
— Supplementary Material —
Planar Affine Rectification from Local Change of Scale and Orientation

1. Degenerate Cases
Here, we discuss the degenerate configurations of the pro-
posed solvers.
Collinear Points. Assume the coordinates of two scale
features and the coordinates of a finite vanishing point in
a dehomogenized representation, derived from two orien-
tation features, are collinear, i.e. they can be expressed as
(x, y), (x+ λ1δx, y + λ1δy) and (x+ λ2δx, y + λ2δy), re-
spectively. Let h7 and h8 be the parameters of the projective
transformation, as in Eq. (1). The matrix

A =

 x y −h7x− h8y + 1
x+ λ1δx y + λ1δy −h7(x+ λ1δx)− h8(y + λ1δy) + 1
x+ λ2δx y + λ2δy 0

 (25)

is constructed from these features, as described in Eq. (13).
The determinant is as follows:

det(A) = λ1(yδx − xδy) [−h7(x+ λ2δx)− h8(y + λ2δy) + 1] (26)

Since (x + λ2δx, y + λ2δy) are the coordinates of the van-
ishing point and

[
−h7 −h8 1

]
is the vanishing line, we

receive that det(A) = 0 and A is singular with the vector

n =

h7(yδx − xδy) + δy
h8(yδx − xδy)− δx

yδx − xδy

 (27)

spanning its null space, i.e. An = 0. If the vanishing point
is at infinity, we get that

det(A) = λ1(yδx − xδy), (28)

and A is singular when yδx = xδy , which happens when
the line which intersects the three points also intersects the
origin. Then, the null space of A is spanned by

n =
[
δy , −δx, 0

]T
(29)

In both cases, the vector h =
[
h7 h8 1

]T
solves the

equation Ah = b. Therefore, there is a one-dimensional
affine space of solutions given by

{h+ λn : λ ∈ R}. (30)

Zero Vanishing Point. Consider two scale features with
coordinates (x, y) and (x+ δx, y+ δy), and two orientation
features, (x1, y1, θ1) and (x2, y2, θ2), from which two lines,
l1 = l(x1, y1, θ1) and l2 = l(x2, y2, θ2) (as in Eq. (9)), are
derived whose intersection v = l1 × l2 = 0 is a degenerate
vanishing point. Let h7 and h8 be the parameters of the
projective transformation, as in Eq. (1). The matrix

A =

 x y −h7x− h8y + 1
x+ δx y + δy −h7(x+ δx)− h8(y + δy) + 1

0 0 0

 (31)

is constructed from these features, as described in Eq. (13).
The matrix A is singular with the same vector n as in
Eq. (27) as its null space. Similarly to the previous degener-
ate case, the vector h =

[
h7 h8 1

]T
solves the equation

Ah = b, and the family of solutions detailed in Eq. (30) is
applicable here as well. A vanishing point equates to zero if

θ2 = θ1 + πk1 and θ1 = φ+ πk2, for k1, k2 ∈ Z (32)

where φ = tan−1
(

y2−y1

x2−x1

)
is the angle of the line that

passes through (x1, y1) and (x2, y2). In other words, the
condition is met if the angles θ1, θ2, and φ are pairwise
equal or opposite.
Discarding Degenerate Sample Configurations. The de-
tection and elimination of these two degenerate sample con-
figurations, resulting in singular solutions, is straightfor-
ward. With a set of scale and orientation features, we em-
ploy a standard collinearity test to ensure the sample’s po-
sitions are not all collinear, and remove any orientation fea-
ture pairs that meet the criteria outlined in Eq. (32).

2. Additional Real-World Evaluation
We offer additional real-world evaluation of the proposed
method (SIFT + LSD) in Fig. 10. Its success in affinely rec-
tifying an image plane is measured and compared with two
benchmarks: vanishing point-based estimation (LSD) and
scale-based estimation (SIFT). The success of each method
is measured by the extent to which lines—which are con-
sidered to be parallel in the real-world plane—are parallel
in the respective affinely rectified image planes. To quan-
tify this, two sets of lines, each with lines which are par-
allel to one another in the real-world plane, are estimated.
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Input Proposed (SIFT + LSD) VP Est. (LSD) Scale-Based Est. (SIFT)

Error: 0.49◦ 0.36◦ 0.80◦

Error: 1.30◦ 1.53◦ 6.09◦

Error: 8.62◦ Fail 8.20◦

Error: 4.24◦ Fail 4.05◦

Figure 10. Real World Evaluation Against Benchmarks. Each row is comprised of a real-world image followed by an affine rectification
of an imaged plane using the proposed method (SIFT + LSD), the VP estimation (LSD) and scale-based estimation (SIFT) benchmarks.
Sets of parallel lines are clustered together by estimating a vanishing point they all converge to using the Progressive-X algorithm [2]. The
sets are distinguished by different colors. The error is the average pairwise angle difference between all lines in the same set.

First, multiple vanishing points for each imaged plane are
estimated using the Progressive-X algorithm [2] on the in-
put images in Fig. 10. Then, the pair of vanishing points
with the most inliers is selected. Lines converging to each
of the two vanishing points are considered ground truth in-
liers. The measure of parallelism of the lines in each set is
defined as the average angular difference between any line
pair. We note that this process may be biased towards line-
based estimators.

As expected, the proposed method is on par with the VP-
based estimator when linear patterns dominate, achieving
marginally worse results in the first row and better in the

second. Here, the scale-based estimator is highly inaccu-
rate. In the last two rows, the VP-based estimator fails as
there are only a few lines. Our method is on par with the
scale-based estimator. This mirrors the conclusion from our
main experiments: the proposed hybrid approach maintains
good accuracy in scenarios where single-feature methods
(line or scale) fail.

3. Method Runtime Comparison
In Fig. 11, the mean and standard deviation for the runtimes
of our two proposed methods and the benchmarks, which
are used to produce the findings in Fig. 6, are presented.



Feature
Detection

[ms]

Model Estimation
(1000 iterations)

[ms]
Proposed

(SIFT + LSD) 394± 55 110± 42

Proposed
(SIFT) 274± 42 76± 15

VP Estimation
(LSD) 177± 49 38± 36

Scale-Based
Estimation (SIFT) 245± 66 30± 19

Figure 11. Mean and standard deviation of runtimes of the
experiments on the generated data in Sec. 5, displayed in Fig.
6. Columns (left to right): mean and standard deviation of fea-
ture detection run times, and mean and standard deviation of 1000
RANSAC iterations in homography estimation phase. Rows (top
to bottom): proposed method with SIFT + LSD features, with
SIFT features, vanishing points estimation, and scale-based esti-
mation.

As anticipated, the average runtime for detecting features
in our proposed method that employs SIFT features and
line segments roughly equals the sum of runtimes for fea-
ture detection in the vanishing points estimation method and
scale-based estimation method, due to the combined usage
of both their feature sets. The average runtime for 1000
RANSAC iterations with our proposed method is approxi-
mately 3-4 times longer than the benchmarks. However, as
the total runtime of the proposed method remains below 0.5
seconds, it remains efficient for the purpose of planar affine
rectification. Moreover, it consistently achieves accurate re-
sults where marginally faster alternatives fail. This runtime
increase stems from our method’s broader feature selection
available during the RANSAC minimal fitting stage. In ex-
periments, we limited the number of RANSAC features to
1000, without restricting the number of line segments that
can be detected. Our method, in practice, requires signif-
icantly fewer SIFT features and line segments for satisfac-
tory results, allowing for a notable reduction of scale and
orientation features to optimize runtimes.

4. Insights into Multi-Scale Rectification
In our case study, we examine the synthetic image depicted
in Fig. 12a, which comprises examples from two separate
feature categories: specifically, black circles with radii of
10 and 20 pixels. Fig. 12b illustrates a projective transfor-
mation of Fig. 12a via a homography defined by Eq. (1),
with parameters h7 = 1 × 10−4 and h8 = 1 × 10−4. This
transformation alters the apparent scale of each local fea-
ture depending on their positions, causing features from the
same category to appear at varying scales. The histogram in
Fig. 12c presents these scale distributions of both images.

(a) (b)

(c)

Figure 12. Illustration of alignment of scales into clusters of
similarly sized features following affine rectification.

We identified that affine rectification that converts Fig. 12b
back to Fig. 12a effectively aligns the scales in the input
image into clusters of features of similar size, representing
distinct categories in the rectified image. In essence, dis-
tinct scale feature classes form peaks in the scale histogram
in the rectified image.
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