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6. Theorem 1 Proof

Proof. Step 1. Representing IIMM as an Expectation

The standard i.i.d. asumption on image embeddings yields
Pxx = Px ® Px and QXX = QX X Qx. By definition,
we have
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Similarly, with the perturbation,
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Step 2. Lipschitz Continuity of the Inner Product
Define the function
fla,y) =Ty

For any two pairs (x,y) and (2/,%') in 471 x S971, we
have

|f(z,y) — f@' )] =|zTy
<|zTy

7$/Ty/|

_m/'l'y’ + |x'Ty—x’Ty/|
<z = 2'll2 lyll2 + l2"]l2 ly = o"ll2
<z —=a"ll2 + lly = ¢'ll2,

because ||z]l2 = ||yl = ||#’ll2 = 1. Hence, f is 1-
Lipschitz with respect to the metric

d((@.y), (", y) = o —2ll2 + lly =/ [l2-

Step 3. Application of Kantorovich—-Rubinstein Du-
ality
By the Kantorovich—Rubinstein duality, for any 1-Lipschitz
function f and any two probability measures p and v, we
have

[Ee ()] = Ears [F )] < W)

Apply this result to the inter-modal term using f(z,y) =
x"y. Thus,

’E($7y’)~QXY ="y = Egoy)mpry [27 Y]
<Wi(Pxy,Qxy) < 04.
Similarly, for the intra—modal term, define

gz, 2’y =z "2

Using the same Lipschitz argument (with the metric
d((z, '), (y,9)) = o — yll2 + [[2" = y/l|2) we obtain
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<Wi(Pxx,Qxx) <2Wi(Px,Qx) < 2Jp.

Step 4. Combining the Two Contributions
By the triangle inequality,
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Step 5. Finite—-Sample Concentration

In practice, one estimates the expectations in A(P) and
B(P) from N independent samples. Since the inner prod-
uct = "y is bounded in [—1, 1], standard concentration in-
equalities (e.g., Hoeffding’s inequality) imply that, with
probability at least 1 — 1), the empirical estimates A(P) and
B(P) satisty

[A(P)— A(P)| <ew and |B(P) - B(P)| < e,

where
log(1/n) ) .

CN:O( N

Hence, with the corresponding estimates m(P) and
IIMM(Q), we have
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TINV(Q) — IMM(P)| < ;
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where the constant 2 in front of e, can be absorbed in the
big-O notation.

This completes the proof. O

7. Combining inter- and intra- measures

To determine how best to combine the inter- and intra- mea-
sures, we used the Pearson correlation, r,, and its 95% CI of
the measure determined by different convex combinations
of the inter- and intra- measure and the gain over zero-shot
error. We see in Table 7 and Table 8 that we do not have



enough power to make strong conclusions about the best
coefficient value. We do see a pattern of smaller variance
in the correlation estimate when combining the inter- and
intra- terms compared to using either term in isolation.

We chose a coefficient of 0.5 for simplicity in further
analysis.

8. Additional Results

To ensure completeness and reproducibility, Table 5 and
Table 6 present the per-task zero-shot accuracy, fine-tuned
accuracy, raw accuracy gain, and gain over zero-shot er-
ror for each base model and PEFT method, respectively.
Kendall’s tau scores, detailed in Table 1 and Table 2 of the
main text, were calculated by first computing the transfer-
ability measures of interest for each dataset’s zero-shot em-
beddings. These transferability measures, combined with
the per-dataset gains over zero-shot error and raw accuracy
gains, form paired observations across datasets. Kendall’s
tau was then computed using:

P—-Q
VP+Q+T)(P+Q+0)

Here, P and @ represent the number of concordant and dis-
cordant pairs, respectively. The formula considers all pos-
sible pairs of datasets, comparing their relative ordering in
each list. Ties are corrected for by 7" and U, which denote
the number of tied pairs in the first and second list, respec-
tively.



Table 5. Performance metrics per model and dataset. ZS Acc: Zero-Shot Accuracy, FT Acc: Fine-Tuned Accuracy, Raw Gain: FT Acc -
7S Acc, Gain over ZS: Normalized Gain over Zero-Shot Error.

Model Dataset ZS Acc (%) FT Acc (%) Raw Gain (%) Gain over ZS

CLIP Cars 58.87 78.26 19.39 0.47
DTD 42.07 74.31 32.23 0.56
SVHN 27.27 96.00 68.73 0.95
EuroSAT 44.07 97.85 53.78 0.96
CIFAR100 61.71 85.67 23.96 0.63
GTSRB 33.65 96.72 63.07 0.95
MNIST 50.47 99.23 48.76 0.98
RESISC45 56.56 92.10 35.54 0.82
SUN397 61.34 75.95 14.61 0.38
STL10 97.36 98.42 1.06 0.40
CoCa Cars 83.85 90.10 6.26 0.39
DTD 51.91 79.26 27.34 0.57
SVHN 54.74 96.90 42.16 0.93
EuroSAT 42.85 98.26 5541 0.97
CIFAR100 74.12 88.07 13.95 0.54
GTSRB 42.39 98.30 5591 0.97
MNIST 69.04 99.45 30.41 0.98
RESISC45 60.13 94.60 34.48 0.86
SUN397 66.24 74.40 8.17 0.24
STL10 96.24 98.06 1.83 0.49
EVA-02 Cars 78.80 88.55 9.75 0.46
DTD 50.96 81.22 30.27 0.62
SVHN 24.92 97.26 72.34 0.96
EuroSAT 68.04 98.33 30.30 0.95
CIFAR100 87.64 92.90 5.26 0.43
GTSRB 46.64 97.78 51.14 0.96
MNIST 44.21 99.63 5542 0.99
RESISC45 65.57 95.22 29.65 0.86
SUN397 70.71 78.02 7.31 0.25
STL10 99.48 99.51 0.04 0.07
SigLIP  Cars 90.80 94.64 3.84 0.42
DTD 62.61 84.63 22.02 0.59
SVHN 55.87 96.95 41.07 0.93
EuroSAT 43.63 98.63 55.00 0.98
CIFAR100 70.91 90.28 19.37 0.67
GTSRB 52.84 98.85 46.01 0.98
MNIST 83.52 99.62 16.10 0.98
RESISC45 60.56 95.89 35.33 0.90
SUN397 70.23 79.31 9.08 0.31

STL10 98.19 99.18 0.99 0.54




Table 6. Performance metrics per PEFT method and dataset. ZS Acc: Zero-Shot Accuracy, FT Acc: Fine-Tuned Accuracy, Raw Gain: FT
Acc - ZS Acc, Gain over ZS: Normalized Gain over Zero-Shot Error.

Model Dataset ZS Acc (%) FT Acc (%) Raw Gain (%) Gain over ZS
Attention-Weight Tuning  Cars 58.87 81.26 22.39 0.54
DTD 42.07 80.16 38.09 0.66
SVHN 27.27 96.57 69.29 0.95
EuroSAT 44.07 98.52 54.44 0.97
CIFAR100 61.71 88.16 26.45 0.69
GTSRB 33.65 98.15 64.50 0.97
MNIST 50.47 99.56 49.09 0.99
RESISC45 56.56 94.62 38.06 0.88
SUN397 61.34 76.31 14.97 0.39
STL10 97.36 98.44 1.08 0.41
BitFit Cars 58.87 74.16 15.28 0.37
DTD 42.07 70.43 28.35 0.49
SVHN 27.27 95.15 67.88 0.93
EuroSAT 44.07 98.04 53.96 0.96
CIFAR100 61.71 83.90 22.19 0.58
GTSRB 33.65 95.30 61.65 0.93
MNIST 50.47 99.15 48.68 0.98
RESISC45 56.56 90.37 33.81 0.78
SUN397 61.34 73.68 12.34 0.32
STL10 97.36 98.31 0.95 0.36
LoRA Cars 58.87 68.23 9.35 0.23
DTD 42.07 65.90 23.83 0.41
SVHN 27.27 80.34 53.07 0.73
EuroSAT 44.07 94.63 50.56 0.90
CIFAR100 61.71 80.49 18.78 0.49
GTSRB 33.65 91.39 57.74 0.87
MNIST 50.47 97.89 47.42 0.96
RESISC45 56.56 85.87 29.32 0.67
SUN397 61.34 67.99 6.65 0.17
STL10 97.36 95.03 -2.34 -0.89
CLIP-Adapter Cars 58.87 62.45 3.58 0.09
DTD 42.07 48.24 6.17 0.11
SVHN 27.27 49.30 22.03 0.30
EuroSAT 44.07 88.52 44 .44 0.79
CIFAR100 61.71 72.13 10.42 0.27
GTSRB 33.65 67.32 33.67 0.51
MNIST 50.47 94.26 43.79 0.88
RESISC45 56.56 80.21 23.65 0.54
SUN397 61.34 67.46 6.12 0.16

STL10 97.36 95.03 -2.34 -0.89




Table 7. Pearson correlation and 95% confidence intervals of zero-shot measure and gain over zero-shot error for different values of a in
convex combinations of the inter and intra measures, cintra + (1 — «)inter. Data from four base models trained over 9 tasks.

Model CLIP CoCa EVA-02 SigLIP
a ry  95%CI ry  95%CI ry  95%CI ry  95%CI

000 079 (0.26,0.95) 091 (0.62,0.98) 0.85 (0.43,0.97) 0.89 (0.55,0.98)
0.10 092 (0.66,098) 095 (0.77,0.99) 091 (0.62,0.98) 0.94 (0.73,0.99)
020 097 (0.86,0.99) 0.96 (0.82,0.99) 094 (0.73,0.99) 0.96 (0.82,0.99)
030 098 (0.9,1.00 097 (0.86,0.99) 0095 (0.77,0.99) 0.97 (0.86,0.99)
040 097 (0.86,0.99) 0.97 (0.86,0.99) 0.95 (0.77,0.99) 0.96 (0.82,0.99)
050 096 (0.82,0.99) 0.96 (0.82,0.99) 095 (0.77,0.99) 0.96 (0.82,0.99)
0.60 095 (0.77,0.99) 0.96 (0.82,0.99) 094 (0.73,0.99) 0.96 (0.82,0.99)
070 093 (0.7,0.99) 095 (0.77,0.99) 094 (0.73,0.99) 0.95 (0.77,0.99)
0.80 092 (0.66,0.98) 0.95 (0.77,0.99) 093 (0.7,0.99) 095 (0.77,0.99)
090 091 (0.62,098) 094 (0.73,0.99) 093 (0.7,0.99) 094 (0.73,0.99)
1.00 090 (0.59,0.98) 094 (0.73,0.99) 093 (0.7,0.99) 0.94 (0.73,0.99)

Table 8. Pearson correlation and 95% confidence intervals of zero-shot measure and gain over zero-shot error for different values of « in
convex combinations of the inter and intra measures, aintra + (1 — «)inter. Data from PEFT methods trained over 9 tasks.

Method Attention-WT BitFit LoRA Adapter
o Tp 95% CI Tp 95% CI Tp 95% CI Tp 95% CI

0.00 0.81 (0.32,0.96) 0.78 (0.24,0.95) 0.80 (0.29,0.96) 0.61 (-0.09, 0.91)
0.10 093 (0.7,0.99) 092 (0.66,0.98) 0.92 (0.66,0.98) 0.72 (0.11,0.94)
0.20 098 (0.9,1.0) 097 (0.86,0.99) 0.97 (0.86,0.99) 0.76 (0.19, 0.95)
0.30 098 (0.9,1.0) 098 (09,1.00 098 (0.9,1.0) 077 (0.22,0.95)
0.40 0.97 (0.86,0.99) 0.97 (0.86,0.99) 0.97 (0.86,0.99) 0.77 (0.22,0.95)
0.50 0.96 (0.82,0.99) 0.96 (0.82,0.99) 0.95 (0.77,0.99) 0.76 (0.19, 0.95)
0.60 0.94 (0.73,0.99) 0.94 (0.73,0.99) 0.94 (0.73,0.99) 0.75 (0.17,0.94)
0.70 093 (0.7,099) 093 (0.7,0.99) 093 (0.7,0.99) 074 (0.15,0.94)
0.80 0.92 (0.66,0.98) 0.92 (0.66,0.98) 091 (0.62,0.98) 0.73 (0.13,0.94)
0.90 090 (0.59,0.98) 091 (0.62,0.98) 0.90 (0.59,0.98) 0.73 (0.13,0.94)
1.00 0.89 (0.55,0.98) 0.90 (0.59,0.98) 0.89 (0.55,0.98) 0.72 (0.11,0.94)

Table 9. Linear fit of [IMM with different intra-modal measures to gain over zero-shot error following fine-tuning by pre-trained model
(alpha =0.5).”

Model CoCa EVA-02 CLIP SigLIP
Intra-Modal Measure p-value 1, p-value 1 p-value g p-value 7y
Intra-Images Distance < 1073 095 | <10=3 0.93 | 0.001 091 | 0.002  0.88
H-Score 0.020 0.75 | 0.077 0.62 | 0.002 0.88 | 0.020 0.75
TransRate 0.004 0.85 | 0.007 0.82 | 0.005 0.83 | 0.004 0.85

GBC 0.002 0.88 | 0.050 0.67 | 0.042 0.68 | 0.016 0.77




	Introduction
	Related work
	Inter-Intra Modal Measure
	Derivation via Contrastive Learning Principles
	Theoretical Bound

	Experiments
	Results
	Exploring embedding features

	Conclusion
	Theorem 1 Proof
	Combining inter- and intra- measures
	Additional Results

