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A. First-Order Uncertainty Propagation
We leverage Laplace’s approximation, which allows us
to identify the Hessian of a non-linear least-squares min-
imization task as the precision matrix of the posterior
p(ω̃ij |image i and j) (up to a positive scale). In the fol-
lowing we apply first-order uncertainty propagation to move
from the minimal axis-angle parametrization ω ∈ R3 to a
direct parametrization of rotation matrices Rij ∈ R3×3.

For ∆ω ≈ 0 we have exp([∆ω]×) ≈ I + [∆ω]×. The
Jacobian of the map ∆ω → vec(I + [∆ω]×) is the 9x3
matrix

J =


0 0 0
0 0 1
0 −1 0
0 0 −1
0 0 0
1 0 0
0 1 0
−1 0 0
0 0 0

 .

Therefore the Gaussian transformed by the mapping ∆ω →
vec(I+ [∆ω]×) has covariance matrix

Σ[∆ω]× = JΣ∆ωJ
⊤ = JH−1J⊤. (A.1)

Since J has rank 3, the above relation only fixes 6 out of the
45 degrees of freedom in Σ[∆ω]× , hence there are 39 d.o.f.
available in Σ[∆ω]× to achieve the following properties: (i)
Σ[∆ω]× is invertible and (ii) the maximum-likelihood ob-
jective

vec(R− R̃)⊤M vec(R− R̃)
.
= vec(R)⊤M vec(R)− 2 vec(R̃)⊤M vec(R)

(A.2)

is linear in R and matches ∆ω⊤H∆ω to first order for a
suitable matrix M to be determined. We consider

∆ω⊤H∆ω
!
= tr([∆ω]⊤×M[∆ω]×)

= vec([∆ω]×)
⊤ vec(M[∆ω]×)

= (J∆ω)⊤ vec(M[∆ω]×)

= ∆ω⊤J⊤(I⊗ M) vec([∆ω]×)

= ∆ω⊤J⊤(I⊗ M)J∆ω

(A.3)

for all ∆ω, which implies

J⊤(I⊗ M)J = J⊤

M

M

M

 J = H. (A.4)

By e.g. using a CAS the relations between M and H can be
derived as

M11 + M22 = H33 M11 + M33 = H22 M22 + M33 = H11
(A.5)

and Mij = −Hij for i ̸= j. These relations can be more
compactly written as

H = tr(M)I− H (A.6)

in accordance with Section 4 of the main paper. We relate
[∆ω]× and R via [∆ω]× ≈ RR̃⊤ − I and therefore obtain

tr([∆ω]⊤×M[∆ω]×) ≈ tr
(
(RR̃⊤ − I)⊤M(RR̃⊤ − I)

)
= tr(R̃R⊤MRR̃⊤)− 2 tr(MRR̃⊤) + tr(M)

= tr(MRR̃⊤R̃R⊤)− 2 tr(R̃⊤MR) + tr(M)

= 2 tr(M)− 2 tr(R̃⊤MR)

= 2 tr(M)− 2
〈
MR̃, R

〉
F
, (A.7)

which is equivalent to the cost (9) in the main text.
Since [∆ω]× is (skew-)symmetric, a seemingly different

solution M′ can be obtained by factoring tr([∆ω]⊤×M[∆ω]×)
differently,

∆ω⊤H∆ω
!
= tr([∆ω]⊤×M

′[∆ω]×)

= vec(M′[∆ω]×)
⊤ vec([∆ω]×)

= vec(M′[∆ω]×)
⊤J∆ω

= ((M′ ⊗ I) vec([∆ω]×))
⊤
J∆ω

= ∆ω⊤J⊤(M′ ⊗ I)J∆ω

(A.8)

for all ∆ω, leading to the condition J⊤(M′⊗I)J = H. Using
a CAS it can be seen that these conditions on M′ are the same
as for M in (A.5), and therefore M = M′.

B. Parameterization of R
There are different ways of parametrizing rotations. In the
main paper we use the R = e[∆ω]×R̃ which lead to the
objective of the form −⟨MR̃,R⟩. In this section, we in-
vestigate the effects of switching to other possible parame-
terizations. In particular, we start by letting R = e[ω]× =
e[ω̃+∆ω]× and look at its approximations.

We first notice that we can expect RR̃⊤ ≈ I as R̃ is a
noisy realization of R, therefore R and R̃⊤ approximately
commute and

e[∆ω]× = e[ω−ω̃]× = e−α[ω̃]×+[ω]×−(1−α)[ω̃]×

≈ e−α[ω̃]×e[ω]×e−(1−α)[ω̃]×

= (R̃⊤)αR(R̃⊤)1−α

(B.9)

for any α ∈ [0, 1], i.e.

R ≈ R̃αe[∆ω]×R̃(1−α). (B.10)



The Hessian induced by the two-view optimization can then
be computed in accordance with this mapping. The first-
order Taylor expansion of (B.9) results in

[∆ω]× ≈ (R̃⊤)αR(R̃⊤)1−α − I. (B.11)

Plugging this into (5) gives the corresponding linear cost

−⟨R̃αMR̃(1−α), R⟩. (B.12)

The natural choices for α are 0, 1/2 and 1. Setting
α = 0 yields the formulation employed in the main pa-
per. We found that for the other values of α the solution of
anisotropic rotation averaging is the same. However, when
using the Hessian matrix computed from the Jacobian of the
initial parameterization, R = e[ω̃+∆ω]× , the results vary
when optimizing the anisotropic cost for different values of
α. In our synthetic experiments the best solution is often
obtained with α = 1/2, however, this setting does not out-
perform the proposed formulation overall.

C. Spectral method for anisotropic costs
We recall that our main objective is∑

i,j

〈
MijR̃ij , RjR

⊤
i

〉
. (C.13)

Let us assume the noisefree setting, i.e. R̃ij = RiR
⊤
j . The

cost matrix N is then given by

N =


...

· · · MijRjR
⊤
i · · ·

...

 . (C.14)

Consequently,

NR =


...∑

i MijRjR
⊤
i Ri

...

 =


...∑

i MijRj

...



=


. . . ∑

i Mij

. . .


︸ ︷︷ ︸

=:D

R.

(C.15)

Hence, NR = DR or

D−1NR = R, (C.16)

and R can be extracted as the eigenspace corresponding to
the eigenvalue of 1. Since N does not necessarily have rank-
3 (even in the noise-free case), we obtain R as the right sin-
gular vectors corresponding to the three smallest singular
values of N− I. We include results for this method in Table
D.1 introduced in the next section.

D. Experimental Details

We provide complementing results on synthetic and real
datasets below.

D.1. Synthetic experiments

We set up a synthetic graph with three cameras as shown in
Figure D.1. The estimated relative rotations corresponding
to the black dashed edges are “certain”, i.e. ∆ωij are drawn
from N (0, εI), where ε = 0.001. The estimated relative ro-
tation of the gray edge has varying uncertainty around one
of the three axes, e.g., for the x- (red) axis, the noise co-
variance is diag(σ, ε, ε), where σ varies from 0.01 to 0.3.
The effects on the error are shown in Figure D.1. The pro-
posed method relies on certain relative rotations and gives
an accurate solution, while the standard isotropic approach
is negatively affected by the single noisy relative rotation.

We also present complementing results of the synthetic
experiments of Sec 5.1 in the paper. Figure D.2 shows the
rotation error histograms and the dependency of the runtime
on the number of cameras for the other fractions of the ob-
served relative rotations. These results are in line with the
analysis provided in the paper — using the proposed objec-
tive leads to lower errors and using the proposed constraints
speeds up the employed SDP solver.

D.2. Real experiments

To account for the estimated uncertainties in the evaluation,
we compared the methods using the Mahalanobis distance
between the axis-angle vectors of the estimated and ground
truth rotations. The axis-angle vector ωi is distributed ac-
cording to N (ω∗

i , Hi), where ω∗
i is the ground truth axis-

angle vector and Hi =
∑

j:{ij} was observed Hij , assuming
that all other cameras are fixed. Let ∆ω−

i = ωi − ω∗
i and
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Figure D.1. The configuration of the cameras (top left). Rotation
error wrt. ground truth

√∑
i ∥Ri −R∗

i ∥2F (top right, bottom) for
the increasing noise scale around one of the axes.



∆ω+
i = ωi + ω∗

i , then the Mahalanobis error is√∑
i

min{∆ω−⊤
i Hi∆ω−

i ,∆ω+⊤
i Hi∆ω+

i }, (D.17)
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(a) p = 0.1
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(b) p = 0.3
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(c) p = 0.5
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(e) p = 0.9
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(f) p = 1.0

Figure D.2. Histograms of rotation errors wrt. ground truth (rows
1,3,5). Corresponding solver runtime (s) wrt. the increasing num-
ber of cameras (rows 2,4,6). Results are shown for different frac-
tions p of observed relative rotations.

where the minimization is done to account for the sign am-
biguity in the axis-angle representation. We also present
the RMS angular errors for a better geometric interpreta-
tion. As shown in Table D.1, in many cases, the proposed
method leads to a much lower error.

Dataset Method Mahal. err. Angl. err.

LU Sphinx
SDP-O(3)-ISO 0.388 0.46
Spectral 0.420 1.17
SDP-CSO(3) 0.207 0.36

Round Church
SDP-O(3)-ISO 0.631 0.59
Spectral 0.437 1.20
SDP-CSO(3) 0.368 0.54

UWO
SDP-O(3)-ISO 1.481 1.19
Spectral 6.125 7.07
SDP-CSO(3) 0.727 0.86

Tsar Nikolai I
SDP-O(3)-ISO 0.687 0.48
Spectral 0.344 0.71
SDP-CSO(3) 0.188 0.22

Vercingetorix
SDP-O(3)-ISO 0.431 1.53
Spectral 30.970 86.94
SDP-CSO(3) 0.423 1.42

Eglise Du Dome
SDP-O(3)-ISO 0.224 0.24
Spectral 0.119 0.22
SDP-CSO(3) 0.188 0.21

King’s College
SDP-O(3)-ISO 0.229 0.76
Spectral 0.251 1.00
SDP-CSO(3) 0.130 0.37

Kronan
SDP-O(3)-ISO 0.738 0.76
Spectral 2.622 4.36
SDP-CSO(3) 1.111 1.38

Alcatraz
SDP-O(3)-ISO 1.333 0.62
Spectral 0.667 0.80
SDP-CSO(3) 1.011 0.45

Museum Barcelona
SDP-O(3)-ISO 2.710 0.79
Spectral 16.588 7.35
SDP-CSO(3) 1.216 0.46

Temple Singapore
SDP-O(3)-ISO 2.420 0.86
Spectral 0.719 0.46
SDP-CSO(3) 1.076 0.55

Table D.1. Mahalanobis distance between the axis-angle vectors
of the estimated and ground truth rotations and RMS angular errors
(degrees) evaluated on the real datasets.
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