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Supplementary Material

Test set AUC (%)

Function CDF DFD DFDCP DFDC DFW DiffSwap Avg.

MinMax 91.6 959 88.1 71.1 70.1 92.1 84.8
Unnormalized 3D Gaussian  92.5 91.8 86.4 72.4 76.3 91.7 85.2
MeanStd 924 985 90.0 74.6 742 96.9 87.8

Table 1. Comparison of different normalization functions.
We consider three normalization functions, i.e., Standardization
(MeanStd), MinMax, and Unnormalized 3D Gaussian. Among
these, Standardization gives the best overall performance.

1. Appendix
1.1. Details of the Ground-Truth Derivative

Calculation formula. To generate the ground truth data
for the temporal branch h, we compute the derivative on
B = (B(t))te[[l,T]] with respect to the temporal dimen-
sion. Specifically, we calculate the absolute value of the
difference between two consecutive patch-level vulnerabil-
ity values B(t) and B(t — 1) with ¢ > 2 such that,

D(t) = |[B(t) — B(t — 1)|. (1)

The process is iterated for every pair of consecutive

frames of (B(t)):e[(1, 1)) to obtain a derivative matrix D €

RT*VNxVN  For ¢t — 1, we insert a matrix O, i.e.,
D(1) = 0, indicating no temporal change at the first frame.
Normalization functions. Employing a normalization
function is important for stabilizing the training of our tem-
poral branch h. Therefore, we consider three different nor-
malization functions including Standardization (MeanStd),
MinMax, and Unnormalized 3D Gaussian. Specifically, for
the Standardization and MinMax, we respectively compute
the std(D)-mean(D), and min(D)-max(D), while we fol-
low the work of [17] to adapt an unnormalized Gaussian
map from 2D to 3D for normalization. We report in Table. 1
cross-evaluation results on six datasets [6-8, 15, 31, 33]
with the use of the three investigated functions, using a
model trained on FF++ [19]. It can be noted that the model
is robust to various types of normalization functions with
the best performance recorded for the Standardization ap-
proach.

1.2. SBV: Pseudo-code and Visual Samples

Algorithm. To enhance the clarity and reproducibility of
the SBV generation process, we provide the overall al-
gorithm in the form of pseudo-code, as detailed in Algo-
rithm 1.

Algorithm 1: Pseudo-code for SBV Generation
Input: Real video X! € V" of size (C, T, H, W),
facial landmarks L; = UX_, {1;;(t) }1<j<n
of size (T, n,2), a distance d, a threshold 7
Output: Self-blended video X7 € V" of size
(C,T, H,W), blending mask M, of size
(T,H,W)
1 Initialize (%) as an empty dictionary
2 Initialize X7 as an empty array
3 Initialize M; as an empty array
4 for j =1toT do
5 if 7 = 1 then

6 X7 (to), Mi(to), {6, 060 9®) 1+
SBI(X (to), Li(to))
’ X« X U{X](to)}
s M; < M; U {M;(to)}
° 6"  {9), 90m, 6, .}
10 end
1 else
12 1;(t) + LandmarkInterpolation(l;(¢),
L(t—1),d,7)
B X7 (t), My(t), -+ SBI(X (1), L;(t), b))
W | XD XTU{X(0)
|| My e M UML)
16 end
17 end

18 return X7, M;

Visual Samples. To visually demonstrate the benefits of
the Consistent Synthesized Parameters (CSP) and the Land-
mark Interpolation (LI) module (Section 3.1 in the main
paper) in generating high-quality pseudo-fake videos, we
show some SBV samples, their blending boundaries, orig-
inal landmarks, and those modified by the proposed mod-
ules in Figure 1. In the top part of the figure, we compare
data generated using only CSP to data generated with both
CSP and the Landmark Interpolation module. We observe
that the Landmark Interpolation module ensures smooth
transitions of facial landmarks between consecutive frames
(t — t + 1). In the bottom part of the figure, we compare
data generated with only CSP to data generated without any
of the proposed SBV components. We observe significant
variations in the manipulated facial areas when CSP is omit-
ted. Therefore, the proposed CSP and Landmark Interpola-
tion module effectively enhances the temporal coherence of



t=1 t=2 t=3 t=4

SBV Landmarks

Blending
Boundary

@csp

() Landmark Interpolation

SBV

A

Blending
Boundary

@ csp

@ Landmark Interpolation

- - P P P~ P

t=1 t=2 t=3 t=4

@ Landmark Interpolation

Q@) csp

Figure 1. Illustration of the facial landmarks, the generated SBV, and the blending boundaries with and without applying the
Consistent Synthesized Parameters (CSP) module and the Landmark Interpolation (LI) module. The lack of applied CSP and LI indicates

simply stacked SBIs (BottomRight).

the generated SBV.

1.3. Impact of SBV

To verify the advantage of using SBV for improving
the generalization of detectors, we conduct several experi-
ments using different binary classifiers trained either with
SBV or with one of the four types of forgeries forming
FF++ [19] (DF [4], F2F [22], FS [11], NT [21]). For a
fair comparison, a widely-used CNN-based Resnet3D [9]
and a Transformer-based TimeSformer [1] are employed.
We note that both selected models are trained from Scratch
(S) without pretrained initialization. Table. 2 presents the
generalization performance in terms of AUC (%) on five
datasets [6-8, 15, 33] respectively when trained with dif-
ferent manipulation methods from FF+. Notably, training
with SBV significantly increases the overall generalizabil-
ity capability of binary models as compared to those trained
on using one specific manipulation. This indicates the im-

portance of highly realistic, naturally consistent generated
pseudo-fake videos.

1.4. Robustness to Unseen Perturbations

In the main manuscript, we report in Figure. 3 the “Aver-
age” performance under different corruptions. This section
complements this experiment by reporting the mean perfor-
mance across different severity levels for each degradation
type, as detailed in Table. 3. Except for a slight decrease
in effectiveness under “Change Saturation” compared to
LAA-Net [18], FakeSTormer is generally more robust to
the unseen perturbations as compared to other augmented-
based methods [12, 14, 18, 20].

1.5. Multi-shot Inferences

Models can sometimes be overconfident in their pre-
dictions, which negatively impacts the generalizability as-
pect [16, 29]. To address this issue, we explore the possi-



Training set

Method Pretrain

Test set AUC (%)

Real DF FS F2F NT FF++ CDF DFD DFDCP DFDC DFW Avg.
ResNet3D [9] X v VA X X 725 585 513 534 59.4 65.0 60.0
TimeSFormer [1] X v v X X X 654 593  66.1 53.5 61.4 57.5 60.5
ResNet3D [9] X v x v X X 70.6  61.1 50.6 59.2 55.8 51.5 58.1
TimeSFormer [1] X v x v X X 76.4 517  43.7 44.6 54.5 439 52.5
ResNet3D [9] X v X X v X 78.0 63.8 545 63.4 55.7 50.1 60.9
TimeSFormer [1] X v X X v X 81.1 644 60.1 64.5 52.0 50.5 62.1
ResNet3D [9] X v X X X v o727 637 756 69.1 59.6 62.6 67.2
TimeSFormer [1] X v X X X v 755 658 84.7 70.3 62.7 65.5 70.8
ResNet3D [9] + SBV X v X X X X 90.2 859 85.0 82.8 66.4 67.5 79.6(112.4)
TimeSFormer [1] + SBV X v X X X X 94.7 89.5 95.6 88.6 72.5 70.9 85.3(114.5)

Table 2. Cross-dataset generalization. Performance comparison in terms of AUC (%) on multiple datasets of different binary classification
models [1, 9] trained using our video synthesis (SBV) and normal fake data [19]. All models are trained on FF++(c23) [19] from Scratch
(S) and are tested on other datasets [6—8, 15, 33]. Gray indicates the use of normal fake data for training. Bold and underline highlight the

best and the second-best performance, respectively.
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Figure 2. Shuffled frames can produce obvious temporal inconsistencies.

bility of regularizing the input during testing. Specifically,
we propose multi-shot inference, leveraging Vulnerability-
Driven Cutout Augmentation by utilizing the temporal head
output D. We use D because the most significant temporal
changes in vulnerable areas over time, from ¢ — (¢t + 1),
are likely to occur at the spatial locations corresponding to
the highest values of B (Eq.3 in the main manuscript).

In particular, given a test video, after the first shot of in-
ference, the prediction map D can be leveraged to generate
a new masked video through the proposed Cutout augmen-
tation for the second inference shot. Specifically, we select
Datt =2 (capturing the temporal transition from the first

— the second frame) to define the set P (Section. 3.1 of the
main manuscript) for determining Cutout positions. This it-
erative process can be repeated for multiple inference shots.

Table. 4 presents the cross-dataset evaluation results with
five shots of inference on five unseen datasets [6—8, 15, 33]
using the model trained on FF++ [19]. The results indicate
a gradual improvement in generalization performance after
each iteration. This suggests that the prediction outputs are
not only interpretable but also can be used potentially to
enhance the model performance.



Method \ Real Fake \ Contrast  Saturation Gaussian Blur ~ Gaussian Noise JPEG Compression  Block Wise \ Avg
DSP-FWA [14] | v v 80.7 79.6 67.3 61.8 68.0 76.6 72.3
FaceXray [12] v v 88.9 96.0 70.0 58.0 62.2 94.7 78.3

SBI [20] v x 92.3 92.0 72.7 62.2 79.1 922 81.7
LAA-Net [18] v x 95.0 97.0 732 57.5 75.2 94.9 82.1

Ours | v x | 976 96.3 81.6 65.4 92.9 96.8 | 88.4

Table 3. Robustness to unseen perturbations. Average AUC scores (%) across all levels for each degradation type.

No. shots Test set AUC (%)

CDF DFD DFDCP DFDC DFW Avg.
1 9235 9847  90.02 7456  74.19 85.92
2 9234 98.51 90.11  74.60 7425 85.96(10.04)
3 92.38 98.52  90.13 74.61 7428 85.98(10.06)
4 92.38 98.52  90.13 74.61 7430 85.99(10.07)
5 9236 9852  90.13 74.61 7430 85.98(10.06)

Table 4. Multi-shot inferences. AUC (%) comparison of our
model using different numbers of inference shots in the cross-
dataset setup. The AUC slightly increases with a higher number
of shots.

1.6. Visualization of Auxiliary Branches’ Qutputs

In addition to the probability output of the standard clas-
sification branch, FakeSTormer can provide more valuable
insights from our auxiliary branches that might be conduc-
tive to prediction’s post-analyses. Specifically, the spatial
and temporal branches output the intensity of the spatial ar-
tifacts encoded in each video frame and the vulnerability
change over time, respectively. The spatial branch provides
frame-level scores, while the temporal branch offers more
fine-grained insights. As shown in Figure 3, the spatial out-
puts (denoted by the numbers in each frame) denote high
values for fake data and low values for real data. For the
temporal outputs, the heatmaps show the change in vulner-
ability between the instant frame ¢ and the previous one. It
can be observed that it primarily focuses around the blend-
ing boundaries. We note that the change between ¢ — 1
and ¢ is visualized at the ¢t" frame; hence, there is a blank
heatmap at the 1°? frame.

1.7. STC [13]: Shuffled Frames can produce obvi-
ous Temporal Inconsistencies

We propose SBV to generate subtler artifacts for pseudo-
fakes compared to the STC approach used in [13]. We be-
lieve that STC may produce obvious (low-quality) temporal
artifacts, as it shuffles frames in the temporal domain, lead-
ing to significant inconsistencies. Figure 2 illustrates how
shuffling creates noticeable discrepancies between frames.
In contrast, our SBV leverages consecutive frames to pro-
duce subtler temporal artifacts while simulating these arti-
facts in a different manner (as detailed in Section 3.1 of the
main manuscript).

1.8. Details on the Datasets

Datasets. For our experiments, we select datasets that
haven typically used as benchmarks in previous works [2, 3,
23-26, 30, 32]. For both training and validation, we employ
FaceForensics++(FF++) [19], which consists of 1,000 real
videos and 4,000 fake videos generated using four manipu-
lation methods: (Deepfakes (DF) [4], FaceSwap (FS) [11],
Face2Face (F2F) [22], and NeuralTextures (NT) [21]).
It can be noted that, for training, we use only the real
videos and generate pseudo-fake data using our synthe-
sized method, SBV. By default, the c23 version of FF++ is
adopted, following the recent literature [3, 24, 25, 30, 32].
For further validation, we also evaluate on the following
datasets: (1) Celeb-DFv2 (CDF) [15], a well-known bench-
mark with high-quality deepfakes; (2) DeepfakeDetection
(DFD) [8], which includes 3,000 forged videos featuring
28 actors in various scenes; (3) Deepfake Detection Chal-
lenge Preview (DFDCP) [6] and (4) Deepfake Detection
Challenge (DFDC) [7], a large-scale dataset containing nu-
merous distorted videos with issues such as compression
and noise; (5) WildDeepfake (DFW) [33], a dataset fully
sourced from the internet, without prior knowledge of ma-
nipulation methods; (6) DiffSwap generated in the similar
protocol as in LFGDIN [28] by using a recent diffusion-
based swapping method [31] on 250 real videos selected
from CDF [15]; and (7) DF40 [27], a highly diverse and
large-scale dataset comprising 40 distinct deepfake tech-
niques, enables more comprehensive evaluations for the
next generation of deepfake detection.
Data Pre-processing. Following the splitting conven-
tion [19], we extract 256, 32, and 32 consecutive frames
for training, validation, and testing, respectively. Facial re-
gions are cropped using Face-RetinaNet [5]. These bound-
ing boxes are conservatively enlarged by a factor of 1.25
around the center of the face and then resized to a fixed res-
olution of 224 x 224. Additionally, we store 81 facial land-
marks for each frame, extracted using Dlib [10]. Finally,
the preserved landmark keypoints are utilized to dynami-
cally generate pseudo-fakes during each training iteration.

1.9. Revisited TimeSformer: Implementation De-
tails

We choose TimeSformer [1] as our feature extractor
given its ability to effectively capture separate long-range



Figure 3. Visualization of Auxiliary Branches’ Outputs. We visualize the additional auxiliary spatial and temporal branches’ outputs on
different unseen datasets. As shown, the number on each frame denotes the output of the spatial branch g, while the heatmap visualizes the

output of the temporal branch h.

temporal information and spatial features. First, given a
video X € REXTXHXW jtg frames in each time step
are split into N number of non-overlapping patches of size
P x P,ie., N = H;QW Each patch is flatten as x; ,) €
RC-P?

, and is then linearly mapped into D-dimensional
embedding vector z?t » € RP by means of a learnable

matrix E € RPXCP* where t = [[1,T]] indexes tempo-

ral positions, and p = [[1, N]] indexes spatial positions.

The process results in an input patch embedding matrix
ZO c RTXN ><D_

In TimeSformer, a global class token z.;s attends to all
patches and then is used for classification. This mechanism
implicitly captures mixed spatial-temporal features at the
same time, which might lead to overfitting on a specific type
of domain artifacts [24, 32]. We revisit it slightly in order
to decouple the spatial and temporal information by con-
sidering two sorts of additional tokens (one spatial and one
temporal).

For that purpose, we attach in each dimension of 70 a
spatial token z? € R® and a temporal token z € RP, re-
spectively. These tokens will independently interact only
with patch embeddings belonging to their dimension axis
by leveraging the decomposed SA [1]. This mechanism
not only facilitates the disentanglement learning process of
spatio-temporal features but is also beneficial to optimize
the computational complexity of O(T? + N?) as compared
to O(T? - N?) in vanilla SA. Those tokens will be then
fed into L (L = 12 as default) transformer encoder blocks
in which each block contains a multi-head temporal SA
(TSA), a multi-head spatial SA (SSA), LayerNorm (LN),
and a multi-layer perception (MLP). Note that, for the sake
of matrix compatibility, a placeholder embedding Z(()O,O) is
attached. Formally, the feature extraction process can be
summarized as follows,

(2", 2!, 2] = ©(X), 2)

S

where Z? is the final patch embedding matrix, z” the result-
ing set of spatial tokens, and z! the resulting set of temporal
tokens that will be respectively sent to the temporal head h,
the spatial head g, and the classification head f. Our overall
framework is illustrated in Figure. 2-I of the main paper.
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