Lightweight Gradient-Aware Upscaling of 3D Gaussian Splatting Images

Supplementary Material

A. Qualitative Results for Different Upsampling
Rates

Our method enables image upscaling with arbitrary factors,
including fractional values, offering flexibility beyond fixed
integer magnifications. While our paper primarily show-
cases visual results for higher upscaling factors (4x,8x), our
approach also demonstrates superior performance at lower
magnifications, such as 2x or 3x, when compared to tra-
ditional interpolation techniques like bicubic or Lanczos
(see Fig. 4). Specifically, our method reduces artifacts and
preserves finer details more effectively.

However, these improvements are most apparent when
the upscaled image is displayed at its native resolution,
where the screen’s pixel grid aligns with the image pixels.
When viewed in formats like PDFs, where rendering soft-
ware may resample, process, or scale images dynamically,
these advantages can become less noticeable due to unin-
tended alterations introduced by the viewer. In Fig. 4, we
show qualitative results for 3x upscaling.

B. Performance Analysis

In this section, we provide a more detailed performance
analysis of our approach. Tab. 2 presents rendering times
for different upscaling methods and upscaling factors, high-
lighting the computational cost of each configuration.
Additionally, we analyze the performance during train-
ing, focusing on the timing of key operations. As shown
in Fig. | we measure the time required for the forward and
backward pass of the most computationally expensive func-
tions: rendering, SSIM computation, and upscaling. Our
results indicate that the gradient computation has a negligi-
ble impact on the performance of the render function.
However, computing SSIM at a higher resolution (4x) is
significantly more expensive. Furthermore, the backward
pass of our upscaling function is relatively slow and consti-
tutes a major bottleneck. This is particularly evident in our
spline upscaler, which relies on a naive implementation that
extensively uses atomic operations in the backward pass.
Using subgroup operations and more efficient synchroniza-
tion methods could significantly improve performance.

C. Comparison to Mip Splatting

We also evaluated Mip-Splatting [9] in comparison to our
approach. Mip Splatting introduces a 3D filter that accounts
for the scene’s sampling rate (training image resolution). By
dilating the Gaussians during the reconstruction based on
the sampling rate, Mip Splatting effectively reduces straw
effects that can otherwise be seen in 3DGS reconstruction.

= N N w w
w o w o w

Average Duration (ms)

=
o

mmm 3DGS
Bicubic
B Spline
. M 1

- —
£ Q

A R T B
c n

5 Sz Ez 2 Sz

= c X Y =3 v

o} [, e} S Qv

= ® © 5 ®©

Q Q Q

Figure 1. Averge time of different operations in the training
pipeline. The MipNeRF360 garden scene with 5 Million Gaus-
sians and the full resolution was used to obtain measurements.
3DGS was trained at % resolution while Spline and Bicubic were
trained with 4x upscaling.

However, this filtering process enlarges the Gaussians
and decreases their opacity. This affects the rendering pro-
cess in two key ways. First, the increased Gaussian size re-
sults in more Gaussians contributing to each pixel, thereby
increasing rendering and training time. Second, the reduced
opacity diminishes the effectiveness of early termination in
the rendering pipeline. Since early termination typically
halts processing more Gaussians when a pixel’s alpha value
nears one, lower opacity Gaussians require more blending
steps before reaching full coverage, thereby increasing the
overall rendering and training time (see Tab. 1).

While Mip Splatting improves image consistency at high
resolutions, its computational overhead makes it less suit-
able for real-time applications on low-end devices. Nev-
ertheless, our upscaling method can be applied to scenes
reconstructed with Mip Splatting, thereby speeding up the
rendering process.

D. Lanczos Image Interpolation

We compare Lanczos and bicubic interpolation for image
upscaling. Lanczos, though theoretically superior in edge
preservation [2], showed no major improvements over bicu-
bic in our experiments. Additionally, it is more computa-
tionally expensive to compute.

Given the lack of significant visual benefits, bicubic re-
mains the preferable choice as the baseline in our experi-

Scale Method SSIMT PSNRT LPIPS| FPS| Train |
3DGS 0.809 26.97 0.308 15 105

2 Mip 0.815 27.23 0.302 10 143
Spline (Ours) 0.813 27.00 0.31 41 139
3DGS 0.783 26.35 0.347 15 59

4 Mip 0.806 27.14 0.317 10 73
Spline (Ours) 0.809 26.85 0.322 90 91
3DGS 0.681 24.67 0.446 14 48

8 Mip 0.775 26.37 0.371 8 55
Spline (Ours) 0.776 25.95 0.385 122 80

Table 1. Metrics for Mip-Splatting [9] compared to baseline
3DGS [5] and our Spline Upscaler. Average for all scenes in Mip-
Nerf360 [1] is reported. Metrics are evaluated at full resolution
(5187x3361 pixels). 3DGS and Mip were trained at lower reso-
lution (scale) while Spline (ours) uses upscaling to match ground
truth image resolution during training.

ments. Visual comparisons can be found in Figure Fig. 2.

E. Detailed Metrics

We provided detailed metrics/results for all the experiments
in the paper. Tabs. 3 to 5 show detailed results for training
with upscaling for each scene from the different datasets
used in the paper. Additionally, in Fig. 4, we provide addi-
tional visual results for the scenes not shown in the paper.

Method Scale Render Upscale Speedup
3DGS 1 724 ms - -
Bicubic 2 24.6 ms 2.0ms x2.7

3 154 ms 1.8 ms x4.2

4 11.8 ms 1.8 ms x5.3

8 10.5ms 1.6 ms x6.0
DLSS 2 240ms 8.9 ms x2.2

3 151 ms 8.0ms x3.1
NinaSR-B1 2 23.8ms 604.8ms x0.1¥

3 150ms 2753 ms x0.2¥

4 11.7ms 1589 ms x0.4¥

8 10.7ms 45.4 ms x1.3
Spline (Ours) 2 247 ms 4.0 ms x2.5

3 15,6 ms 1.8 ms x4.2

4 119ms 2.2ms x5.1

8 10.7ms 1.7 ms x5.9

Table 2. Render times for different methods and upscaling factors.
The target resolution is 5187x3361. The garden scene with 5 Mil-
lion Gaussians is used. The cameras from the test set are used, and
measurements are averaged over all images.

F. DL-based Upscalers

Sec. 6.3 of the main manuscript discusses the results
achieved via DL-based upscaling techniques. DL-based up-

scalers can be compared to our proposed spline-based up-
scaling technique with respect to upscaling quality, as in
Fig. 6 of the main manuscript. Furthermore, a DL-based up-
scaler can be incorporated into the training pipeline for low-
resolution renderings, as illustrated in Fig. 4 of the main
manuscript. In this section, we elaborate on this incorpora-
tion.

We considered many pre-trained DL-based upscalers
from the torchSR project [4], of which EDSR [6] is sup-
posed to achieve the best results. However, incorporating
this network into the 3DGS training pipeline turned out
to be impossible, as the model ran out of memory on the
NVIDIA L4 GPU with 24GB of video memory. Therefore,
we decided to use the smaller DL-based upscale NinaSR-
B1 [3], which the torchSR project recommends for “practi-
cal applications” [4].

However, when training models with low-resolution ren-
derings upscaled to the ground truth image resolution via
the pre-trained NinaSR-B1, we could not achieve high-
quality results. Firstly, even with NinaSR-B1 we were run-
ning out of memory when training with ground truth images
of resolution 2594 x 1681 (called images-2 in the dataset)
for the Garden scene from Mip-NeRF [1]. Consequently,
we decided to use an upscaled resolution of 1296 x 840 pix-
els (images_4). Qualitative and quantitative results can be
seen in Fig. 3. The deep learning-based upscaler produces
overly sharp images that are not consistent across different
views, leading to an overall worse result. Our spline-based
approach is able to achieve significantly higher PSNR val-
ues (cf. Fig. 3).

(a) Bicubic (b) Lanczos (c) Spline (Ours)

Figure 2. Comparison of 4x upscaling for different upscaling methods. Bicubic and Lanczos observe staircase and rining artifacts which
are not present in Spline upscaling.

L oot i 3
(b) Spline 3% (ours), PSNR =25.30, 51min (train)

Figure 3. Comparison of training results for the Garden scene from Mip-NeRF [1]. Training image resolutions of 1296 x 840 were used.

Truck

Counter

i

Bonsai

Baseline Bicubic 3 x Spline 3 x (Ours)

Figure 4. Comparison of image quality: (Left) Ground Truth, (Baseline) full resolution training with full-resolution rendering, (Bicubic)
3x upscaling during training with bicubic interpolation, (Spline) 3 X upscaling during training with spline interpolation (ours).

3DGS Bicubic Spline (Ours)

Dataset Scene PSNR SSIM LPIPS Duration | PSNR SSIM LPIPS Duration | PSNR SSIM LPIPS Duration
bicycle 24.402 0.733 0.338 116 24.434 0.737 0.340 141 24.397 0.734 0.344 162
bonsai 32.021 0.940 0.267 76 31.520 0.937 0.270 87 32.071 0.940 0.268 95
counter 28.507 0.912 0.255 89 28.374 0.915 0.254 99 28.391 0.915 0.253 107
flowers 20.871 0.598 0.414 119 20.984 0.604 0.418 145 20.955 0.603 0.420 165
MipNeRF360 garden 26.351 0.794 0.261 130 26.281 0.800 0.260 154 26.330 0.799 0.263 178
kitchen 31.277 0.920 0.186 90 31.093 0.922 0.188 99 31.022 0.923 0.185 109
room 31.549 0.921 0.269 82 31.585 0.923 0.268 93 31.657 0.923 0.266 101
stump 26.248 0.797 0.366 114 26.446 0.804 0.364 137 26.442 0.803 0.365 160
treehill 21.490 0.669 0.418 126 21.788 0.679 0.425 150 21.732 0.678 0.427 173
Deep Blending drjohnson ‘ 29.259 0.898 0.251 17 ‘ 29.258 0.899 0.251 18 ‘ 29.120 0.901 0.249 19
playroom 30.029 0.904 0.243 17 30.090 0.905 0.246 17 30.266 0.909 0.242 18
Tanks and Temples train ‘ 19.966 0.754 0.254 18 ‘ 20.201 0.761 0.265 19 ‘ 20.622 0.788 0.235 19
truck 24.219 0.844 0.185 16 24.173 0.837 0.211 17 24.652 0.864 0.177 17

Table 3. Training with 2 upscaling at full resolution compared to 3DGS with no upscaling in training. Duration is reported in minutes.

3DGS Bicubic Spline (Ours)
Dataset Scene PSNR SSIM LPIPS Duration ‘ PSNR SSIM LPIPS Duration ‘ PSNR SSIM LPIPS Duration
bicycle 24.216 0.708 0.375 60 24.222 0.722 0.365 95 24.317 0.729 0.352 105
bonsai 30.728 0.915 0.310 50 31.053 0.925 0.293 63 31.110 0.934 0.282 68
counter 27.082 0.875 0.298 54 27.906 0.899 0.291 68 28.162 0.909 0.269 72
flowers 20.630 0.571 0.440 63 21.010 0.598 0.433 95 20.984 0.601 0.428 106
MipNeRF360 garden 25.834 0.755 0.322 67 25.916 0.767 0.308 100 26.192 0.786 0.282 110
kitchen 30.194 0.886 0.246 56 30.258 0.900 0.237 70 31.262 0.920 0.199 73
room 31.003 0.905 0.293 52 30.933 0.909 0.303 65 31.349 0.918 0.283 68
stump 26.050 0.780 0.389 60 26.318 0.800 0.372 93 26.336 0.801 0.367 104
treehill 21.400 0.646 0.447 65 21.801 0.673 0.444 99 21.941 0.680 0.435 110
Deep Blending drjohnson | 28.596 0.873 0.286 14 28.433 0.871 0.310 15 28.750 0.887 0.286 16
playroom 29.180 0.880 0.285 14 28.958 0.880 0.313 15 29.424 0.893 0.286 15
Tanks and Temples train 18.944 0.651 0.356 21 18.457 0.636 0.412 21 19.598 0.708 0.341 22
truck 21.684 0.703 0.325 17 22.096 0.719 0.372 18 23.002 0.780 0.305 17

Table 4. Training with 4 x upscaling at full resolution compared to 3DGS with no upscaling in training. Duration is reported in minutes.

3DGS Bicubic Spline (Ours)

Dataset Scene PSNR SSIM LPIPS Duration ‘ PSNR SSIM LPIPS Duration ‘ PSNR SSIM LPIPS Duration
bicycle 22.941 0.601 0.467 47 23.008 0.657 0.479 88 23.456 0.683 0.430 90
bonsai 28.071 0.822 0.418 47 29.310 0.885 0.370 63 29.915 0.911 0.322 64
counter 25.848 0.774 0.407 49 26.451 0.851 0.394 67 27.609 0.882 0.333 66
flowers 19.658 0.473 0.500 48 20.641 0.563 0.498 90 20.697 0.578 0.475 92

MipNeRF360 garden 23.861 0.621 0.438 50 24.276 0.665 0.445 94 25.064 0.712 0.383 96
kitchen 27.245 0.753 0.413 50 27.524 0.802 0.385 68 29.168 0.871 0.287 68
room 29.320 0.854 0.366 45 29.427 0.878 0.378 62 29.785 0.895 0.336 62
stump 24.567 0.666 0.488 46 25.496 0.764 0.455 88 25.934 0.786 0.413 90
treehill 20.532 0.561 0.516 49 21.652 0.644 0.515 91 21.907 0.666 0.488 92

Table 5. Training with 8 x upscaling at full resolution compared to 3DGS with no upscaling in training. Duration is reported in minutes.

G. Spline Image Interpolation

A bicubic spline can be parameterized with a third-order
polynomial with the coefficients A € R**4:

3 3
zy) =YY aga'y)
i=0 j=0

The partial derivatives of the spline are given by:

W(E,y) e~ 1
5 =L = Zziaiﬁz_lyj 2
r i=1 j—O
ZZ]amx y ! 3)
= 0] 1
%p(x,y) 1y
ija;rtT 4
axay ;; Jaij

The corner values f(0,0), f(1,0), f(0,1), f(1,1) and
their derivatives, e.g., of ég 0), of (,(9?/ O), agg(c%o) are known.
The value of the spline and its derivatives must be equal to
f(z,y) at the corner points.

The problem of calculating the coefficients A can be for-

mulated as a linear problem:

F=CACT (5)
A=CtrCcT)! (6)
f2(0,0) f2(0,1) f2y(0,0) fay(0,1)
fo(1,0) fo(1,1) foy(1,0) fay(1,1)

With C' being the coefficients of the cubic spline at the
respective points:

®)

OO ==
)
N OO
w o = O

The coefficients are derived from a cubic function and its
derivative at 0 and 1:

f(x) = +aix 4axr® +asa®)
fo(z) = +ay +2a0x +3asz® (10)
F0)=1ag +0 +0 +0 11
f(1) = 1lag +1laq +1las +1lag (12)
f:(0)=0 +la; 40 +0 (13)
f=(1)=0 +1laq +2ao +3as3 (14)

We refer to [7] for a more detailed explanation.

1. 3DGS Gradient Computation

In the following, we describe how the screen space gradi-
ents are computed in the forward pass, and we dicsuss the
backward pass required for training with differentiable im-
age upscaling.

A. Forward pass

With a 3DGS model comprising N Gaussians, the image
I(x,y) is rendered as follows:

N
I(z,y) =Y Ti(z,y)ai(z, y)c; (15)
i=1
a;i(z,y) = oiexp(gi(z, y)) (16)
gi(x,y) = —d;iSud] (17)
di=[r— e y— py] (18)
1—1
Ty(x,y) = [[(1 = a;(=,y)) (19)
j=1

Here, ¢; is the color of the i-th Gaussian and o; its opac-
ity. $; € R?*2 is the 2D covariance matrix calculated with
EWA [10] splatting for each Gaussian.

The image computation can be reformulated using front-
to-back a-blending:

I(z,y) = By (20)
Bi=Bi_1+ (1 - Ai_1)aig (21)
A=A+ a;i(1— A1) (22)
By=0 (23)
Ay=0 (24)

Using this formulation, the partial derivatives with re-
spect to x and y can be computed as

O0l(x,y) 0Bn
dr Ox (25
8Bz - 8B1-_1 8ai 8Az-_1
dr Oz +el(l=Ai) 50 ox ox)
(26)
8Bz - 3Bl-_1 8ai 8Ai_1
ay - ay +C7«((1 A’L—l) ay ay al)
(27)
8QBZ- 82Bi_1 32041' 8Ai_1 aai
0xdy 0x0y +eal - Ai_l)amay 9y Oz
(28)
82Ai_ 3141_ 80&1'
- - -——) (29)

dxdy YT g oy

The partial derivatives of A; are

0A; 0A; _ a4 da;
9%~ on (I1—ay)+(1—A4;_1) o 30)
0A; 04A; _ a4 da;
32Ai 82141'71 azai
920y 0z0y (1—a;)+(1- Aifl)m (32)
0Ai 00 0Aidn,
dr Oy dy Ox

With this formulation, the computation of the image gra-

: ol(zy) dl(zy) 9°I(zy) : :
dients bz oy ozdy can be integrated into the

rendering loop of 3DGS without much overhead.

B. Backward Pass

For the backward pass, the partial derivatives of the image
gradients with respect to the 2D Gaussian parameters must
be computed. As in 3DGS, we use back-to-front blending
in the backward pass:

I(z,y) = By (33)
B, = (1- ai)BZ'H + a;¢ (34)
Bni1=0 (35)

The derivatives with respect to the screen space positions
are

ol (z, OB
L= (1-a)) 8;1 6—‘;(@ —Bi1) (3D
OB, OB, o .
5 = 1-) a;l ao; (ci—Bir1) (38)
8232' 8QBZ-+1 E)Qai

dxdy = (- dxdy + 8x6y(0i = Bina) (39)

_8041‘ 831'+1 _ %83@,.1
Oy Ox dr Oy

The gradients for o, 3, jiz, 1, are computed analogously.
We demonstrate the computation of ¢ as an example. The
chain rule is applied to compute the partial derivatives of

O

Ol(z,y) _ 0I(z,y) doy

80'k o 80ék aak (40)
PI(z,y) 0%I(z,y) Oay, n oI(z,y) O*ay @
0oL0x Jdadxr Ooy, Oay, 0Oop0x
*I(x,y) 0°I(z,y) Oday, | 01(z,y) 0y, 42)
a(fkay 6ak8y 6Jk 60(;9 8Ukay
PI(x,y) BI(z,y) oy~ *I(x,y) Oy
dowOydr da0ydx doy, | Oaxdy 000
0?I(z,y) %y, OI(z,y) oy
Oa0x 0op0x day, 0o 0xdy
(43)

The derivative of I(z,y) with respect to «,, is given by

OI(w,y) _ 0B
dar, Oy @
B = dicn(aaj (1= ;) + bi=r(ci — Biy1)

(45)

k—1 R
= H(l — aj)(ck - Bk+1) (46)

j=1

= (1 — Ag)(ck — Bry1) 47

Here, §; ; is the Kronecker delta, which equals one if
the condition in the subscript is true and zero otherwise.
Following this, we calculate the derivative with respect to
the screen positions z, y:

*B; 0Ax . 9B 11
doy0x 7%(% = Br) = (1= Ay) or
(48)
’B; 0Ax - 9B
aakay - 8y (Ckin-‘rl)i(liAk) ay
(49)
O®B; %Ay . 9%By i1
=— - B —(1—-Ap)————
Oy 0x0y Oxdy (ch k1) = k) Oxdy
Ay OBy OAL OBjyq
or 0Oy dy Ox
(50)

Splat Color Gradients The calculation of the partial
derivatives of a Gaussian’s color is straightforward, i.e.,

(9BZ 8Bi+1
8ck i<k 8ak
1

(1 — Oéj)OLk = (1 - Ak)ak (52)
1

|
s

(1 — i) + di=kay; (51)

I
>
|

J

Differentiating with respect to the screen space position
yields the following partial derivatives:

0B 400 04
derdr (1= A) Ox ox O (53)
631 - Oay, aAk
03B, Pay 0*Ay
e 0xdy (1= Ak)@x@y B 0xdy A (55)
0AO0x 0400y
dy O oxr Oy

Inversion Trick In the forward pass, we store

dAN OAN 0%A .
An, .MN’ TyN’. 89561; for each pixel. To calculate A;
and its derivatives in the backward pass we use the

Inversion trick [8]:

Aoy

A= (56)
1-— (677
(9141'_1 - 1 8Ai 80@
or _1—ai(8x - (1= 4i) ax) 7
8Ai_1 1 6AZ (’)ai
e L i L Vi B
A, 1 024 Pa;
Oxdy 1—q; <5:cay (! l)axay (59
8141',1 aai _ 6141‘,1 8C¥i)
or 0Oy dy Ox

References

[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
Anti-Aliased Neural Radiance Fields. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5460-5469, New Orleans, LA, USA, 2022.
IEEE. 3,4

[2] Pascal Getreuer. Linear Methods for Image Interpolation.
Image Processing On Line, 1:238-259, 2011. https://
doi.org/10.5201/ipol.2011.g_1lmii.?2

[3] Gabriel Gouvine. NinaSR: Efficient small and large con-
vnets for super-resolution. https://github.com/
Coloquinte/torchSR/blob/main/doc/NinaSR.
md, 2021. 3

[4] Gabriel Gouvine. Super-resolution networks for PyTorch.
https://github.com/Coloquinte /torchSR,
2021. 3

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Trans. Graph., 42(4), 2023.
Place: New York, NY, USA Publisher: Association for Com-
puting Machinery. 3

[6] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution, 2017. 3

[7]1 William S Russell. Polynomial interpolation schemes for in-
ternal derivative distributions on structured grids. Applied
Numerical Mathematics, 17(2):129-171, 1995. 7

[8] Sebastian Weiss and Riidiger Westermann. Differentiable
Direct Volume Rendering. In IEEE Transactions on Visu-
alization and Computer Graphics, pages 562-572, 2022. Is-
sue: 1. 9

[9] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 19447—
19456, 2024. 2, 3

[10] M. Zwicker, H. Pfister, J. Van Baar, and M. Gross. EWA
volume splatting. In Proceedings Visualization, 2001. VIS
"01., pages 29-538, San Diego, CA, USA, 2001. IEEE. 7

https://doi.org/10.5201/ipol.2011.g_lmii
https://doi.org/10.5201/ipol.2011.g_lmii
https://github.com/Coloquinte/torchSR/blob/main/doc/NinaSR.md
https://github.com/Coloquinte/torchSR/blob/main/doc/NinaSR.md
https://github.com/Coloquinte/torchSR/blob/main/doc/NinaSR.md
https://github.com/Coloquinte/torchSR

	Qualitative Results for Different Upsampling Rates
	Performance Analysis
	Comparison to Mip Splatting
	Lanczos Image Interpolation
	Detailed Metrics
	DL-based Upscalers
	Spline Image Interpolation
	3DGS Gradient Computation
	Forward pass
	Backward Pass

