
Enhancing Adversarial Transferability by Balancing Exploration and
Exploitation with Gradient-Guided Sampling

Supplementary Material

1. Robustness against Defense Methods
To further study the robustness of our method, we selected
seven defense strategies for testing, i.e., RP [29], Bit-red
[31], JPEG [4], FD [14], NRP [17], DP (DiffPure) [18] and
MD (MimicDiffusion) [21]. Table S1 presents the ASR of
various methods under these defenses. Table S1 indicates
that GGS demonstrates superior performance in overcom-
ing defenses except for DP and NRP, increasing the average
ASR by 1.7% compared to state-of-the-art methods, vali-
dating its robustness and suggesting its greater applicability
and effectiveness in a wide range of scenarios.

Moreover, when comparing the inner-iteration meth-
ods using gradient averaging (GRA [32], PGN [6], GGS)
with other methods, the minimum difference in aver-
age attack success rate is 12% (ANDA:54.2% to GRA:
66.74%), demonstrating the outstanding effectiveness of
inner-iteration sampling methods in overcoming defense
mechanisms.

Table S1. The average untargeted ASR (%) on nine models under
seven defense strategies (RP [29], Bit-red [31], JPEG [4], FD [14],
NRP [17], DP [18] and MD [21]) of different methods (MI[1],
NI[13], VMI[26], RAP [19], GRA[32], PGN[6], ANDA[5], GI
[25], GGS), with the adversarial examples generated on ResNet50.

Method RP Bit-red JPEG FD NRP DP MD Avg.

MI 37.8 36.2 33.5 41.0 30.8 19.2 37.5 33.71
NI 39.9 38.0 34.3 42.6 31.3 19.6 38.1 34.83

VMI 54.0 52.9 49.7 53.5 40.8 28.0 50.1 47.00
RAP 53.7 51.8 49.0 36.6 43.0 26.1 50.5 44.39
GRA 74.1 72.9 72.8 72.6 59.9 46.2 68.7 66.74
PGN 77.0 76.3 76.0 75.2 61.3 47.0 72.4 69.31

ANDA 66.0 62.8 57.9 63.2 41.2 31.1 57.2 54.20
GI 44.7 43.0 40.6 34.0 47.53 21.8 42.7 39.19

GGS 82.2 81.3 79.0 78.3 60.6 42.1 73.9 71.06

2. Attack on Cloud Models
To further evaluate the capabilities of different methods in
real-world scenarios, we selected four prominent cloud ser-
vice providers: Alibaba, Tencent, Baidu, and HUAWEI, and
conducted attack tests on their general image labeling ser-
vices. As shown in Table S2, our GGS achieved the best
attack performance across all the four providers, with the
final average result being 6% lower than current best result,
demonstrating the effectiveness of our GGS in practical ap-
plications.

Table S2. Classification success rate (%) of adversarial examples
generated by all nine methods (MI-FGSM [1], NI-FGSM [13],
VMI-FGSM [26], RAP [19], GRA [32], PGN [6], ANDA [5],
GI-FGSM [25], GGS) in the general label classification interfaces
provided by four prominent cloud service providers (Alibaba, Ten-
cent, Baidu, HUAWEI). The row “clean” indicates the classifica-
tion accuracy corresponding to the original, unperturbed samples.

Method Alibaba Tencent Baidu HUAWEI Avg. ↓

clean 81.3 47.0 48.5 64.3 60.28

MI CVPR’18 [1] 44.8 24.7 29.7 25.0 31.05
NI ICLR’20 [13] 40.3 26.4 26.4 49.8 35.73

VMI CVPR’21 [26] 35.4 22.8 23.6 47.0 32.20
RAP NeurIPS’22 [19] 22.6 20.6 18.8 47.2 27.30
GRA ICCV’23 [32] 25.3 17.5 14.6 34.2 22.90
PGN NeurIPS’23 [6] 22.2 17.5 14.5 33.8 22.00
ANDA CVPR’24 [5] 24.0 17.9 17.3 38.1 24.33

GI ESWA’24 [25] 37.8 27.2 28.6 48.9 35.63
GGS 15.7 13.9 10.9 21.7 15.55

3. Loss Surfaces against Inner-Iteration

To further compare the differences in the inner-iteration
processes between our method and other inner-iteration
sampling methods, we visualized the loss surface against
different inner-iteration steps of PGN [6], GRA [32], and
GGS, as well as the similarity between the gradients dur-
ing the inner-iterations and the final gradient averaging, as
shown in Fig. S1.

In Fig. S1(d), it shows that the cosine similarity be-
tween the generated gradients and the final averaged gradi-
ent specific to our GGS gradually increases and stabilizes,
as the number of inner-iteration increases, indicating that
our method tends to favor the more stable gradient results
from the later-stages of inner-interations, whereas PGN and
GRA do not exhibit significant differential treatment toward
different gradients.

From Fig. S1(a), (b), and (c), it can be seen that, our
method enhances exploitation capability by improving sam-
pling efficiency, while maintaining the original exploration
capability from inner-iteration sampling, balancing explo-
ration and exploitation. This ensures that adversarial sam-
ples improve sampling efficiency without sacrificing cross-
model generalization, thereby increasing the attack poten-
tial of the final samples.



(c) Ours (GGS)(b) PGN(a) GRA
(d) The cosine similarity between the gradient 

and the sum of the gradients in iterations

inner iteration

co
si

ne
 si

m
ila

rit
y

Figure S1. Loss surfaces of adversarial examples generated by GRA[32], PGN[6], and our GGS, with increasing inner-iterations on
Resnet50. The red line on the right side of part (a)∼(c) represents the maximum value of the loss surface in each iteration. For (d), it
represents the cosine similarity between the gradient g̃i generated in each inner-iteration and the average of gradients

∑N
i=1 g̃i/N .

(b) GRA

(c) PGN (d) Ours (GGS)

(a) MI-FGSM

Figure S2. The classification loss surfaces of adversarial examples
generated by the methods (MI-FGSM [1], GRA [32], PGN [6],
GGS) against the number of epochs through four different meth-
ods. These adversarial examples are generated and tested on the
surrogate model Res50 [9].

4. Loss Surface against Outer-Iteration

Loss Surface: Further, we visualized the changes in the
loss surface during the generation of adversarial examples
using four different methods (MI-FGSM [1], GRA [32],
PGN [6], and Our GGS) on the Res50 [9] model, presenting
the results in a two-dimensional fashion in Fig. S2. It can be
observed that, our method maintains the flatness of the loss
landscape while simultaneously increasing the loss value, as
the number of epochs increases. Compared to other meth-
ods, we achieve a better balance between the magnitude of
the loss values and the flatness of the loss landscape.

5. More Visualizations of Loss Surfaces

To provide a more comprehensive comparison of the loss
surfaces and the connections between different methods, we
plotted the loss surfaces of all the nine comparison meth-
ods along with our GGS and its related variants MGS and
RS methods in Fig. S3. According to the loss surfaces
shown in Fig. S3, previous methods can be generally cate-
gorized into two types: those with larger local maxima and
those with flatter loss surfaces. However, our GGS method
achieves an excellent balance between these two character-
istics by maintaining local flatness while possessing rela-
tively large local maxima. This balance is consequently
helpful to achieve strong adversarial transferability.

Additionally, to better distinguish the differences among
various inner-iteration methods, we summarized these
methods based on the purpose of inner and outer iterations
as well as the relationship between them. This summary is
presented in Table S3.

6. Attack on Ensemble Models

As shown in Table S4, our method consistently achieves
higher transfer attack success rates (ASR) across multiple
model architectures, compared to other existing methods,
under multiple model settings, demonstrating its strong gen-
eralization capabilities. Specifically, for targeted and un-
targeted attacks in a multiple model ensemble setting, our
method increases the average ASR by 5%. For untargeted
attacks, it achieved a score of 95.99%, approaching a nearly
complete success in attacking all the samples, revealing its
strong attack capability in complex model ensemble envi-
ronments.

7. Comparison of Adversarial Perturbation

To compare the differences in noise intensities produced
by recent advanced methods, we conducted both qualitative
and quantitative analyses on the adversarial examples gen-
erated by GRA [32], PGN [6], ANDA [5], and our GGS.

Algorithm Comparison in terms of Perturbation



Tune Gradient via
pre-Variance

(e) ANDA (i) GRA

(h) GGS

(c) NI-FGSM (j) PGN

(k) VMI-FGSM

(b) MI-FGSM

(f) GI (l) RAP

(d) RS(a) I-FGSM (g) MGS 

Nesterov Iteration

Innner-Iterations
Random SamplingMomentum IterationOuter-Iteration

Asymptotically 
Normal Distribution

Global Momentum 
Initialization

Tune Example via 
Reverse Perturbation

Combine Gradient by 
Relevance

Gradient Norm by 
Hessian Approximation

Momentum-Guided
Sampling

Gradient-Guided
Sampling

Non-Gradient-Averaging to Update Example

Gradient-Averaging to Update Example

Guiding the Sampling Direction to Improve Efficiency

Figure S3. The relationships and comparison among different methods in terms of their average loss surfaces of the 32 randomly selected
adversarial examples, corresponding to all the 12 methods (I-FGSM [12], MI-FGSM [1], NI-FGSM [13], VMI-FGSM [26], RAP [19],
GRA [32], PGN [6], ANDA [5], GI-FGSM [25], our GGS and its related variants RS and MGS). The x and y axes on loss surface
represent the weights of two random directions, respectively, and the z-axis indicates the magnitude of the loss value obtained by testing
the adversarial examples, after incorporating the combination of the corresponding two random directions like PGN [6].

Table S3. The comparison of various inner-iteration methods (VMI [26], RAP [19], PGN [6], GRA [32], and our GGS). Out. and In.
denote the numbers of outer-iterations and inner-iterations, respectively. pre-grad denote the gradient from previous inner-iteration.

Out. In. Inner-Iteration Purpose Relationship Outer-Iteration Purpose

VMI 10 20 gradient variance Nested tune gradient via variance from previous iteration
RAP 400 8 reverse perturbation Conditional Nested tune example via reverse perturbation
PGN 10 20 gradient norm by Hessian approximation Nested update example by momentum
GRA 10 20 averaged gradient Nested combine grad. by relevance & update delta by decay
GGS 10 20 averaged gradient lookahead by pre-grad Nested update example by momentum

Metrics: We used four metrics, e.g. PSNR, SSIM [8, 28],
L2, and LF [16], to evaluate the imperceptibility of adver-
sarial perturbations relative to the clean samples. As shown
in Table S5, all methods exhibit relatively similar distortion
metric values. The primary reason for this is that all meth-
ods utilize a fixed step size coupled with the Fast Gradient
Sign Method (FGSM [7]), during each adversarial example
updating, which effectively limits the noise intensity within
a relatively narrow range.

Visualization of adversarial examples: We further

visualized the adversarial examples generated by different
methods and provided a local zoom-in comparison. As
shown in Fig. S4, it can be observed that the adversarial
noises generated by the four methods do not exhibit signif-
icant differences at the scale of the entire image. However,
upon closer inspection, PGN [6], GRA [32] and our GGS
generate perturbations with lower regularity in shape (fewer
continuous groove-like perturbations) . This may be a mani-
festation of high transferability in the noise patterns, and we
hope that future work can uncover the relationship between



Table S4. The average untargeted and targeted ASR (%) on all the nine models, with adversarial examples generated on multiple models
(Res50, Inc-v3 and ViT-B). Each data pair (u/w) corresponds to the performances under (untargeted/targeted) attacks. The best and second
best results are labeled in bold and underline, respectively.

Attack Res50 Dense121 Inc-v3 IncRes-v2 ViT-B PiT-B Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Avg.

Res50
Inc-v3
ViT-B

MI 99.4 / 66.7 73.4 / 0.5 100.0 / 91.2 64.3 / 0.3 98.3 / 86.8 51.4 / 0.1 44.6 / 0.0 46.7 / 0.0 36.9 / 0.0 68.33 / 27.29
NI 99.7 / 72.4 79.9 / 1.0 100.0 / 88.1 71.8 / 0.9 98.5 / 83.6 51.9 / 0.3 48.6 / 0.1 51.6 / 0.1 40.4 / 0.0 71.38 / 27.39

VMI 99.0 / 40.7 84.0 / 2.3 100.0 / 72.4 81.0 / 1.8 97.5 / 60.9 66.8 / 1.1 63.8 / 0.2 65.5 / 0.5 57.4 / 0.4 79.44 / 20.30
RAP 99.7 / 15.8 94.4 / 1.1 100.0 / 24.6 90.2 / 0.7 99.2 / 30.5 75.2 / 0.2 64.3 / 0.1 66.8 / 0.3 54.0 / 0.0 82.64 / 8.14
GRA 97.3 / 26.1 93.3 / 4.7 100.0 / 58.6 94.1 / 5.4 95.7 / 48.3 83.0 / 4.2 85.4 / 1.4 85.6 / 2.3 81.7 / 1.8 90.68 / 16.98
PGN 95.8 / 13.6 94.5 / 4.4 100.0 / 44.7 93.9 / 5.2 93.0 / 25.1 82.5 / 3.3 85.1 / 1.3 86.1 / 1.7 82.1 / 1.5 90.33 / 11.20

ANDA 99.5 / 45.7 96.5 / 5.5 100.0 / 74.6 93.6 / 5.2 99.3 / 67.4 87.2 / 2.8 79.8 / 1.0 81.3 / 1.1 74.4 / 0.6 90.18 / 22.66
GI 99.7 / 77.8 86.2 / 1.8 100.0 / 93.5 79.1 / 1.7 99.4 / 91.1 64.8 / 0.7 57.4 / 0.3 58.9 / 0.0 49.7 / 0.0 77.24 / 29.66

GGS 99.3 / 54.1 98.0 / 23.8 100.0 / 78.8 98.2 / 24.9 99.2 / 71.4 94.6 / 19.7 91.9 / 10.6 93.3 / 10.3 89.4 / 8.1 95.99 / 33.52

ANDA Ours (GGS)PGNGRA

Figure S4. Visualization comparison of adversarial examples gen-
erated by four advanced methods (GRA [32], PGN [6], ANDA
[5], GGS) using Res50 [9] as the surrogate model. The first row
shows the locally magnified regions, the second row displays the
corresponding adversarial examples, and the third row presents the
adversarial noises.

Table S5. Perceptibility metrics of adversarial examples gener-
ated by different methods on Res50 [9], including Attack Success
Rate (ASR) as a measure of untargeted attack capability (average
ASR across nine models), and the metrics of the imperceptibil-
ity, such as conventional L2 norm, Structural Similarity (SSIM
[8, 28]) , Peak Signal-to-Noise Ratio (PSNR), and average distor-
tion of Low-Frequency Component (LF [16]).

Method ASR PSNR ↑ SSIM ↑ L2 ↓ LF ↓

GRA ICCV’23 73.41 28.31 0.711 17.90 12.93
PGN NeurIPS’23 76.53 28.07 0.701 18.39 13.24
ANDA CVPR’24 64.67 28.60 0.711 17.32 12.12

GGS 82.08 28.16 0.697 18.22 12.48

noise morphology and transferability.

8. GGS vs. NCS with different random seeds
Table S6 shows the mean and avg. range from 10 inde-
pendent runs with random seeds. GGS surpassed NCS [20]
using Res50 and ViT-B as surrogate models.

Table S6. Average untargeted ASR (%) of NCS and GGS.

Attack Res50 Dense121 Inc-v3 IncRes-v2 ViT-B PiT-B Avg.

Res50 NCS 96.16 87.00 80.20 73.46 53.58 67.74 76.36 ± 0.27
GGS 99.30 95.78 89.46 85.92 60.14 80.18 85.13 ± 0.18

Inc-v3 NCS 69.38 84.52 99.76 91.20 32.54 45.10 70.42 ± 0.30
GGS 68.42 86.72 100.00 95.72 27.64 39.16 69.61 ± 0.74

ViT-B NCS 72.18 82.00 79.34 72.72 98.56 85.32 81.69 ± 0.15
GGS 81.26 90.12 86.68 81.84 100.0 92.50 88.73 ± 0.50

9. Inner-Iterations vs. Efficiency analysis

0 5 10 15 20 25 30 35 40
N

0

20

FP
S 28.56

8.88 4.90 3.37 2.56 2.07 1.73 1.49 1.31

34.25

15.41
8.94 6.14 4.78 3.88 3.32 2.86 2.51

PGN
GGS

Figure S5. The FPS of PGN and GGS on Res50.
Fig. S5 shows PGN and Our method’s time consumption
scales with inner iterations, while GGS maintaining 2.5 FPS
compare with PGN’s 1.3 FPS at 40 iterations. N=20 was set
to ensure usability and fair comparison with other methods.

10. Inference Speeds and GPU Memory Usage
To compare the differences in efficiency and overhead of
various methods for generating adversarial examples, we
conducted a detailed evaluation of the inference speed and
GPU memory usage of all nine methods, as shown in Table
S7. Since the MI-FGSM [1], NI-FGSM [13] and GI-FGSM
[25] methods do not involve an inner-iteration process, we
focused primarily on the remaining six methods that include



Table S7. Comparison of inference speeds in terms of Frames Per
Second (FPS) and GPU Memory Usage (GB) of different methods.
The official default batch size (bs) of ANDA [5] is set to 1, RAP
is set to 16 due to memory constraints, while for other methods,
the default batch size (bs) is set to 64 for Res50 [9] and Inc-v3
[22], and 32 for ViT-B [3]. The MI-FGSM [1], NI-FGSM [13]
and GI-FGSM [25] do not include an inner-iteration process, thus
resulting in a faster inference speed.

Method
FPS ↑ GB ↓

Res50 Inc-v3 ViT-B Res50 Inc-v3 ViT-B

MI CVPR’18 [1] 43.5 52.6 27.0 8.37 5.96 5.47
NI ICLR’20 [13] 47.6 41.7 26.3 8.36 5.96 5.47
GI ESWA’24 [25] 31.3 27.8 18.2 8.38 6.02 5.47

VMI CVPR’21 [26] 4.7 6.4 1.8 8.60 6.14 5.56
RAP NeurIPS’22 [19] 0.25 0.15 0.13 21.3 20.5 21.5
GRA ICCV’23 [32] 4.7 6.4 1.8 8.76 6.35 5.55
PGN NeurIPS’23 [6] 2.5 3.6 1.0 8.93 6.26 5.55
ANDA CVPR’24 [5] 3.6 2.4 1.4 3.23 2.42 4.57

GGS 4.9 6.6 1.9 8.78 6.24 5.53

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

AS
R 

(%
)

Res50
Dense121
Inc-v3

IncRes-v2
Vit-B
Pit-B

Inc-v3-ens3
Inc-v3-ens4
IncRes-v2-ens

Figure S6. Untargeted attack success rate (ASR, %) on dif-
ferent models (Res50 [9], Dense121 [11], Inc-v3 [22], IncRes-
v2 [23], ViT-B [3], PiT-B [10], Inc-v3ens3 [24], Inc-v3ens4 [24],
IncRes-v2ens [24]) with different values of ζ, with Res50 as a sur-
rogate model. The maximum perturbation ϵ = 16/255.

an inner-iteration process for a fair comparison. It can be
observed that our GGS method exhibits the fastest inference
speed, and the GPU memory usage does not obviously in-
crease. Notably, due to algorithmic limitations, ANDA [5]
can be only configured with a batch size of 1, resulting in a
reduced GPU memory usage.

11. Sensitivity Analysis of Hyperparameters

Sensitivity Analysis of ζ. In Fig. S6, we analyze the im-
pact of the upper bound neighborhood size, determined by
parameter ζ, on the attack success rate (ASR) in black-box
settings. The experiment employs uniform sampling to re-

0 5 10 15 20 25 30 35 40
N

45

50

55

60

65

70

75

80

85

AS
R 

(%
)

VMI-FGSM
GRA

PGN
Ours

Figure S7. The average attack success rate on nine models with
different N (inner-iterations numbers) across different methods
(VMI-FGSM [26], GRA [32], PGN [6], our GGS).

duce bias from uneven sample distribution. As ζ gradu-
ally increases to 2.0 × ϵ, the transferability performance
of normally trained models is improved and reaches its
peak, while the transferability of adversarially trained mod-
els continues to rise. However, when ζ exceeds 3.5 × ϵ,
the adversarial transferability of the eight black-box models
begins to decline. To achieve a balance between normally
and adversarially trained models in transferability, we select
ζ = 2.0× ϵ for the experiments.

Sensitivity Analysis of N . We further conducted ex-
perimental evaluations to assess the impact of varying the
number of inner-iterations N on different methods. The re-
sults are presented in Fig. S7. It can be observed that, the
attack success rate for all the methods has been largely im-
proved when the number of inner-iterations is within 15. As
the number of inner-iterations increases, the effectiveness
of GRA [32], PGN [6], and our GGS method can be further
enhanced. Considering both time overhead and effective-
ness, the selection of 20 inner-iterations (N=20) provides a
balanced benefit.

12. Detailed Hyperparameter Settings
For all methods, we set the maximum perturbation of the
parameter ϵ = 16/255. For all methods, except RAP, we
set the number of outer-iteration is T = 10, the step size is
α = ϵ/T . For VMI-FGSM [26], we configure the number
of sampled examples as N = 20 and set the upper bound of
neighborhood size to β = 1.5× ϵ; For RAP, the step size is
α = 2.0/255, with the number of iterations K = 400, an
inner-iteration number T = 8, and a late-start KLS = 100.
The size of neighborhoods is ϵn = 16/255. For GRA [32],
the number of sampled examples is N = 20, the sample
quantity is m = 20, the upper bound factor of sample range
is β = 3.5 and the attenuation factor is η = 0.94; For PGN
[6], the number of sampled examples is N = 20, the bal-



anced coefficient is δ = 0.5, and the upper bound factor of
sample range is ζ = 3.0× ϵ. For ANDA [5], we strictly ad-
here to the hyperparameter settings specified in its official
code repository. For GI-FGSM [25], the pre-convergence
iterations P = 5, and the global search factor S = 10.

13. Detailed Results when our GGS is Com-
bined with Different Methods

Due to space limit in the main text, we only present the
average attack success rates of our GGS combined with dif-
ferent methods. More detailed results, including targeted
and untargeted attack across all nine models, are provided
in Table S8.

14. Details of the attack on MLLMs
Specifically, (1) 4o and mini represent gpt-4o-2024-08-
06 and gpt-4o-mini-2024-07-18, respectively; (2) pro and
flash represent gemini-1.5-pro-002 and gemini-1.5-flash-
002, respectively; (3) sonnet represent claude-3-5-sonnet-
20240620. For the system prompt, to better study the im-
age content understanding capabilities of MLLMs while
simplifying the experimental process, we converted the
multi-classification problem into a binary classification one.
Specifically, we input both the image label name and the im-
age itself into the MLLMs, prompting the MLLMs to deter-
mine whether the image content belongs to the correspond-
ing label, and provide a confidence level for its judgment.
For all the five MLLMs, we uniformly applied the following
system prompts:

You are a strict image classification expert system.

Execute the following instructions:

1. Determine whether the main content of the image

belongs to the given label through visual analysis

only

2. Strictly return results according to the following

JSON schema:

{"match": 1 or 0, "confidence": integer between 1-10}

3. Judgment rules:

- "match": 1 if completely matching the label, 0 if

not matching

- "confidence": Objectively assess the credibility

of your judgment based on image clarity, content

features, etc.

Key constraints:

- Prohibited from outputting any text other than JSON

- Ensure output can be directly parsed by standard

JSON parsers

- Output must be valid JSON format

- Please do not return empty content, you must give

match and confidence, even if the picture is

blank

Example output:

{"match": 1, "confidence": 8}

References
[1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun

Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
9185–9193, 2018. 1, 2, 3, 4, 5

[2] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
Evading defenses to transferable adversarial examples
by translation-invariant attacks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 4312–4321, 2019. 7

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 5

[4] Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M Roy. A study of the effect of jpg compression on
adversarial images. arXiv preprint arXiv:1608.00853, 2016.
1

[5] Zhengwei Fang, Rui Wang, Tao Huang, and Liping Jing.
Strong transferable adversarial attacks via ensembled asymp-
totically normal distribution learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24841–24850, 2024. 1, 2, 3, 4, 5, 6

[6] Zhijin Ge, Hongying Liu, Wang Xiaosen, Fanhua Shang,
and Yuanyuan Liu. Boosting adversarial transferability by
achieving flat local maxima. Advances in Neural Informa-
tion Processing Systems, 36:70141–70161, 2023. 1, 2, 3, 4,
5

[7] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations, ICLR, 2015.
3

[8] Muhammad Zaid Hameed and Andras Gyorgy. Per-
ceptually constrained adversarial attacks. arXiv preprint
arXiv:2102.07140, 2021. 3, 4

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 4, 5

[10] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk
Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spa-
tial dimensions of vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 11936–11945, 2021. 5

[11] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 5



Table S8. The untargeted and targeted ASR (%) on all nine models with the adversarial examples generated on ResNet50, when combined
our GGS with input transformation-based methods (DIM[30], TIM[2], SIM[13], Admix[27], SSM[15]). Each data pair (u/w) corresponds
to the performances under (original method / variant combined with our GGS).

Method Res50 Dense121 Inc-v3 IncRes-v2 Vit-B PiT-B Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Avg.

untargeted attack

DIM / +ours 97.6 / 98.6 72.8 / 96.3 60.3 / 94.3 50.8 / 93.7 25.6 / 75.3 41.5 / 88.2 39.3 / 89.6 40.9 / 88.6 32.9 / 86.6 51.30 / 90.13
TIM / +ours 99.9 / 99.3 60.0 / 96.0 49.9 / 90.7 33.8 / 87.5 15.7 / 63.6 26.6 / 79.9 28.1 / 84.3 30.1 / 83.1 23.3 / 80.1 40.82 / 84.94
SIM / +ours 100.0 / 99.6 71.8 / 98.8 56.2 / 95.4 40.6 / 94.2 22.0 / 71.9 36.2 / 89.3 32.3 / 89.5 35.2 / 88.4 26.9 / 84.0 46.80 / 90.12

Admix / +ours 100.0 / 99.7 82.7 / 99.2 65.4 / 95.9 51.4 / 95.0 28.5 / 73.6 46.8 / 89.0 41.9 / 89.5 43.1 / 88.3 33.2 / 85.5 54.78 / 85.50
SSM / +ours 97.9 / 98.9 89.7 / 96.1 81.4 / 92.2 77.6 / 88.8 50.1 / 47.4 67.3 / 70.2 70.0 / 80.5 69.3 / 79.3 64.7 / 73.3 74.22 / 80.74
GRA / +ours 96.9 / 99.2 88.6 / 96.8 81.8 / 91.0 75.8 / 85.7 45.3 / 44.0 62.6 / 66.4 71.5 / 77.5 70.9 / 76.6 67.3 / 71.0 73.41 / 78.69
PGN / +ours 98.6 / 99.8 91.3 / 97.4 85.0 / 91.3 78.5 / 88.8 49.7 / 55.2 67.8 / 78.4 74.9 / 81.9 72.9 / 80.7 70.1 / 75.6 76.53 / 83.23

targeted attack

DIM / +ours 76.1 / 83.3 1.1 / 26.7 0.1 / 9.9 0.2 / 13.3 0.0 / 6.7 0.1 / 11.1 0.0 / 7.7 0.0 / 7.5 0.1 / 8.1 8.63 / 19.37
TIM / +ours 98.9 / 89.7 0.2 / 28.9 0.0 / 7.9 0.1 / 9.7 0.0 / 4.1 0.0 / 8.6 0.0 / 6.1 0.0 / 5.5 0.1 / 5.8 11.03 / 18.48
SIM / +ours 99.1 / 95.8 0.9 / 52.5 0.1 / 17.6 0.0 / 21.8 0.0 / 10.9 0.1 / 22.1 0.0 / 11.6 0.0 / 13.4 0.1 / 10.3 11.14 / 28.44

Admix / +ours 97.3 / 96.6 3.8 / 57.6 0.0 / 19.0 0.1 / 23.5 0.0 / 11.9 0.2 / 24.9 0.0 / 15.2 0.1 / 14.0 0.0 / 11.8 11.28 / 30.50
SSM / +ours 63.5 / 69.1 6.2 / 18.1 1.2 / 5.3 1.8 / 5.6 0.3 / 1.3 0.6 / 4.0 0.5 / 3.5 0.8 / 3.0 0.7 / 3.0 8.40 / 12.54
GRA / +ours 67.7 / 83.2 3.9 / 19.9 0.9 / 4.5 1.7 / 5.6 0.2 / 0.9 0.6 / 3.0 0.7 / 1.4 1.1 / 2.4 0.7 / 1.9 8.61 / 13.64
PGN / +ours 49.5 / 73.3 4.7 / 19.2 1.4 / 5.1 1.7 / 5.7 0.4 / 1.5 1.0 / 3.2 0.6 / 2.2 1.1 / 2.5 1.2 / 2.4 6.84 / 12.79

[12] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. In Artificial in-
telligence safety and security, pages 99–112. Chapman and
Hall/CRC, 2018. 3

[13] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and
John E Hopcroft. Nesterov accelerated gradient and scale in-
variance for adversarial attacks. In International Conference
on Learning Representations, ICLR, 2020. 1, 3, 4, 5, 7

[14] Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang,
and Wujie Wen. Feature distillation: Dnn-oriented jpeg com-
pression against adversarial examples. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 860–868. IEEE, 2019. 1

[15] Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao,
Xianglong Liu, Jian Zhang, and Jingkuan Song. Fre-
quency domain model augmentation for adversarial attack.
In European conference on computer vision, pages 549–566.
Springer, 2022. 7

[16] Cheng Luo, Qinliang Lin, Weicheng Xie, Bizhu Wu, Jin-
heng Xie, and Linlin Shen. Frequency-driven imperceptible
adversarial attack on semantic similarity. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 15315–15324, 2022. 3, 4

[17] Muzammal Naseer, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Fatih Porikli. A self-supervised
approach for adversarial robustness. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 262–271, 2020. 1

[18] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash
Vahdat, and Anima Anandkumar. Diffusion models for
adversarial purification. arXiv preprint arXiv:2205.07460,
2022. 1

[19] Zeyu Qin, Yanbo Fan, Yi Liu, Li Shen, Yong Zhang, Jue
Wang, and Baoyuan Wu. Boosting the transferability of ad-
versarial attacks with reverse adversarial perturbation. Ad-

vances in neural information processing systems, 35:29845–
29858, 2022. 1, 3, 5

[20] Chunlin Qiu, Yiheng Duan, Lingchen Zhao, and Qian Wang.
Enhancing adversarial transferability through neighborhood
conditional sampling. arXiv preprint arXiv:2405.16181,
2024. 4

[21] Kaiyu Song, Hanjiang Lai, Yan Pan, and Jian Yin. Mimicd-
iffusion: Purifying adversarial perturbation via mimicking
clean diffusion model. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
24665–24674, 2024. 1

[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016. 5

[23] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander Alemi. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. In Proceedings of
the AAAI conference on artificial intelligence, 2017. 5

[24] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. ICLR, 2018. 5

[25] Jiafeng Wang, Zhaoyu Chen, Kaixun Jiang, Dingkang Yang,
Lingyi Hong, Pinxue Guo, Haijing Guo, and Wenqiang
Zhang. Boosting the transferability of adversarial attacks
with global momentum initialization. Expert Systems with
Applications, 255:124757, 2024. 1, 3, 4, 5, 6

[26] Xiaosen Wang and Kun He. Enhancing the transferability of
adversarial attacks through variance tuning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1924–1933, 2021. 1, 3, 5

[27] Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He.
Admix: Enhancing the transferability of adversarial attacks.



In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16158–16167, 2021. 7

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 3, 4

[29] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan Yuille. Mitigating adversarial effects through random-
ization. arXiv preprint arXiv:1711.01991, 2017. 1

[30] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu
Wang, Zhou Ren, and Alan L Yuille. Improving transferabil-
ity of adversarial examples with input diversity. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2730–2739, 2019. 7

[31] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural networks.
arXiv preprint arXiv:1704.01155, 2017. 1

[32] Hegui Zhu, Yuchen Ren, Xiaoyan Sui, Lianping Yang, and
Wuming Jiang. Boosting adversarial transferability via gra-
dient relevance attack. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4741–
4750, 2023. 1, 2, 3, 4, 5


	Robustness against Defense Methods
	Attack on Cloud Models
	Loss Surfaces against Inner-Iteration
	Loss Surface against Outer-Iteration
	More Visualizations of Loss Surfaces
	Attack on Ensemble Models
	Comparison of Adversarial Perturbation
	GGS vs. NCS with different random seeds
	Inner-Iterations vs. Efficiency analysis
	Inference Speeds and GPU Memory Usage
	Sensitivity Analysis of Hyperparameters
	Detailed Hyperparameter Settings
	Detailed Results when our GGS is Combined with Different Methods
	Details of the attack on MLLMs

