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A. Overview
This document is structured as follows:
• Section B: Related work
• Section C: Implementation details
• Section D: Additional quantitative results
• Section E: Discussion on V-ICL models trained on task-

related data
• Section F: Additional ablations
• Section G: Limitations and future work
• Section H: Additional qualitative results

B. Related Work
In-context learning (ICL) has garnered significant attention
in the field of natural language processing (NLP) with the
advent of large-scale language models like GPT-3 [5] and
its successors [6, 19, 25, 26]. These models demonstrate
the ability to perform tasks by conditioning on a small num-
ber of source-target examples, termed prompts, without any
gradient updates or finetuning, effectively adapting to new
tasks on-the-fly [12, 31]. The success of ICL in NLP has
sparked interest in extending these capabilities to other do-
mains, particularly in the realm of computer vision.

However, translating the concept of in-context learning
from NLP to computer vision presents unique challenges
due to the diversity in images and the inherent complex-
ity of visual tasks. This has led to the emergence of two
primary schools of thought in adapting ICL to computer vi-
sion, termed visual in-context learning (V-ICL).

The first approach adapts vision foundation models for
in-context learning by training on uncurated datasets com-
posed of random crops that potentially include examples of
source images and corresponding targets (e.g. figures from
computer vision papers). Research such as Visual Prompt-
ing [3] and IMProv [33] exemplify this approach, where
they train a ViT-based MAE-VQGAN architecture [9, 13]
on the task of masked inpainting. During inference, these
methods involve creating composite images by stitching
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together a query image with prompt examples, forming a
grid-like structure with a placeholder mask for the predic-
tion, that the inpainting model can process. While these
methods yield promising results, this approach often suffers
from weaker inference of context between the query image
and the prompt, lower resolution predictions, and overall
weaker prediction quality.

The second school of thought aims to enhance predic-
tion performance by training vision foundation models on
curated/annotated task-related datasets. This method in-
volves training/finetuning a model but uses paired source-
target images of multiple tasks as training data. Notable
examples of this method include Painter [27], Prompt Dif-
fusion [30], SegGPT [28], Skeleton-In-Context [29], and
Point-In-Context [10]. While models such as Painter and
Prompt Diffusion target a relatively diverse set of tasks, the
others focus on building generalist models to cater specific
tasks such as segmentation, skeleton sequence modeling, or
3D point cloud estimation. Although these models achieve
improved results and provide important insights for future
research in visual in-context learning, they require updating
model weights using datasets related to the out-of-domain
tasks. This in turn implies the need for training data on re-
lated out-of-domain tasks that we are trying to adapt to. We
believe that this ideology diverges from the core principles
of ICL as they often fall short in generalizing to novel tasks
that are unrelated to the training set and rely on large anno-
tated datasets. This approach, therefore, somewhat under-
mines the fundamental idea of ICL, which emphasizes the
ability to adapt to new tasks without retraining nor requiring
a large annotated dataset.

C. Implementation Details
SD-VICL: We base our experiments on an off-the-shelf
Stable Diffusion model [20], specifically the v1.5 check-
point. Unless specified otherwise, we use the following hy-
perparameters for all our evaluations: denoising time steps
(T ) = 70, attention temperature (τ ) = 0.4, contrast strength
(β) = 1.67, and swap-guidance scale (γ) = 3.5. Further, we



Model Foreground Segmentation (mIoU ↑) Single Object Detection (mIoU ↑)
Split 0 Split 1 Split 2 Split 3 Avg. Split 0 Split 1 Split 2 Split 3 Avg.

Number of Example Prompts: 1
Visual Prompting [3] 34.85 38.55 34.51 32.24 35.04 48.82 48.52 45.11 42.72 46.29
IMProv (w/o text) [33] 41.46 43.60 39.70 33.22 39.50 46.10 47.26 41.97 39.96 43.82
IMProv (w/ text) [33] 41.31 44.64 40.86 35.93 40.69 44.69 48.10 44.53 40.34 44.42
SD-VICL (ours) 44.05 45.17 44.36 42.11 43.92 54.45 52.92 51.56 47.27 51.55

Number of Example Prompts: 5
Visual Prompting [3] 36.70 40.02 36.18 32.56 36.37 51.59 49.30 46.80 44.66 48.09
SD-VICL (ours) 55.55 56.08 55.84 54.49 55.49 58.99 56.31 57.09 56.01 57.10

Table 1. Quantitative performance comparison of the proposed approach with recent approaches on foreground segmentation and single
object detection for each split of the Pascal-5i dataset.

set the text condition of the Stable Diffusion pipeline to an
empty string, and thus, no supplementary guidance is pro-
vided beyond the input prompts.

Comparison baselines: We use the publicly available
repositories and checkpoints for Visual Prompting [3], IM-
Prov [33], Painter [27], LVM [2], and Prompt Diffusion [30]
to generate the results for all the experiments. For the text-
guided variant of IMProv, as specified in their paper, we
provide the model with a string comprising of the location
and task information (e.g. “Left - input image, right - Black
and white foreground/background segmentation”). To en-
sure a fair comparison, all methods, including ours, are eval-
uated using the same set of prompts, which we obtain us-
ing the unsupervised prompt retrieval method outlined by
Zhang et al. [36].

Tasks and datasets: Below, we provide details on the tasks
and datasets used for evaluations in our experiments:
• Foreground segmentation: This is a binary segmen-

tation task, which predicts a binary mask of the object
of interest (i.e. foreground) in an image. The prompt
groundtruth is a black-and-white image with the fore-
ground being white and the background being black. For
evaluation, we use the Pascal-5i dataset [23], which com-
prises of 1864 images belonging to 20 object classes. The
images are divided into four splits, where each split con-
sists of five unique classes. We use the mean intersection-
over-union (mIoU) as the evaluation metric.

• Single object detection: This task is similar to the
foreground segmentation task, however, in this task, the
bounding box of the object of interest is predicted instead
of the mask with the exact boundary. For this task, the
prompt groundtruth is a black-and-white image with the
bounding box colored in white. We use the same dataset
as foreground segmentation but include only images with
single instances of objects following [3, 33]. The subset
thus chosen consists of 1312 images and we report the
mIoU scores.

• Semantic segmentation: This task predicts the per-pixel

semantic label of a given image. We follow the method
proposed by Wang et al. [27] to compose the prompt
groundtruth, which assigns equally-spaced unique colors
to each class. We use the Cityscapes dataset [7], which
consists of 19 classes (excluding the void classes), and the
COCOStuff dataset [16], which consists of 27 mid-level
classes. We report the mIoU and pixel accuracy scores as
evaluation metrics.

• Keypoint detection: The task of keypoint detection en-
tails locating the critical points or landmarks of an object.
In this study, we focus on human pose keypoint detection,
which predicts the locations of the 17 keypoints defined
in COCO [16]. Since the prompt groundtruth needs to be
in the form of an image, we create an image that depicts
the keypoints in the form of a heatmap as shown in Fig.
4. Each heatmap is created by superimposing Gaussian
distributions centered on each keypoint. To accommo-
date the different spatial scales, we apply Gaussians with
smaller variance for facial keypoints, which are relatively
finer, and larger variance for body keypoints. These are
visualized in two color channels: red for facial keypoints
and green for body keypoints, facilitating easier decod-
ing. For evaluation, following Hedlin et al. [14], we use
the DeepFashion dataset [18] and report metrics: mean
sqaured error (MSE) and the percentage of correct key-
points (PCK).

• Edge detection: The goal of this task is to predict the
boundaries and edges within an image. For evaluation,
we utilize the validation set of the NYUDv2 dataset [24]
comprising 654 images. Since the validation set did not
have the groundtruth, we used the soft edge maps gen-
erated using HED [32] as the pseudo-groundtruth. For
evaluation we compute the MSE and the LPIPS loss [35]
between the HED-predicted edge map and the V-ICL pre-
dictions.

• Colorization: In this task, the objective is to colorize a
given grayscale image. Similar to [3, 33] we randomly
sample 1000 images from the validation set of ImageNet



Model Single Object Detection (mIoU ↑)
Split 0 Split 1 Split 2 Split 3

Number of Example Prompts: 1
Visual Prompting 42.94 35.02 37.77 32.76
IMProv (w/o text) 42.32 36.52 36.32 31.83
IMProv (w/ text) 40.61 35.79 38.74 32.55
Ours 47.74 39.86 44.93 37.92

Number of Example Prompts: 5
Visual Prompting 45.07 34.86 38.37 34.23
Ours 51.74 43.15 50.23 47.20

Table 2. Quantitative evaluation of single object detection on a
subset of the Pascal-5i dataset, where larger objects with an area
greater than 50% were excluded.

[21] for evaluation. We compute the LPIPS loss and the
FID score [15] between the original colored image and
the colorized prediction to evaluate the perceptual simi-
larity.

D. Additional Quantitative Results
While in Tab. 1 we present the average performance for
foreground segmentation and single object detection across
all splits of the Pascal-5i dataset, in Tab. 1, we report the
metrics for each split.

Additionally, in Tab. 1, we present the results of single
object detection evaluated on the entire dataset for a more
generalized assessment. However, in Tab. 2, we follow the
approach of Bar et al. [3] and evaluate single object de-
tection on a subset of the Pascal-5i dataset, where images
with objects covering more than 50% of the image are ex-
cluded. While we observe an overall drop in absolute scores
for all methods, the performance trends remain consistent
with Tab. 1. This decline in performance can be attributed
to the fact that larger objects are generally easier to detect
than smaller ones, as noted by Bar et al. [3] as well.

Furthermore, we evaluated semantic segmentation on
the COCOStuff dataset [16], where we report the results
in Tab. 3. In contrast to the trend observed in Tab. 2,
where performance improved with five example prompts
compared to the single prompt, we could see a performance
deterioration with five prompts in this case. Upon analy-
sis, we identified that this performance decline was caused
by the inconsistencies in labeling within the dataset, which
creates confusion when inferring the context with multiple
prompts, thereby negatively impacting the results.

E. Discussion on V-ICL Models Trained on
Task-Related Data

As emphasized in the main paper, our work the first to pro-
pose a fully training-free paradigm that uncovers the V-ICL

Model Semantic Segmentation
mIoU ↑ Acc. ↑

Number of Example Prompts: 1
Visual Prompting 15.31 39.07
IMProv (w/o text) 17.09 41.64
IMProv (w/ text) 17.19 42.35
Ours 28.32 56.84

Number of Example Prompts: 5
Visual Prompting 13.01 36.12
Ours 21.80 53.01

Table 3. Quantitative evaluation of semantic segmentation on the
COCOStuff dataset.

properties of a vision foundation model. For fairness, Sec.
3.1 of the main paper evaluates our approach against Vi-
sual Prompting [3] and IMProv [33], as they are the clos-
est in methodology. While these models involve training,
they do so on uncurated datasets, unlike models such as
Painter [27], LVM [2], and Prompt Diffusion [30], which
are trained on task-related annotated data.

To ensure completeness, we extend our evaluations to
these V-ICL models trained on task-related data. Painter
leverages a ViT-Large [8] backbone trained on multiple
annotated datasets (e.g. COCO [16], ADE20K [37], and
NYUv2 [24]). LVM is built on OpenLLaMA’s 7B model
[11] and trained on the UVD-V1 [2] dataset, a large-scale
vision corpus comprising 50 datasets (e.g. LAION5B [22])
that span annotated, unannotated, and sequence images.
Prompt Diffusion is a generative model based on Stable Dif-
fusion, jointly finetuned on three forward tasks (i.e. image-
to-depth, image-to-edge, image-to-segmentation) and their
inverse variants, using vision-language prompts with paired
images and text guidance. The training is conducted on a
dataset adapted from Brooks et al. [4].

The quantitative and qualitative comparisons are pre-
sented in Tab. 2 and Fig. 1, respectively. Overall, we ob-
serve that our method outperforms all three baselines across
multiple tasks.

We observe that all three modes often suffer from over-
fitting to training tasks, leading to poor generalization when
exposed to novel tasks. Although visual in-context learning
should ideally infer the task from the relationship between
the prompt image and its groundtruth, these models demon-
strate weakness in this regard.

Painter performs well on simple tasks like foreground
segmentation and object detection when the query image
contains a single foreground category (Fig. 1, row 1). How-
ever, in multi-class scenarios (Fig. 2a), Painter segments
the entire foreground rather than focusing on the specific
region of interest defined by the relationship between the
prompt image and its groundtruth. Further, overfitting to



Figure 1. Additional qualitative comparisons illustrating the performance of training-based V-ICL models, Painter [27], LVM [2], and
Prompt Diffusion [30] our proposed method on six different tasks. It can be seen that our method produces visually superior results as
compared to the baselines.

training tasks is evident in rows 3 and 4 of Fig. 1, where
Painter outputs a segmentation map in semantic segmenta-
tion with a different color scheme than defined in the prompt
groundtruth. Similarly, for keypoint detection, Painter out-
puts a segmentation map instead of a heatmap for key-
points. Moreover, Painter struggles with colorization, of-
ten outputting the grayscale image itself. In edge detection,
Painter outputs a depth map instead of the expected edge
map (Fig. 1, row 2). This behavior suggests overfitting to
the NYUv2 dataset, where the edge map query/prompt im-
ages overlap with those used for depth estimation during
their training.

Similar limitations are observed for LVM, including
poor performance on multi-class foreground segmentation
(Fig. 2a), overfitting to training tasks (Fig. 1, row 4), and
lack of generalization. Additionally, LVM exhibits incon-
sistencies in its outputs, as shown in Fig. 2b. Specifically,
for a given task, despite the format/domain of the inputs

remaining unchanged, we observe that the generated out-
puts belong to diverse domains. For example, in foreground
segmentation, while some outputs align with foreground
segmentation, others unexpectedly belong to unrelated do-
mains such as keypoints, segmentation maps, or RGB im-
ages. This inconsistency highlights LVM’s inability to pro-
duce coherent predictions despite the task and input format
remaining unchanged.

Prompt Diffusion, while aiming to unlock in-context ca-
pabilities via vision-language prompts, remains constrained
by the six tasks it is explicitly trained on. Although it ex-
hibits relatively stronger performance in edge detection and
segmentation — tasks included in its training, it struggles
on tasks outside this scope. For instance, Prompt Diffusion
produces structurally incoherent outputs for keypoint detec-
tion, object detection, and colorization, failing to align with
the semantics illustrated by the prompt pair. It also occa-
sionally hallucinates incorrect colors, textures, or layouts,



(a)

(b)

Figure 2. Failure cases of V-ICL models trained on task-related data, Painter [27] and LVM [2], implying poor task inference. In (a),
both models fail in multi-class scenarios, segmenting the entire foreground instead of focusing on the region of interest defined by the
prompt image and its corresponding ground truth. Examples in (b), depict inconsistent outputs generated by LVM for the same task (left:
edge detection, right: foreground segmentation). The inputs for each of these outputs adhered to the same format as shown in Fig. 1, yet
LVM produces outputs in diverse domains, deviating from the domain of the prompt groundtruth. These cases further emphasize the poor
task inference capabilities of Painter and LVM.

Figure 3. Qualitative examples of alternative attention formula-
tions.

especially when confronted with novel task types or subtle
prompt-query domain shifts.

These observations highlight shared limitations among
Painter, LVM, and Prompt Diffusion in inferring tasks and
context purely from input prompts. Their reliance on
task-specific training data results in overfitting, leading to
poor generalization on novel tasks. In contrast, our pro-
posed training-free method demonstrates robust generaliza-
tion and effective task inference, underscoring the benefits
of uncovering V-ICL properties without additional training
and the superiority of the proposed method to explicitly in-
fer the context and task from the inputs, as intended by V-
ICL.

F. Additional Ablations
In addition to the ablations discussed in the main paper, we
also experimented with alternative attention formulations
and the effects of several other factors such as tempera-
ture hyperparameter, resolution of the self-attention layers,
contrastive strength parameter, swap-guidance scale, and
AdaIN.

Alternative attention formulations: With regards to the
attention formulation between query and the prompt, there
are potentially multiple variants that could be used instead
of the one described by Eq. (7). These candidate for-
mulations can be derived by substituting the Q and K
of Eq. (7) with the corresponding elements of each of
these sets: {QD,KB}, {QC ,KB}, and {QD,KA}. Since
the prediction needs to correspond to the features of the
prompt groundtruth, the value vector, V , needs to come
from B and cannot be substituted with other alternate op-
tions. Fig. 3 illustrates a subset of these variants along
with the predictions obtained using these alternate formula-
tions. The quantitative performance corresponding to these
candidate formulations are presented in Tab. 4. However,
since the prompt groundtruth lacks semantics, such formu-
lations (i.e. {QD,KB , VB}, {QC ,KB , VB}) tend to focus
on color similarities rather than inferring the underlying se-
mantic correlations. Alternatively, we can formulate the at-
tention using the Query vector from the prediction (D) it-
self, similar to the approach followed by Alaluf et al. [1]. In
this scenario, the intermediate predictions at early denois-
ing stages closely resemble those produced by our formu-
lation. However, in later denoising stages, the performance
deteriorates as the prediction gradually shifts towards the
prompt groundtruth, which lacks semantics, impairing the
prediction performance. As seen in Fig. 3 and Tab. 4, the
proposed formulation demonstrates superior performance
which is achieved by ensuring that at each denoising step,
the process is guided by the query and prompt latents at
the corresponding denoising stages, thereby preserving the
essential semantics needed for better context and task infer-
ence.



(a) (b) (c)

Figure 4. We illustrate the performance variation with respect to the attention temperature hyperparameter for the following tasks:
(a) foreground segmentation, (b) colorization, and (c) keypoint detection.

Method mIoU ↑
{QC ,KB , VB} 12.54
{QD,KB , VB} 12.95
{QD,KA, VB} 23.68

Proposed: {QC ,KA, VB} 55.49

Table 4. Ablation of attention formulations on foreground seg-
mentation evaluated on Pascal-5i.

Temperature hyperparameter, τ : As shown in Eq. (7),
we introduce a temperature hyperparameter (τ ) to the atten-
tion computation in order to control the sharpness of cor-
respondence between the patches of the query image and
the prompt image. While we use a constant temperature
hyperparameter (i.e. τ = 0.4) across all tasks to preserve
generalization, we investigated the effect of τ on the perfor-
mance of a few proxy tasks. We observe that the optimal
temperature parameter varies notably with the task, which
we depict in Fig. 4.

Contrast strength (β) and swap-guidance scale (γ) hy-
perparameters: We adapt the attention map contrasting
(Eq. (8)) and swap-guidance (Eq. (9)) methods from Alaluf
et al. [1] to address the domain gap introduced by using
multiple images from different domains (i.e. source and
target images belong to distinct domains). While we uti-
lize the hyperparameter values proposed by [1] (i.e. β =
1.67, γ = 3.5), we investigate their impact on performance
using foreground segmentation as a proxy task. We depict
the variation of the performance with respect to the contrast
strength and the swap-guidance scale in Fig. 5. A notable
improvement in performance can be observed with a con-
trast strength greater than 1.0 and with swap-guidance en-
abled.

Adaptive instance normalization (AdaIN): As explained
in Sec. 2.2, we utilize AdaIN to align the color distribu-
tion between the prediction (D), which is initialized using
the noise space of the query image (C), and the expected
groundtruth color space (i.e. color space of B). In Fig. 6 we

(a) (b)

Figure 5. Performance variation with respect to (a) contrast
strength and (b) swap-guidance scale hyperparameters.

Figure 6. Example comparing the prediction with and without
AdaIN.

Model mIoU ↑
w/o AdaIN 51.55
w/ AdaIN 55.49

Table 5. Quantitative evaluation of with and without AdaIN eval-
uated using foreground segmentation.

present a comparison example with and without AdaIN, and
in Tab. 5 we tabulate the overall performance on foreground
segmentation. A clear performance improvement could be
observed with the incorporation of AdaIN.

Resolution of attention layers: The denoising U-Net in
the Stable Diffusion pipeline contains self-attention layers
at multiple resolutions: 16 × 16, 32 × 32, and 64 × 64.
Consequently, we can apply the proposed in-place attention
reformulation to any combination of these layers. We eval-
uated different combinations of these resolutions, with the



Figure 7. Qualitative examples of the output for each combination of self-attention layers modified using the proposed in-place attention
reformulation.

Resolution mIoU ↑
16× 16 32× 32 64× 64

✓ - - 11.39
- ✓ - 32.50
- - ✓ 50.33
✓ ✓ - 35.48
✓ - ✓ 52.52
- ✓ ✓ 53.76
✓ ✓ ✓ 55.49

Table 6. Quantitative evaluation on different combinations of reso-
lutions which the self-attention layers could be modified using the
proposed in-place attention reformulation.

results presented in Tab. 6. Additionally, we provide qual-
itative performance comparisons for each combination in
Fig. 7. The best performance was achieved when modify-
ing self-attention layers at all resolutions. This is intuitive,
as it aggregates correspondences at multiple granularities,
leading to a more comprehensive representation. In all our
experiments, we use self-attention layers at all resolutions
unless stated otherwise.

G. Limitations and Future Work
As with other diffusion-based methods, the primary limita-
tion of our approach lies in its high inference time. In this
work, our focus has been on exploring the V-ICL properties
of Stable Diffusion, with less emphasis on computational
efficiency. We believe it is crucial to first establish a robust
and generalizable framework, with efficiency optimizations
forming an important avenue for future work. In particular,
integrating faster diffusion techniques [17, 34], which of-
fer up to 100× speedups without sacrificing output quality,
could significantly reduce inference costs.

Another limitation, shared with other V-ICL methods, is
sensitivity to noisy prompts. Since V-ICL methods rely on
a small number of visual examples to infer both context and
task, inaccuracies in prompt pairs can lead to degraded per-
formance. While our implicitly-weighted prompt ensem-
bling and attention temperature scaling partially mitigate
this issue, further improvements in robustness to noisy or
ambiguous prompts remain an open challenge.

Finally, extending our approach to the temporal do-

main, by adapting it to video generative models, presents
a promising direction. Such an extension could enable
training-free visual in-context learning for video-based
tasks, further broadening the applicability of our frame-
work.

Addressing these limitations could substantially enhance
both the practicality and generality of visual in-context
learning systems.

H. Additional Qualitative Results
We present additional qualitative examples for each task,
foreground segmentation, single object detection, semantic
segmentation, keypoint detection, edge detection, and col-
orization in Figs. 8 to 13 respectively.



Figure 8. Qualitative examples of foreground segmentation in comparison with Visual Prompting [3] and IMProv [33].



Figure 9. Qualitative examples of single object detection in comparison with Visual Prompting [3] and IMProv [33].



Figure 10. Qualitative examples of semantic segmentation in comparison with Visual Prompting [3] and IMProv [33].



Figure 11. Qualitative examples of keypoint detection in comparison with Visual Prompting [3] and IMProv [33].



Figure 12. Qualitative examples of edge detection in comparison with Visual Prompting [3] and IMProv [33].



Figure 13. Qualitative examples of colorization in comparison with Visual Prompting [3] and IMProv [33].
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