples from
our EgoAIST++ dataset in Fig. 5.

6. Implementation Details
6.1. Auxiliary loss

We incorporate auxiliary losses (Section 4.4 in our Main
Paper) to enhance the physical realism of the generated mo-
tion. Specifically, we employ position loss and velocity
loss, similar to those introduced in [13,27,32]. The posi-
tion loss £, and the velocity loss L., are defined as:

T
1 ; o
Lyos = 7 Y IFKG) —FKE3. 26)
i=1

T-1
1 _ A A ,
_ i+1 i si+1 S0 (12
LveliiT—l Eﬂ [(x —x*) — (x"" =x")|5, 27)

where FK(-) denotes the forward kinematics function that
converts rotation angle to position, x’ is the ground truth
pose, and X’ is the predicted pose at frame i. The contact
loss Leontact is applied to minimize foot sliding:

T—1
D IFKRET) —FK(x))-b'][3 , (28)

i=1

1
T-1

ﬁcom‘/act =

where b is a binary indicator for ground contact. The
kinematic loss is expressed as follows:

['kin = Apos‘cpos + A1)6[£'1}el + Acontact‘ccontact B (29)

where Apos, Aver, and Acontact are hyperparameter control-
ling the weight of the corresponding losses.

6.2. EMM network details

For a sequence of egocentric images, denoted as v €
RTXCXHXW "we ytilize a ResNet [10] followed by an MLP



Figure 4. EgoAIST++ dataset visualization. Top row shows the human motion within 3D scene. Second row shows the egocentric view.

Components Description Input size Output size

(1) Audio Encoder A backbone extracting music features comprised of Jukebox and two layers of Transformer [T x L] [T x D,.]

(2) Vision Encoder A backbone extracting music features comprised of ResNet50 and a MLP layer [TxCxW xH] [T x D.]

(3) Fusion Module A module to fusion music and vision embedding comprised of two layers of Transformer [T x D], [T x D.] [T x D.]

(5) Human Tokenizer Grouping human skeleton into multiple groups [T x J x D] [T xGx E]
(6) Group Scan Apply MSSD to group sequence [T x G x E] [T x G x E]
(7) Joint Scan Apply n shared weight SSD to joint sequence [Gx (Tx1xE)] [Gx (T x P x D))
(5) Inverse Human Tokenizer ~ Reverse the group sequence to original human pose shape [T xGx P x D] [T x J x D]
(8) Temporal Scan Apply bidirectional SSD to temporal dimension [J xT x D] [J xT x D]
(9) Cross Attention Cross Attention layer to fuse the condition embedding and the pose embedding [T x J x D], [T x D] [T x J x D]

Table 1. EgoMusic Motion Network (EMM) Architecture Summarization.

Hyperparameter Value
D 128
D, 256
G 5

P 6

J 24

E 768
T 150
Motion FPS 30
Diffusion Step 1000
Optimizer AdamW
Learning rate 2e-4
Num. layers (N) 8
Num. attention head 4
MLP dim 1024
Transformer dim 512

Table 2. Hyperparameter Details.

layer to extract vision embeddings, represented as z, €
RT*Pe_ For the music input a € RT*%, we employ Juke-
box [5] along with two Transformer Encoder layers [33] to
generate music embeddings, denoted as z, € R7*P<. The
fusion of these aligned vision and music embeddings is per-
formed using our Fusion Module, consisting of two Trans-

former Encoder layers [33]. The architecture and hyperpa-
rameters of our model, EMM, are summarized in Table 1
and Table 2.

6.3. Baseline details

Vision-conditioned versions of FACT [17], Bai-
lando [27], and EDGE [32]. We slightly modify these
baselines to fuse egocentric images and music features as
input. For a fair comparison, as in our backbone, we use the
same backbone [10] to extract features from the egocentric
images. We employ our Fusion Module to combine the ego-
centric and music features. In addition to the training losses
and parameters from the original models, we also incorpo-
rate an alignment loss as proposed in our method to improve
the consistency between the modalities. At the sampling
stage, we also apply the head guidance goal Greqa(:).

Music-conditioned version of EgoEgo [15]. Similar to
our music encoder, we use Jukebox [5] and a transformer
encoder [33] to extract music features. We then use our
Fusion Module and apply alignment loss to fuse the music
features with the head pose features extracted during the
first stage to generate a unified condition embedding.

Kinpoly [20], PoseReg [38]. We employ Jukebox [5] to
extract music features. The music feature is then fused with
the optical flow feature from their vision encoder. We also



employ the alignment loss described in our main paper. All
other training losses and parameters are carried over from
the original implementation.

7. Additional Experiments
7.1. Motion-Music-Vision (MMY) metric

To evaluate how well the generated dance motions align
with the music and egocentric video, we propose a new
Motion-Music-Vision (MMY) correlation score:

1 1
MMV = SMM(B;, By) + 5MV(Bur, Bz) ,

i te, —ty. ||?
ngner}gxll —1l

202

1
MM(B_L,By) = m E exp | —
Y

min [ty — ¢, ||

1 Vit €81
MV(By, B;) = —— ——
( ) B, | ZEXP 902
(30)
where B, = {t,, } represents the set of kinematic beats ex-
tracted from the motion, B, = {tx; } represents the head

kinematic beats of generated motion, B, = {t,,} repre-
sents the set of music beats, and B, = {¢,,} represents
the local minima of optical flow magnitude extracted from
egocentric videos. The term MM(B,, B,) corresponds to
the music-motion alignment score, as defined in previous
works [27]. The term MV (B,-, B, ) represents the motion-
vision alignment score, reflecting how closely the head
movements correlate with the egocentric video.

7.2. User study

We conducted a user study to evaluate our method
and other approaches, 25 participants with different back-
grounds and ages from 18-50, were asked to assess the
results based on three criteria: the physical plausible of
the dancing motions (Physical Plausible), the alignment
of body movements with the music (Motion-Music Align-
ment), and the alignment of head movements with the
egocentric video (Motion-Vision Alignment). Participants
rated each criterion on a scale from 0 to 5, where 0 indi-
cated very poor, 1 indicated poor, 2 indicated fair, 3 indi-
cated good, 4 indicated very good, and 5 indicated excel-
lent. These scores were then normalized to a range of [0,
1]. Each participant reviewed 20 samples, with 5 samples
per method: EgoEgo [15], Edge [32], Ground Truth, and
ours. Overall, the results from Fig. 6 show that our method
is more favorable compared to other baselines.

7.3. Failure Cases

Although our method achieves promising results, it pro-
duces incorrect predictions in challenging cases. First,

abrupt movements in the egocentric view, such as sharp
head jerks or sudden whiplash-like motions, can introduce
motion blur. This blur affects the scene understanding,
leading to incorrect estimated motion (Fig. 7). Second,
when there is a mismatch between the egocentric video
and the music, such as when an energetic, fast-paced song
accompanies a calm or stationary visual scene, the gener-
ated dance motion may fail to align with either the music’s
rhythm or the visual input’s dynamics (Fig. 8).

7.4. Cross-dataset visualization

Fig. 9 presents visualization results using EMM trained
on our EgoAIST++ dataset, evaluated on EgoExo4D, a real-
world motion capture dataset. The predicted motion closely
resembles the ground truth images, demonstrating that our
method, despite not being trained on real-world images,
generalizes effectively to such data.

7.5. Inference time

We compare the model parameters and runtime of all
methods in Table 3. For diffusion-based models, the re-
ported runtime corresponds to 1,000 sampling steps. Infer-
ence time remains a notable challenge for diffusion-based
approaches. Our model, built upon Mamba, demonstrates
an advantage in inference time compared to transformer-
based models. In particular, our EMM has a faster inference
time than EgoEgo [15], FACT [17], and EDGE [32], while
being slower than Bailando [27].

Model PoseReg Kinpoly EgoEgo FACT Bailando EDGE EMM

Params (M) 15 22 351 1314 1845 612 474
Inference Time (s) 13.2 4.5 473 264 14.1 30.1 248

Table 3. Inference time comparison.

8. Skeleton Mamba on Human Motion
8.1. Human action recognition

Setup. We propose an adaptation of Skeleton Mamba
for this task, as illustrated in Fig. 10. The input skeleton
sequence is denoted as x € RT>*/*D_where T is the se-
quence length, J is the number of joints, and D is the em-
bedding dimension. This sequence is processed through N
Skeleton Mamba modules. Each Skeleton Mamba module
consists of the Human Tokenizer, Group Scan, Joint Scan,
Temporal Scan, and Inverse Human Tokenizer, as detailed
in the main paper. Next, Global Average Pooling is applied
to aggregate both spatial and temporal features from the
entire skeleton sequence, producing an output embedding
0 € RY™*C where C is the number of classes. This em-
bedding is then passed through a linear layer, followed by a
softmax function, to generate the final label prediction.



Figure 5. Samples of our EgoAIST++ dataset. In each sample, the first row shows the egocentric view from the head-mounted camera,
and the second row is the third view.

Dataset. We use two datasets: Kinetics400 [14] and
NTU RGB+D 60 [18]. The Kinetics 400 dataset is a large-
scale dataset with over 260K skeleton sequences from 400

action classes. The NTU RGB+D 120 dataset is a large-
scale benchmark for action recognition, comprising nearly
56K skeleton sequences across 60 action classes, captured
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Figure 7. Failure case 1. Example of motion blur caused by
abrupt head movements, leading to inaccurate motion generation.
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Figure 8. Failure case 2. Example of misaligned egocentric view
and music, resulting in unsynchronized dance motion.

Ground Truth

from 40 unique subjects and 3 distinct camera view an-
gles. The dataset is divided into two evaluation settings: (1)
Cross-subject (X-Sub), where the training and testing sets
consist of different subjects, and (2) Cross-setup (X-Set),
where the division is based on different camera setups.

ST-GCN [36] GCN 81.5 88.3 30.7
AS-GCN [16] GCN 86.8 94.2 34.8
RA-GCN [28] GCN 87.3 93.6 -
AGCN [25] GCN 88.5 95.1 36.1
DGNN [24] GCN 89.9 96.1 36.9
FGCN [37] GCN 90.2 96.3 -
Shift-GC [3] GCN 90.7 96.5 -
MS-G3D [19] GCN 91.5 96.2 38.0
PoseConv3D [7] CNN 93.1 95.7 47.7
DSTA-Net [26] Transformer 91.5 96.4 -
STTFormer [22] Transformer 89.9 95.9 -
MotionBERT [40] Transformer 87.7 94.1 -
MotionBERT [40] (extra data) Transformer 93.0 97.2 -
Skeleton Mamba (ours) Mamba 94.4 96.9 524

Table 4. Skeleton-based action recognition results.

Baselines. We compare our model to state-of-the-art
method in skeleton-based action recognition with three
types of backbone: Graph-based method (GCN) [3, 16, 19,
24,25,28,36,37], Convolution neural network (CNN) [7]
and Transformer based method [22, 26, 40].

Results. We evaluate the top-1 classification accuracy
and present the results in Table 4. The findings show that
our approach outperforms all previous methods on two out
of three benchmarks. Furthermore, without utilizing addi-
tional training data, our method achieves superior perfor-
mance across all benchmarks. Notably, our model repre-
sents the first Mamba-based architecture capable of effec-
tively learning the hierarchical spatial and temporal struc-
tures of human motion, demonstrating its strength in mod-
eling complex motion patterns.

8.2. Text-to-motion generation

Setup. For the text-to-motion generation task, we imple-
ment the framework shown in Fig. 11, leveraging the core
Skeleton Mamba for dance motion estimation. A CLIP Text
Encoder processes the text prompt, while a Cross-Attention
layer integrates the condition and motion embeddings.

Benchmark. We evaluate our method on Hu-
manML3D [9] dataset. We train our model using diffusion
and kinematics loss as in [31]. The model is compared with
recent text-to-motion methods: MDM [31], MLD [2], and
MotionMamba [39]. We employ the same metrics as in [9].
The results are shown in our main paper.

9. Future Works

We see several interesting future problems. First, in-
tegrating additional modalities such as scene context and
human-object interactions would create a more comprehen-
sive understanding of human motion. Second, modeling
long dance motions remains a challenge, requiring advance-
ments in temporal modeling to ensure coherence over ex-
tended sequences. Third, we could leverage even subtle vi-
sual body cues to enhance motion estimation accuracy.
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