Supplementary Material for Visual Surface Wave Elastography

A. Runtime analysis

The primary computational cost of VSWE stems from cal-
culating dispersion relations to fit observed data. To address
this efficiently, we precomputed dispersion relation datasets
over grids of stiffness and thickness values suitable for soft
tissue characterization. These datasets can be reused for
multiple fitting scenarios, eliminating the need for repeated
dispersion calculations. Although employing more efficient
optimization methods than grid search would substantially
reduce computational cost, we provide representative run-
times below to illustrate the expense associated with com-
puting dispersion relations in this study.

In each dispersion dataset, there are several parameters
that have bearing on the cost to compute the dataset. For
the computation of a dispersion dataset containing 12 eigen-
value branches and 60 wavenumber values, on a grid of
41 stiffness (F) values x 41 thickness (1") values, the run-
times for various numbers of elements corresponding to dif-
ferent element sizes e are tabulated below. Computations
were performed on an Intel Xeon CPU E5-2663 v3 with 20
cores, and all computations used less than 64 GB of mem-
ory. While we found e = 0.5, N = 240 to be sufficient
for reasonable performance in our settings, using smaller e
with higher N, may be desirable if modeling higher fre-
quency wave modes.

e e = 0.5 mm, Nge = 240 had runtime of 157 s
e ¢ = 0.25 mm, Nge = 960 had runtime of 470 s
e ¢ =0.125 mm, Ngj. = 3840 had runtime of 3169 s

B. Optimization objective functions

Here we define the objective functions we considered when
developing our approach. Recall that D, is the observed
FFT-derived dispersion relation. For a given hypothesized
(T, E) pair, ©(T, E) is the physics-based dispersion rela-
tion, and Dy, (7', E) is the image version of D (T, E).

Curve-based objective function We define a simple and
intuitive curve-based objective function f that assigns
points for the observed dispersion relation having high mag-
nitude at the points that exist in the hypothesized physics-
based dispersion relation (T, FE) = {w(y)}¥,Vy €
[0,7/al:
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Image-based objective functions To convert the disper-
sion relations from curve format to image format, we assign
pixel values with a Gaussian kernel based on the distance
from the pixel to any point on any of the curves. More pre-
cisely, the value of a pixel located at point (Yim,wWim) is
given by
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and w’ (7.) denotes the dispersion relation in curve form on
any band ¢, and o is a parameter that controls the width of
the curve once converted to image form.

We use standard definitions of MSE, PSNR, and SSIM
[48].

C. Characteristic numbers

Here we provide examples of characteristic number values
from our experiments (both real and synthetic). While we
have listed several of what we think are the most practically
relevant characteristic numbers in our analysis, others can
surely be defined. We emphasize that the ranges of char-
acteristic numbers here do not comprehensively represent
all systems where VSWE will function smoothly, but rather
they represent a few examples of systems where we have
observed VSWE to function smoothly. It would be a worth-
while exercise to determine more carefully curated bounds
for these characteristic numbers in order to more precisely
define where the method can be used.

As a reminder for the reader, the definition for each char-
acteristic number is given in Tab. | along with a brief intu-
itive description of what it conveys.

Characteristic numbers with known working limits
Some characteristic numbers have well-known limits from
previously existing scientific knowledge. For example,
Nyquist limits (and practical version of them) for mo :=
PPM/~ and 74 := FPS/w give well-defined guidelines for
spatial and temporal sample rates if one knows approxi-
mately what frequency and wavenumber ranges will be ob-
served. These can help to determine what hardware would
be required to apply VSWE to a particular system. As
demonstrated by our synthetic experiments, for an upper



Characteristic number definitions

- Mathematical Intuitive
definition description
T ~L number of waves that fit spatially in the observation

T2 PPM/~ number of spatial sample points per wave

3 wT number of waves that fit temporally in the observation
T4 FPS/w number of temporal sample points per wave

s 1/(~ve) number of FEM mesh elements per wave

6 ~yT ratio of thickness divided by wavelength

Table 1. Characteristic number definitions and intuitive descrip-
tions.

Characteristic number values

Sim. leg Sim. leg Sim. leg
4 Real (lower, thin) (lower) (upper)
T [2.1,27] [0.7,4.6] [0.9, 8] [1.7,9.6]
number of waves that fit spatially in the observation
T2 [43,548] [51, 799] [46, 400] [47,266]
number of spatial sample points per wave
T3 [160, 800] [58,175] [120, 360] [100, 360]
number of waves that fit temporally in the observation
T4 [3,15] [2.3,7] [4.4,13.3] [4.4,16]
number of temporal sample points per wave
s [22, 286] [26, 400] [23,200] [23,133]
number of FEM mesh elements per wave
6 [0.1,1.9] [0.05,0.78] [0.12,1.5] [0.3,2]

ratio of thickness divided by wavelength

Table 2. Characteristic number ranges for the highest and lowest
frequencies and wavenumbers observed in each experiment. For
the simulated experiments in this table, thickness ranges were also
considered for the computation of 7.

calf about 20 mm thick, one would need to observe fre-
quencies between [50, 180] Hz and wavenumbers between
[15,85] m~!. Applying Nyquist limits to w2 and 74 then
tells us that we need at minimum 360 FPS and 170 px/m
— well within the capacities of consumer cameras.

Leveraging characteristic similarity Other characteris-
tic numbers do not yet have clearly defined bounds. For
example, while characteristic shallowness (7 := ~T)
has some rule-of-thumb bounds for mechanical analysis
[38, 49], they carry heavy assumptions and do not have di-
rect relevance for inference problems. However, even with-
out firm bounds, characteristic numbers can prove useful
as invariants. If one finds a set of characteristic numbers
that are confirmed to be VSWE-compatible in one scenario
(e.g., by experiment), they can expect to preserve the per-
formance of VSWE by preserving the values of the charac-
teristic numbers when transferring to a new scenario. This
is known as leveraging similitude: when the relevant char-
acteristic numbers of two different systems have the same

values, the systems are called similar.*

For example, when shifting from inference over a thicker
region of tissue to a thinner region of tissue, we can adjust
other parameters (i.e., ones that we can control) to preserve
the characteristic shallowness of the waves (7g := 7). In
the VSWE pipeline, this helps to maintain the quality and
scope of observation of the dispersion relation. Because T’
is decreasing, we would need to increase v somehow. To
do this, we would increase the frequencies w (a common
heuristic from elastic wave mechanics says that wave speed
¢~ +/E/p ~ w/v, and here, the material properties F' and
p are fixed). These increases in v and w demand commen-
surate increases in the minimum acceptable FPS and PPM
(i.e., to preserve my := PPM/~ and 74 := FPS/w), but
allow us to reduce the spatial and temporal extents of our
observation (7 and L) while still preserving 7 := yL and
T3 1= WT.

Characteristic numbers are often coupled As demon-
strated by the previous example, it is often the case that
changing one system parameter affects several character-
istic numbers in different ways, and controlling them in-
dividually is not always possible. As a more hardware-
related example, increasing the FPS of the video to increase
74 := FPS/w may require us to lower the resolution, having
the side-effect of lowering 7o := PPM/~ (assuming focus
distance and field of view are fixed).

D. Mechanics
D.1. Linear elasticity & the elastic wave equation

Linear elasticity is the theory that dictates how a solid
moves when subjected to external forces — in our case, vi-
brations that generate measurable surface waves.

Momentum balance Within a solid body, material moves
and displaces as a result of stresses exerted by neighboring
pieces of material and external forces applied to the solid
body. We can express this with Cauchy’s momentum bal-
ance

pii=V.o +f, ©)

where p is density, and vectors u, o, and f are displacement,
stress, and body forces (respectively) in each of the three
spatial directions. Note that each of p, u, o, and f are taken
to be functions of space (x). Cauchy’s momentum balance
is essentially the continuum mechanics version of Newton’s
second law.

“Beyond elastodynamics, similitude is also often used in fluid mechan-
ics. Instead of constructing an expensive full-sized airplane or wing for
an aerodynamic test, engineers often opt to run a characteristically similar
experiment on a scaled-down version of the object, preserving the charac-
teristic number known as the Reynold’s number by modifying fluid density,
velocity, and viscosity to balance out the size scale difference.



Linear-elastic constitutive law In general, if a body of
material displaces non-uniformly (such that u has a non-
zero spatial gradient), stress (o) often develops within the
material (and in many cases acts as a restorative force to
return the body to some equilibrium configuration). The
exact relationship between the spatial gradient of displace-
ment (often written compactly as strain, €) and stress o is
called a constitutive law, which is different for different
classes of materials. In our work, we restrict our studies
to a linear-elastic constitutive law.

Linear elasticity proposes a constitutive law where the
stress, o, (like a pressure, or area-normalized force) that a
piece of material feels is linearly proportional to the strain,
€, (the symmetrized spatial gradient of displacement) that
the piece of material is experiencing. It can be written

more concisely if instead of elastic modulus E and Pois-
E

son’s ratio v, we use the Lamé parameters p := ) and
. Ev .
A= (14+v)(1—2v) "

oc=XA(V-u)I+2ue, (10)

where € := %(Vu + VuT).

Elastic wave equation Substituting the linear-elastic con-
stitutive law into Cauchy’s momentum balance yields the
elastic wave equation (a linear PDE problem where one tra-
ditionally solves for u):

pit=(A\+p) V(V-u) +puViua+f, (1D

which describes how elastic waves travel through linear
elastic materials.

D.2. Transient analysis

Transient analysis means that time is being explicitly mod-
eled. In transient simulations, we solve Eq. (11) for u(x,t)
by some choice of time-stepping scheme. Although these
simulations are often more costly than their assumption-
leveraging counterparts (e.g., harmonic analysis, described
in Appendix D.3.1), they are able to model very general sit-
uations with few restrictions and with high fidelity.

In our work, all of the simulated experiments used tran-
sient analysis to represent the observed systems because we
wanted the simulated material behavior to involve as few
simplifying assumptions as possible and match as closely
as possible with the behavior of real-world materials.

D.3. Bloch-Floquet analysis

Bloch-Floquet (BF) analysis aims to reveal the natural wave
modes of a system comprehensively, finding waves of every
possible (,w) frequency-wavevector pair. BF analysis ap-
plies a time-harmonic assumption and BF periodic bound-
ary conditions (a spatially quasi-periodic assumption) to
Eq. (11). Each of these assumptions is discussed in this sec-
tion. In our work, all of the dispersion relations computed
to fit the observed dispersion relations used BF analysis.

D.3.1. Time-harmonic assumption

BF analysis is a subcategory of harmonic analysis, and as
such it employs the same time-harmonic assumption from
harmonic analysis. The time-harmonic assumption says the
solution is harmonic (sinusoidal) in time, written as

u(x, t) = up(x)e’, (12)

where w represents the time frequency of the harmonic solu-
tion, and ug(x) is explicitly nor a function of time. In gen-
eral, assuming the displacement field is a harmonic function
at frequency w only makes sense when the external forces
applied to the system are also harmonic functions at the
same frequency. That is,

f(x,t) = fo(x)e™. (13)

In cases where we are looking for natural modes (e.g., in
our work we look for natural wave modes), we set external
forces fy = 0. However, there are other situations (e.g., in
frequency-domain analysis, which is not used in this work)
where non-zero forcing would be appropriate. Applying
the harmonic assumption in Eq. (12) and assuming fy = 0,
Eq. (11) simplifies to

pV2u0 + A+ p) V(Vwg) + puug = 0, (14)

which is a linear eigenvalue PDE, where ug(x) is the eigen-
function (representing the displacement field of the wave
mode), w? is the eigenvalue, and w is the frequency (a.k.a.
eigenfrequency) of the wave mode.

D.3.2. Bloch-Floquet boundary conditions

Alongside the time-harmonic assumption, Bloch analysis
also adopts a spatially quasi-periodic assumption: that the
solution field repeats from unit cell to unit cell, but with a
phase shift. This is imposed through BF periodic boundary
conditions:

u(x +a,) = u(x)elran, n=1,...,D, (15)
where D is the spatial dimensionality of the problem (D =
1, 2, 3 is common for real-world problems), a,, is the size of
the modeled material domain in each direction (commonly
known as a lattice vector), and +y is the wavevector (as
usual) which defines the lengthscale of Bloch-Floquet pe-
riodicity in each direction. An intuitive way to think about
these boundary conditions is “the solution at one boundary
is the same as the solution at the opposite boundary, but with
a phase shift prescribed by the wavevector.”

D.4. Plane-strain assumption

When most of the significant mechanics of a three-
dimensional system are happening in only two of the di-
mensions, it may be reasonable to only model those two di-
mensions. One standard assumption is called plane strain,



which assumes zero strain in the direction not explicitly
modeled. This is commonly employed in situations where
a material body is very thick in one direction or has fixed
boundary conditions preventing strain in the out-of-plane
direction. Letting y be the direction of zero strain, this as-
sumption can be written as u, = 0 and 9,(-) = 0. Plane
strain simplifies Eq. (11) considerably and significantly re-
duces the amount of computation required for simulations.

The transient models for the simulated experiments from
the sensitivity demonstration in Fig. 5 and ablation stud-
ies in Fig. 10 and Fig. 11 use this assumption for com-
putational efficiency since we ran such a large number of
them. However, the transient models for the simulated ex-
periments from Sec. 5.3 use full 3D physics (no plane-strain
assumption) to maximize real-world fidelity.

All dispersion datasets used to perform fits use the plane-
strain assumption (see Appendix D.3). This is exactly ideal
in our simulated plane-strain studies (as the assumption is
identical to the observed physics) and close-to-ideal in our
real-world gelatin studies (because the samples were thick
and had fixed out-of-plane boundary conditions discourag-
ing out-of-plane strain). However, it is a less-than-perfect
assumption for the simulated anatomical geometry studies.
It is promising that the plane-strain assumption works for
inference problems on the anatomical geometry, despite the
fact that it is less than ideal, demonstrating a measure of
robustness for VSWE.

E. Simulated experiment details

In this section we give supplementary details surrounding
the simulated experiments.

E.1. Sensitivity experiments (Fig. 5)

The simulated experiments in Fig. 5 were simulated on a 30
cm domain and used an observation window of 29.5 cm (the
remaining 0.5 cm region was where the input excitation was
applied). The simulated duration was 1 s and was equivalent
to the observed duration. Displacements were sampled at
1280 positions and 600 times, equating to sample rates of
~ 4336 px/m and 600 FPS.

E.2. Mesh resolution ablation experiments (Fig. 10)

The simulated experiments for the mesh size ablation study
in Fig. 10 were simulated on a 60 cm domain (unrealistic,
but we chose this to be large so that domain size was not
a confounding factor) and used an observation window of
59.5 cm (the remaining 0.5 cm region was where the input
excitation was applied). The simulated duration was 1 s
and was equivalent to the observed duration. Displacements
were sampled at 1280 positions and 600 times, equating to
sample rates of ~ 2150 px/m and 600 FPS.

E.3. Observation length ablation experiments
(Fig. 11)

The simulated experiments for the ablation study where the
spatial length of the observed surface was ablated in Fig. 11
were simulated on a 30 cm domain and used observation
windows of varying spatial extents. Even though the spa-
tial extent of the observation changed, the spatial distance
between sample points was maintained constant at ~ 4336
px/m. The simulated duration was 1 s and was equivalent
to the observed duration. Displacements were sampled at
600 times, equating to a sample rate of 600 FPS.

E.4. Anatomical experiments (Fig. 8)

The operational parameters of the simulated experiments in
the anatomical section were not as uniform as those from
the plane-strain section, mainly due to the more compli-
cated nature of the geometry and the fact that simulation
of the thin region near the ankle required its own separate
simulation due to computational cost reasons. As such, de-
tails will be given for each scenario presented in the main
body of the paper, as well as for each of the two transient
simulations.

E.5. Anatomical simulations

Here we give the details of the two anatomical simulations.

Common between the two Many of the parameters are
shared between the two simulations. Both models pre-
scribed E = 14.5 kPa, p = 1000 kg/m?, and v = 0.45 ev-
erywhere in the soft tissue, and they treated the bone inter-
face as a fixed boundary. Both models used low-reflecting
boundary conditions on a segmented subsection of the calf
to avoid modeling the entire domain. Both models used
a quadratic tetrahedral finite element discretization, though
with different element sizes. Both models used an excita-
tion region that spanned laterally across the outer surface
of the leg, with a length of 1.5 cm in the direction of wave
propagation.

Simulation 1 simulated both the upper-calf and lower-
calf regions to demonstrate simultaneous inferences of these
significantly different regions from a single excitation. The
prescribed chirp excitation was a smoothed chirp sweeping
from 25 to 200 Hz. This simulation used a target finite ele-
ment (spatial) discretization size of 3 mm. We used a phys-
ical timestep of 800 Hz and solved for a duration of 2 s. The
length of the simulated domain was ~ 27 cm with approxi-
mate cross-section dimensions of ~ 2—5cm X ~ 2—5cm
with significant variance along the length. The model con-
tained ~ 180, 000 elements and took 42 h 45 min to solve
on an Intel Xeon CPU E5-2663 with 20 cores.



Simulation 2 specifically simulated the lower-calf region
near the ankle to demonstrate inference in a region of the
body where the soft tissue is much thinner and varies sig-
nificantly. The prescribed chirp excitation was a smoothed
chirp sweeping from 40 to 400 Hz. This simulation used a
target finite element (spatial) discretization size of 2 mm.
We used a physical timestep of 800 Hz and solved for a du-
ration of 0.5 s. This timestep was likely a bit too coarse for
the upper end of the excitation frequency (400 Hz) in this
simulation. The model used low-reflecting boundary condi-
tions on a segmented subsection of the lower-calf to avoid
modeling the entire domain. The length of the simulated
domain was ~ 11 cm with approximate cross-section di-
mensions of ~ 1.5 —4 cm X ~ 1.5 —4 cm with significant
variance along the length. The model contained ~ 130, 000
elements and took 5 h to solve on an Intel Xeon CPU E5-
2663 with 20 cores.

The main difference between simulation 1 and simula-
tion 2 is that simulation 2 modeled a thinner region of the
body than simulation 1, so the waves in this region were
smaller in both space and time (i.e., higher wavenumbers
and frequencies). Thus finer spatial and temporal discretiza-
tions were needed, but over shorter spatial and temporal ob-
servation windows. Additionally, the excitation frequency
range was approximately doubled.

E.6. Anatomical VSWE inferences

Fig. 8(a) In this panel, two inferences are presented —
one inference in the upper calf and one in the lower calf.
Both used simulation 1.
In Fig. 8(a), the upper calf inference used the following
parameters:
e ~ 11.3 cm spatial observation window
e 452 spatial sample points
* ~ 4000 px/m spatial sample rate
* 2 s temporal observation window
* 1601 temporal sample points
¢ 800 FPS temporal sample rate
In Fig. 8(a), the lower calf inference used the following
parameters:
* ~ 9.3 cm spatial observation window
* 373 spatial sample points
* ~ 4000 px/m spatial sample rate
* 2 s temporal observation window
* 1601 temporal sample points
800 FPS temporal sample rate

Fig. 8(b) This panel presents a series of inferences as an
observation window sweeps laterally across the upper calf,
making an inference at each location in the sweep. All in-
ferences in this sweep used simulation 1. In Fig. 8(b), the

inferences in the upper calf sweep used the following pa-
rameters:

* ~ 11.6 cm spatial observation window

* 463 spatial sample points

* ~ 4000 px/m spatial sample rate

* 2 s temporal observation window

* 1601 temporal sample points

800 FPS temporal sample rate

Fig. 8(c) In this panel, three inferences are presented in
three different regions near the ankle of significantly differ-
ent thickness. All inferences in this panel used simulation
2. In Fig. 8(c), the inference on region 1 used the following
parameters:

* ~ 9.1 c¢m spatial observation window

* 730 spatial sample points

» ~ 8000 px/m spatial sample rate

* (0.5 s temporal observation window

* 401 temporal sample points

* 800 FPS temporal sample rate

In Fig. 8(c), the inference on region 2 used the following
parameters:

* ~ 6.9 cm spatial observation window

* 549 spatial sample points

» ~ 8000 px/m spatial sample rate

* 0.5 s temporal observation window

* 401 temporal sample points

800 FPS temporal sample rate

In Fig. 8(c), the inference on region 3 used the following
parameters:

* ~ 3 cm spatial observation window

* 240 spatial sample points

* ~ 8000 px/m spatial sample rate

* (.5 s temporal observation window

* 401 temporal sample points

800 FPS temporal sample rate

F. Experiment details

In this section we give supplementary details surrounding
the real-world experiments.

F.1. Real-world VSWE gelatin experiments

Camera We used a Phantom V1610 high-speed camera.
We operated it at 600 FPS and a resolution of 96 x 1280 pix-
els (cropping was later applied before inputting the videos
to the VSWE pipeline). For our setup, this spatial resolu-
tion equates to a spatial sampling rate of ~ 3840 px/m.
Each video was taken in grayscale at a bit-depth of 16 and
then downsampled to a bit-depth of 8 before entering the
VSWE pipeline (for computational efficiency). Each video
was originally ~ 8 seconds long but trimmed to ~ 4 sec-
onds before entering the VSWE pipeline.



Geometry The gelatin was polymerized in a glass bak-
ing dish with an interior dimension of ~ 30 cm in length
and 19 cm in width. Waves traveled in the 30 cm direction,
originating near one end of the glass baking dish, and prop-
agating length-wise toward the other end. The excitation
head attached to the shaker was ~ 10 cm in width.

The camera was positioned ~ 1.2 m from the gelatin
surface, and the viewing angle of the camera was at a ~ 30°
angle with the surface.

Temperature measurements The gelatin was polymer-
ized in a refrigerator ~ 8 °C for ~ 24 £ 3 h. After being
removed from the refrigerator, the gelatin was immediately
textured with garlic powder and subsequently positioned in
the camera’s line of sight with the shaker applied to its sur-
face. A Thermoworks Thermapen One thermometer was
used to measure temperature. The thermomenter was posi-
tioned such that the probe was approximately halfway be-
tween the upper and lower surface of the gelatin, a few cen-
timeters from the edge of the glass baking dish. As often as
the hardware would allow (some amount of time is needed
to write the video to disk), a video was taken. For each
video, the current time and temperature were recorded.

F.2. Rheometry

Rheometry was used as the ground-truth measurement for
the gelatin stiffness. Here, we give more details on the
rheometry setup. A rheometer is an expensive piece of
bench-top equipment that is meant to measure the stiff-
nesses and viscosities of soft solids and fluids. These mea-
sured values are often dependent on temperature, excitation
frequency, humidity, and a variety of other factors, so high-
end rheometers often have built-in systems to control these
variables.

Rheometers use material samples that are shaped like
disks. Between this fact and the price tag of a rheome-
ter, they are unfit for the in-vivo measurement tasks that
VSWE aims to deliver, but are very helpful for bench-
marking against a well-established material measurement
method in a controlled environment.

Polymerization All gelatin in this work was polymer-
ized at a weight concentration of 4%. We polymerized
our gelatin samples directly on the rheometer with gelatin
taken directly from the gelatin samples prepared for the
real-world VSWE gelatin experiments. The gelatin samples
were taken when it was in liquid state, just before setting the
remainder to polymerize in the refrigerator for the VSWE
experiment. To replicate the polymerization environment
as exactly as possible, we set the rheometer gelatin and the
VSWE gelatin to polymerize at the same time (give or take a
few minutes) and took the VSWE videos concurrently with
the rheometer measurements. During polymerization, we

set the rheometer stage to the same temperature as the re-
frigerator. This way, we could ensure that both samples had
the exact same amount of time to polymerize, and at the
same temperature.

Stiffness measurements The rheometer measures the
stiffness of the gelatin by twisting the disk-shaped sample
in a shearing motion, back and forth, at a prescribed fre-
quency. The deformation applied is small, so as not to dam-
age the sample. In our experiments we applied 7% shear
strain. This measurement gives the shear modulus G of the
gelatin, which can then be converted to an elastic modulus
E by assuming a value for the Poisson’s ratio v. We assume
v = 0.45, which is reasonable for a hydrogel material like
gelatin.

Sweep over frequency and temperature This stiffness
measurement is repeated over a grid of frequencies and
temperatures, since frequency and temperature both affect
how stiffly the gelatin behaves. For each gelatin sample,
the stiffness was measured over the ranges of [10, 100] Hz
and [5,17] °C. These ranges were chosen to emulate the
frequencies and temperatures observed in some prelimi-
nary VSWE experiments; however, we should note that the
rheometer was limited to not exceed 100 Hz, whereas the
VSWE videos observed surface waves up to at least ~ 200
Hz. The rheometry measurements indicated that the gelatin
stiffens as excitation frequency increases, though we have
no ground-truth stiffness measurements from rheometry in
the range of [100,200] Hz. This mismatch between fre-
quency ranges may explain why the VSWE inferences ap-
pear to be at the upper bound, or slightly above, the rheom-
etry measurements.

F.3. Excitation system

To excite the surface of the gelatin, we uploaded chirp
waveforms to an Agilent signal generator. The signal gen-
erator passed this signal to a B&K amplifier, which then
passed the signal to a B&K shaker. Finally, the shaker
mechanically applied the excitation to the surface of the
gelatin.



