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A. Training Details

Our model is trained with three losses: a joint 2D-projection
L1 with weight 0.01, an 9D-rotation-matrix MSE after
performing symmetric orthogonalization with weights of
100 on body pose and global orient (following ab-
lations performed in Geist et al. [2]), and an L1 loss on
transformed vertices after applying betaswith a weight of
50. A batch size of 128 with a single GPU is used across
experiments. We configure early stopping based on valida-
tion joint 2D-projection loss.

B. Perceptual Study

Motivated by inconsistencies observed during evaluation
on Animal3D [6] (see Sec. 4.1 and Fig. 7), we perform
a perceptual study comparing our predictions against the
Animal3D ground truth to investigate our hypothesis that
there is an upper limit on achievable quantitative perfor-
mance. We show 48 participants on Amazon Mechanical
Turk (AMT) a set of 22 randomly selected dataset sam-
ples along with five warm-up samples and three catch tri-
als. Each sample consists of the source image and side ren-
ders of both the ground-truth and predicted meshes. Partici-
pants are tasked with determining which of the two meshes
is posed in a way that is better aligned with the animal in the
image. Warm-up samples are discarded prior to analysis,
and the five participants that failed two or more catch tri-
als are excluded. However, we note that quantities reported
below do not change when participants are not excluded.

For each of the samples, we perform a one-sided bino-
mial test to determine whether the predicted mesh is pre-
ferred over the ground truth mesh. We find that the pre-
dicted mesh is significantly preferred at α = 0.05 in 27%
of the samples. To correct for multiple comparisons, we
apply the Benjamini–Hochberg correction across tests, and
find that the result remains significant. In response, we re-
ject the null hypothesis that ground-truth samples are con-
sistently preferable.

C. Image-Generation Model Ablation

We additionally ablate our choice of FLUX as the image-
generation model. We compare against Hunyuan-DiT [4]
and Stable Diffusion 3 [1]. Training on 100,000 samples for
each experiment, we observe greatest performance training
on images produced using FLUX. We report quantitative
results in Tab. 1 and include a visual comparison in Fig. 1.
While PCK scores remain somewhat saturated across ex-
periments, as observed during earlier experiments, we ob-
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Figure 1. Image-Generation-Model Ablation. We ablate our
choice of FLUX [3] as the image-generation model, comparing
against Hunyuan-DiT [4] and Stable Diffusion 3 (SD3) [1]. We ob-
serve that both ablated models produce results that are less visually
realistic than those of FLUX. Hunyuan-DiT appears to produce
more cartoon-like samples, whereas we observe more-frequent
control-signal failures with Stable Diffusion 3.

serve more-notable differences in 3D metrics, with FLUX
outperforming Hunyuan-DiT and Stable Diffusion 3 placing
third. We observe qualitatively that the Stable Diffusion 3
model can struggle producing outputs aligned with the con-
trol signal, and that both of the non-FLUX models produce
comparatively unrealistic images. Even without control sig-
nals, we find that Hunyuan-DiT produces samples that ap-
pear cartoon-like, while Stable Diffusion 3 generations are
made more natural.

D. Evaluating on GenZoo-Felidae

To help assess the realism of our synthetic data, we evaluate
a model trained only on Animal3D [6] on GenZoo-Felidae.
We observe comparable 2D but worse 3D metrics (Tab. 2),
supporting its realism, but also highlighting the difficulty of
producing accurate 3D labels in the wild.

E. Occlusion Augmentation

As we note in Sec. 5 and Fig. 11, we observe that our model
is not robust to strong occlusions. We evaluate whether this
can be improved through train-time data augmentation. Fol-
lowing the approach of Sárándi et al. [5], we apply occlu-
sion augmentations in the form of Pascal VOC objects (ex-
cluding animal-object augmentations) with a 10% probabil-
ity. We observe improvements across metrics (see Tab. 3),
suggesting its effectiveness.
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↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE ↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE ↓ S-V2V ↓ PA-V2V

FLUX [3] 97.1 166.9 118.4 99.6 83.5 62.0 91.5 72.1
H-DiT [4] 95.9 174.0 125.6 99.0 99.9 74.4 106.9 83.3
SD3 [1] 97.5 178.3 127.8 99.3 109.0 81.8 122.4 97.3

Table 1. Image-Generation-Model Ablation Effects. We ablate our choice of image-generation model, generating datasets of 100k
samples each. We observe that FLUX outperforms the ablated models, Hunyuan-DiT and Stable Diffusion 3, in the majority of metrics.

↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE ↓ S-V2V ↓ PA-V2V

Ours 98.6 74.8 54.7 82.3 64.1
Animal3D 98.0 117.8 76.9 144.4 97.0
Animal3D (ResNet) 92.7 174.5 107.0 190.6 121.8

Table 2. Real2Sim. We evaluate a model trained exclusively on Animal3D [6] on our GenZoo-Felidae to validate transferability.

↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE

Occlusions 98.1 155.0 115.2
No occlusions 97.1 160.1 116.6

Table 3. Occlusion augmentation. We train our model on
GenZoo 1M dataset, with 10% chance of occlusion augmentation.
When evaluating on Animal3D [6], we observe improved perfor-
mance of the model, demonstrating effectiveness of the occlusion
augmentation during training.
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Figure 2. Results Beyond Animal3D. Further qualitative recon-
struction samples of the model trained on our synthetic data.
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Figure 3. Taxonomy. We sample species from a subset of the
mammalian Superclass Laurasiatheria. The figure displays the ab-
breviated taxonomical hierarchy of our sampling, where hyphens
represent an empty level and the numbers are of contained species.
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