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1. Overview
In this supplementary material, we provide additional anal-
ysis of the proposed SynFIQA dataset and MR-FIQA
method (Section 2), detailed experimental settings (Section
3), and additional experimental results (Section 4).

2. Additional Analysis
2.1. Synthetic Dataset – SynFIQA
Motivation Emphasis. In Table 1, we summarize the prop-
erties of the SynFIQA and other face synthetic datasets.
It is worth noting that the original intentions of existing
synthetic datasets and their evaluations are mainly for face
recognition. Although they can be used to train synthetic-
based FIQA models, they are not as tailored for FIQA as
ours, especially since our dataset also provides additional
reference and quality labels. For visual comparison, some
degraded samples from previous and proposed synthetic
datasets are illustrated in Fig. 1.
Customized Post-Processing. In our generation pipeline,
we adopt a post-processing scheme to control blur degrada-
tion and downsampling. Our choice of this post-processing
approach is based on the following considerations: 1) The
native stable diffusion model possesses a strong capabil-
ity to generate high-resolution and highly realistic images,
while injecting blur and downsampling distortion as condi-
tional information for generation opposes this inherent gen-
erative ability; 2) It ensures a better quality of the generated
reference images; 3) There is a direct correlation between
control parameters and distortion; 4) It guarantees that our
generated data is fully synthetic, as no real data is used to
simulate real distortions or style distributions.
Demographic Statistics. Fig. 2 presents demographic
statistics encompassing all identities within our dataset.
Contrary to the approach of GANDiffFace [20], we do not
integrate demographic-specific transformations in the first
phase of the generation pipeline, such as altering age, race,
or gender. Consequently, the demographic composition
within our dataset reflects the influence of the unconditional
generator trained on FFHQ [16].
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Figure 1. Visualization of various degraded samples from different
synthetic datasets. The samples in each row originate from the
same identity and are cropped and aligned via RetinaFace [12].
In our SynFIQA dataset, the samples display significant quality
variations in pose, expression, and other quality factors, rendering
it particularly well-suited for the FIQA task.
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Figure 2. Proportions of age, race, and gender of identity in
our SynFIQA dataset. These demographic attributes are obtained
through the facial analysis via the deepface model [27].

Intensity Parameters of Degradation. For the generation
of degraded samples, we define different selection probabil-
ities for the control parameters of distortion within various
parameter intervals, while the specific distortion parameter
selection within each interval follows a uniform distribu-
tion. Specifically, the selection probabilities for the pose
intensity parameter py in the intervals [5, 10], (10, 25], (25,
50], and (50, 75] are 15%, 30%, 50%, and 5%, respectively.
The blur intensity parameter pb has selection probabilities
of 15%, 65%, 10%, 8%, and 2% for the value = 0, inter-
vals (0, 1.6], (1.6, 2.5], (2.5, 4.0], and (4.0, 8.0], respec-
tively. The downsampling intensity parameter pd has selec-
tion probabilities of 15%, 65%, 10%, 8%, and 2% for the
value = 0, intervals (1, 2.6], (2.6, 3.5], (3.5, 5.0], and (5.0,
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Table 1. Property summary of different face datasets. Compared with previous face synthetic (Syn.) datasets, our proposed SynFIQA is
dedicated to the face image quality assessment (FIQA) task instead of face recognition (FR). Meanwhile, our dataset offers a wealth of
labels, encompassing identity, reference (Ref.), and quality annotations.

Datasets Venue Data generation Data type #Size #Identity Identity label Ref. label Quality label Main task
CASIA-WebFace [13] - - Real 0.49M 10.5K ✓ ✗ ✗ -

DigiFace-1M [4] WACV’23 Digital Rendering Fully Syn. 1.2M 10K+100K ✓ ✗ ✗ FR
SFace2 [8] T-BIOM’24 GAN-Based Fully Syn. 1.05M 10.5K ✓ ✗ ✗ FR

HSFace-10K [8] ArXiv’24 GAN-Based Fully Syn. 0.5M 10K ✓ ✗ ✗ FR
DCFace [17] CVPR’23 Diffusion–Based Syn.▷ 0.5M 10K ✓ ✗ ✗ FR
IDiff-Face [7] ICCV’23 Diffusion–Based Fully Syn. 0.5M 10K ✓ ✗ ✗ FR

GANDiffFace [7] ICCVW’23 GAN-Diffusion–Based Fully Syn. 0.54M 10K ✓ ✗ ✗ FR
SynFIQA (Ours) - Diffusion-Based Fully Syn. 0.5M 5K ✓ ✓ ✓ FIQA

▷: Sampling with real data.
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Figure 3. Visualization of degraded samples with different types of occlusions, including occlusion caused by controlling wearing glasses
and sunglasses, and introducing a contextual environment by our customized positive text prompts. Moreover, there exist a few samples
with unforeseen occlusion stemming from limbs, long hair, and objects. These diverse occluded samples collectively contribute to the
quality variance within our SynFIQA dataset.

Table 2. pAUC and AUC results for different weighting factors λ.

Parameters
pAUC↓

CPLFW XQLFW AgeDB Adience TinyFace Avg.
λ = 0.1 0.649 0.757 0.889 0.650 0.869 0.763
λ = 0.3 0.642 0.838 0.876 0.661 0.896 0.782
λ = 0.5† 0.632 0.800 0.887 0.608 0.808 0.747
λ = 0.7 0.605 0.819 0.885 0.599 0.823 0.746
λ = 0.9 0.576 0.765 0.908 0.642 0.812 0.741

Parameters
AUC↓

CPLFW XQLFW AgeDB Adience TinyFace Avg.
λ = 0.1 0.363 0.375 0.685 0.445 0.519 0.477
λ = 0.3 0.351 0.439 0.665 0.439 0.549 0.489
λ = 0.5† 0.370 0.414 0.678 0.430 0.453 0.469
λ = 0.7 0.379 0.407 0.694 0.424 0.465 0.474
λ = 0.9 0.370 0.371 0.704 0.452 0.491 0.478
†: This parameter is selected according to the overall Avg. pAUC and AUC.

9.0], respectively. The expression, lighting, and position pa-
rameters are randomly selected within their respective con-
trol range intervals. The selection probabilities for each text
prompt are uniform for positive text prompts used in occlu-
sion control. It is important to highlight that while glasses
and sunglasses introduce deterministic occlusion, all other
prompts introduce uncertain occlusion influenced by the en-
vironmental context. Herein, various samples featuring dif-
ferent types of occlusions are illustrated in Fig. 3.

2.2. Quality Characterization Method – MR-FIQA
Recognition Embedding Domain. For the quality score
in the recognition embedding domain, we use all refer-

ence representations in the intra-class embedding domain to
compute the similarity between the target sample and ref-
erence representations as the quality score fr. In Fig. 5,
we compare the results of adopting one and all reference
representations under the AdaFace as the deployed recog-
nition model. Herein, we only use the quality informa-
tion of the embedding domain as quality labels to train the
FIQA model, and the other settings are the same as our Syn-
FIQA++. Clearly, the curve of our approach (denoted as
All-RR) is consistently lower than one using only one ref-
erence representation, especially within the range of 30%
to 70% ratio of unconsidered images. This validates the
conclusion that All-RR has an advantage in predicting the
quality of medium and high-quality samples.

Spatial Domain. In the spatial domain, we utilize the min-
imal rank among pose, blur, and downsampling to compute
the quality score sd. This decision is based on the principle
that the quality of samples is primarily influenced by the
degradation factor with the highest intensity. In Fig. 4, we
present the comparison results between using average rank
and minimal rank. The minimal rank demonstrates stable
performance across different test datasets compared to the
average one. Thus, we adopt the minimal rank to calculate
sd in this domain.

Vision-Language Domain. The vision-language domain
is introduced to address the issue of missing quality infor-
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Figure 4. Comparison of using average rank (Avg-Rank) and minimal rank (Min-Rank) to compute quality scores in the spatial domain.
The performance of Min-Rank is more stable than Avg-Rank on different test sets.
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Figure 5. Comparison of using one and all Reference Representa-
tions (RR) as quality scores in the recognition embedding domain.
Overall, All-RR yields superior results compared to One-RR.

mation in the other two domains. In the recognition em-
bedding domain, fr heavily relies on the recognition model
used to compute similarity. However, the recognition model
is robust to a certain degree of quality degradation, which is
beneficial for recognition accuracy but can lead to insen-
sitivity in quality assessment for FIQA, particularly evident
in cross-recognition-model testing [28]. Furthermore, in the
spatial domain, we only consider pose, blur, and downsam-
pling factors that exhibit an absolute correlation with recog-
nition utility to compute sd. To this end, sd fails to capture
the intricate quality mapping relationships among factors
like lighting, expressions, and occlusions. To address these
limitations, we leverage the powerful image-text matching
capability of BLIP [19] to introduce the quality score vl in
the vision-language domain. Specifically, we use the text
prompt from generating reference samples as the reference
representation to compute the quality score for images. Al-
though we only employ a pre-trained BLIP model in our
work, according to the results of ablation experiments, the
FIQA performance is satisfactory. In our future work, we
plan to fine-tune the BLIP further to explore its superior po-
tential in quality representation.
Design of Formula. Our final formula of MR-FIQA for
calculating quality annotations is as follows:

Q(I|xi
) = ϖ

[
fr + λ · sd
1− vl

]
, (1)

where λ is the weighting factor and ϖ[·] is the max-min nor-
malization operator at the level of the whole dataset. The
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Figure 6. Correlation coefficients of quality scores for different
domains, including recognition (Rec.), spatial (Spa.), and vision-
language (V.-L.) domains. Quality scores from different domains
have positive SROCC and PLCC results with each other.
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Figure 7. Quality distribution of Z-standardized scores across dif-
ferent quality characterization metrics. The box plots depict the
median, interquartile range (IQR), and variability of quality value
for the Rec., Spa., V.-L., and our proposed MR-FIQA metric.

design of this formula is based on the following consider-
ations: 1) fr and sd are able to reflect the recognition util-
ity of samples directly, so we include them in the numer-
ator. 2) The motivation behind introducing vl is to com-
pensate for the shortcomings of fr and sd, hence we treat
vl in the denominator as a confidence-weighted design. In
this scheme, vl adjusts the overall calculation results. In
Fig. 6, we present the Pearson Linear Correlation Coeffi-
cients (PLCC) and Spearman Rank-Order Correlation Co-
efficients (SROCC) between quality scores from different
domains. It is evident that the highest correlation exists be-
tween fr and sd. Additionally, the strong correlation be-
tween vl and fr further demonstrates the quality character-
ization’s effectiveness via the vision-language domain.
Analysis of Quality Distribution. Here, we aim to pro-
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Figure 8. EDC results of various FIQA models trained on different training sets and tested on eight test datasets at FMR=1E-2 (Row#1-
Row#2) and FMR=1E-4 (Row#3-Row#4) under the AdaFace deployed recognition model.

vide a comparative analysis of the distribution of each qual-
ity characterization metric under standardized conditions, to
observe their relative consistency and variability. We show
the quality distribution of these metrics and our proposed
MR-FIQA in Fig. 7. Specifically, the distribution of fr ex-
hibits a symmetric and narrow box shape, with the median
close to 0 and symmetric, short whiskers (approximately
±1.5σ), indicating fewer extreme values and reflecting its
high stability. Due to the calculation based on the minimum
ranking of multiple quality factors, the distribution of sd is
significantly right-skewed, with a median around -0.3 and
an interquartile range (IQR) range of [-1.2, 0.8]. The dis-
tribution of vl is symmetric, with an IQR range of [-0.8,
0.7] and a median close to 0, indicating balanced perfor-
mance across most samples. For the proposed MR-FIQA,
the box is highly compact (IQR [-0.4, 0.5]), with the me-
dian strictly aligned at 0 and symmetric whiskers distributed
within ±1.8σ, significantly outperforming individual met-
rics. This demonstrates that MR-FIQA, through a weighted
fusion strategy, achieves distribution centralization (IQR re-
duced by approximately 40%) by leveraging the discrimi-
native power of sd in spatial quality factors while inheriting
the stability of fr and vl, proving its effectiveness as a qual-
ity annotation method in our synthetic dataset.

Weighting Factor. In Table 2, we present the results of pa-
rameter sensitivity tests for the weighting factor λ in Eq. (1).

In this study, we adjust λ to obtain varying quality annota-
tions. Subsequently, we adopt the setting of SynFIQA++
under the MobileFaceNet [10] backbone to train different
FIQA models for testing. The results in Table 2 indicate that
as λ increases, there is a predominantly decreasing trend in
pAUC and AUC, demonstrating the effectiveness of sd in
providing accurate quality annotations. Meanwhile, con-
sidering both pAUC and AUC comprehensively, we finally
select λ = 0.5 for calculating quality annotations.

3. Experimental Settings
Error-versus-Discard Characteristic (EDC). In our ex-
periments, we employ the EDC curve to assess the perfor-
mance of different FIQA models. EDC is widely adopted
in the evaluation of FIQA methods [2, 5, 20, 22, 24, 25, 28,
31]. Specifically, for a given target deployed face recog-
nition model, the EDC reflects the accuracy of the FIQA
model’s prediction of recognition utility by measuring the
variations of Ratios of Unconsidered Images (RUI) and
False Non-Match Rate (FNMR) at a specific False Match
Rate (FMR). During the computation of EDC, unconsid-
ered images are eliminated as low-quality ones based on the
ranking order of quality scores output by the FIQA model.
Subsequently, the FNMR values of the remaining samples
are calculated at certain RUI (e.g., 0.05, 0.1, 0.2, etc.) under
the deployed face recognition model. In essence, a faster
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Table 3. pAUC and AUC results at FMR=1E-2, testing under the
AdaFace as deployed recognition model.

Models
pAUC(↓)@FMR=1E-2

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
CASIA-WebFace⋆ [13] 1.166 0.321 0.414 0.829 0.870 0.733 0.517 0.901 0.719

DigiFace-1M‡ [4] 0.779 0.644 0.666 0.693 0.952 0.815 0.647 0.917 0.764
DCFace♭ [17] 1.206 0.925 0.603 0.768 0.935 0.723 0.709 0.795 0.833

SFace2 [8] 0.991 0.751 0.745 0.832 0.966 0.932 0.658 0.829 0.838
HSFace-10K [30] 1.105 0.692 0.827 0.944 0.930 0.918 0.778 0.960 0.894

IDiff-Face [7] 0.974 0.835 0.793 0.864 0.964 0.869 0.767 0.918 0.873
GANDiffFace [20] 1.006 0.617 0.790 0.852 0.887 0.891 0.789 0.871 0.838
SynFIQA (Ours) 1.035 0.542 0.578 0.836 0.939 0.838 0.722 0.882 0.797

SynFIQA++ (Ours) 0.962 0.476 0.574 0.767 0.925 0.854 0.602 0.828 0.748

Models
AUC(↓)@FMR=1E-2

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
CASIA-WebFace⋆ [13] 0.535 0.231 0.280 0.374 0.680 0.413 0.409 0.544 0.433

DigiFace-1M‡ [4] 0.617 0.390 0.445 0.313 0.872 0.715 0.584 0.621 0.570
DCFace♭ [17] 0.544 0.670 0.483 0.494 0.825 0.601 0.593 0.543 0.594

SFace2 [8] 1.145 0.467 0.461 0.428 0.827 0.840 0.466 0.531 0.646
HSFace-10K [30] 0.776 0.477 0.530 0.832 0.844 0.717 0.564 0.930 0.709

IDiff-Face [7] 0.350 0.491 0.489 0.551 0.932 0.636 0.482 0.689 0.578
GANDiffFace [20] 0.656 0.426 0.510 0.536 0.768 0.703 0.598 0.618 0.602
SynFIQA (Ours) 0.555 0.326 0.342 0.380 0.909 0.624 0.482 0.618 0.530

SynFIQA++ (Ours) 0.905 0.295 0.323 0.376 0.787 0.667 0.434 0.481 0.534
⋆: Real data. ‡: Digital rendering. ♭: Sampling with real data.

decrease in EDC indicates a more accurate prediction of
recognition utility by the tested FIQA model.
FNMR@FMR=1E-3 in EDC. As suggested in [1, 2, 25,
28], we adopt FNMR@FMR=1E-3 to plot EDC curves and
report AUC and pAUC results in our experiments. Because
FMR=1E-3 is the threshold recommended by the best prac-
tice guidelines for automated border control systems at bor-
der inspection of Frontex [14]. Meanwhile, in the follow-
ing Sec. 4, we also provide the results at FMR=1E-2 and
FMR=1E-4 to reinforce our findings.
Cross-Recognition-Model Setting in FIQA Evaluation.
The deployed recognition model indicates the recognition
model employed in computing the EDC for the performance
evaluation of FIQA models. Meanwhile, in the performance
evaluation of FIQA models, in order to test the generaliza-
tion capabilities of FIQA models across different recogni-
tion models and ensure fair comparisons between differ-
ent FIQA models, we adopt the cross-recognition-model
setting, which is widely embraced in existing FIQA meth-
ods [1, 2, 22, 24, 28]. This setting requires that the tested
FIQA models use different recognition models from those
involved in the training process and the deployed recogni-
tion model used in computing the EDC.
Area Under Curve (AUC) and partial AUC (pAUC).
Drawing on [18, 22–24, 26], we present the AUC and pAUC
outcomes in our experiments. It is worth noting that the
AUC and pAUC are normalized as a proportion of the area
of the EDC curve, which is determined using the formula:

AUC =

∫ b

a
F (r) dr

(b− a)×F (a)
, (2)

where F(r) represents the FNMR at a specific RUI r. For
the AUC metric, the predefined lower and upper limits of
RUI, a and b, are set at 0 and 0.95, respectively. The pAUC
metric evaluates the FIQA performance at a reduced rejec-

Table 4. pAUC and AUC results at FMR=1E-4, testing under the
AdaFace as deployed recognition model.

Models
pAUC(↓)@FMR=1E-4

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
CASIA-WebFace⋆ [13] 0.896 0.372 0.609 0.850 0.822 0.730 0.518 0.946 0.718

DigiFace-1M‡ [4] 0.873 0.787 0.732 0.625 0.907 0.865 0.716 0.972 0.810
DCFace♭ [17] 0.996 0.800 0.767 0.818 0.880 0.766 0.707 0.818 0.819

SFace2 [8] 0.879 0.845 0.753 0.826 0.930 0.865 0.691 0.912 0.838
HSFace-10K [30] 0.985 0.713 0.772 0.896 0.885 0.907 0.754 0.960 0.859

IDiff-Face [7] 0.966 0.780 0.786 0.807 0.922 0.855 0.730 0.921 0.846
GANDiffFace [20] 0.911 0.743 0.754 0.746 0.890 0.865 0.776 0.935 0.828
SynFIQA (Ours) 0.921 0.609 0.670 0.750 0.891 0.841 0.717 0.894 0.787

SynFIQA++ (Ours) 0.779 0.535 0.655 0.694 0.877 0.834 0.640 0.920 0.742

Models
AUC(↓)@FMR=1E-4

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
CASIA-WebFace⋆ [13] 0.833 0.288 0.348 0.368 0.600 0.441 0.344 0.610 0.479

DigiFace-1M‡ [4] 0.877 0.541 0.509 0.291 0.711 0.709 0.628 0.736 0.625
DCFace♭ [17] 0.764 0.628 0.479 0.415 0.677 0.633 0.541 0.495 0.579

SFace2 [8] 1.127 0.624 0.482 0.383 0.700 0.719 0.496 0.648 0.647
HSFace-10K [30] 1.009 0.439 0.476 0.700 0.706 0.691 0.505 0.891 0.677

IDiff-Face [7] 0.851 0.501 0.481 0.511 0.804 0.639 0.464 0.681 0.616
GANDiffFace [20] 0.966 0.567 0.499 0.418 0.742 0.664 0.583 0.781 0.652
SynFIQA (Ours) 0.848 0.345 0.334 0.337 0.771 0.612 0.446 0.707 0.550

SynFIQA++ (Ours) 0.833 0.357 0.372 0.312 0.676 0.642 0.430 0.544 0.521
⋆: Real data. ‡: Digital rendering. ♭: Sampling with real data.

Table 5. Comparison of different quality characterization methods,
testing under the CosFace as deployed recognition model.

Models
pAUC↓ AUC↓

Avg.
CFP-FP CPLFW XQLFW Adience CFP-FP CPLFW XQLFW Adience

FaceQnet [15] 0.583 0.741 0.843 0.659 0.334 0.481 0.454 0.441 0.567
SDD-FIQA [22] 0.603 0.729 0.850 0.697 0.417 0.477 0.445 0.434 0.581

CR-FIQA [6] 0.604 0.692 0.812 0.655 0.406 0.373 0.419 0.414 0.547
MR-FIQA (Ours) 0.577 0.657 0.828 0.631 0.303 0.369 0.450 0.411 0.528

tion threshold b, in order to provide an evaluation that aligns
more closely with the practical deployment of FIQA models
in real-world applications. In accordance with [2, 3, 23, 26],
b is fixed at 0.3 for computing the pAUC metric.
TinyFace Dataset. Since the IJB datasets, including IJB-B
and IJB-C, have been discontinued by NIST [21], we em-
ploy TinyFace [11] as an alternative in our experiments.
It is important to note that, as TinyFace is tailored for
1:N recognition tests, it does not directly support perfor-
mance evaluation based on the EDC metric of FIQA. To
this end, we follow the practices outlined in [9, 26] to con-
struct 19,478 positive mated comparisons and 24,513 neg-
ative mated comparisons from the Testing Set/Gallery Set
and Testing Set/Probe Set. To ensure consistency in com-
parisons, the mated comparisons remain fixed across evalu-
ations of different FIQA methods.

4. Additional Experiments
4.1. Additional Evaluation Results
Evaluation under different FMR. In our manuscript, we
focused on EDC, pAUC, and AUC results, specifically at
FMR=1E-3 due to space limitations. To provide a more
comprehensive view, we extend this evaluation at FMR=1E-
2 and FMR=1E-4, depicted in Fig. 8. At the same time,
pAUC and AUC outcomes are presented in Table 3 and Ta-
ble 4. Noteworthy is the consistent outperformance of our
SynFIQA and SynFIQA++ against synthetic-based com-
petitors across different FMRs.
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Figure 9. EDC results of various FIQA models trained on different training sets and tested on eight test datasets at FMR=1E-3 under the
CosFace deployed recognition model.
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Figure 10. Parameter sensitivity of the sample number M and the
reference number Z. The pAUC results are the average across
eight test sets using ArcFace as the deployed recognition model.
The optimal results are attained when M = 100 and Z = 10.

Evaluation under other Deployed Recognition Model.
To further test the performance of synthetic-based FIQA
models against other deployed recognition models. Here,
we employ CosFace [29] trained on Glint360k dataset using
the ResNet101 backbone. The EDC results at FMR=1E-3
under the CosFace recognition model are shown in Fig. 9.
Moreover, we report the corresponding pAUC and AUC re-
sults in Table 6. Compared with other similar competitors
(from SFace2 to GANDiffFace), our SynFIQA and Syn-
FIQA++ also significantly outperform the others in terms
of pAUC and AUC metrics. For the comparison of qual-
ity characterization methods under the CosFace deployed
recognition model, we also report the results in Table 5. As
shown in Table 5, except for the performance on XQLFW,
our MR-FIQA still outperforms the other methods. And the
average performance also surpasses CR-FIQA. This further
indicates the effectiveness and robustness of the quality an-
notation in our SynFIQA dataset.

4.2. Ablation Study
Trade-off of Intra-Class and Inter-Class Samples. Here,
we investigate the FIQA performance impact of the trade-
off between the number of intra-class samples M and inter-
class samples N . We explore different combinations of M
and N while maintaining the total number of samples at
M × N = 0.5 million. FIQA models are trained under
the CR-FIQA setting using the MobileFaceNet backbone.
Considering that GANDiffFace [20] is a competitive com-

Table 6. pAUC and AUC results at FMR=1E-3, testing under the
CosFace as deployed recognition model.

Models
pAUC(↓)@FMR=1E-3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
CASIA-WebFace⋆ [13] 0.711 0.382 0.567 0.832 0.848 0.703 0.488 0.986 0.690

DigiFace-1M‡ [4] 0.709 0.665 0.715 0.779 0.943 0.899 0.698 0.983 0.799
DCFace♭ [17] 0.814 0.876 0.698 0.759 0.926 0.711 0.713 0.818 0.790

SFace2 [8] 0.707 0.815 0.714 0.832 0.959 0.899 0.700 0.918 0.818
HSFace-10K [30] 0.798 0.710 0.748 0.940 0.926 0.980 0.736 0.973 0.851

IDiff-Face [7] 0.807 0.884 0.715 0.886 0.960 0.871 0.736 0.948 0.851
GANDiffFace [20] 0.878 0.777 0.745 0.862 0.885 0.880 0.734 0.942 0.838
SynFIQA (Ours) 0.923 0.633 0.629 0.862 0.932 0.856 0.731 0.940 0.813

SynFIQA++ (Ours) 0.643 0.571 0.633 0.818 0.909 0.891 0.614 0.918 0.750

Models
AUC(↓)@FMR=1E-3

LFW CFP-FP CPLFW XQLFW CALFW AgeDB Adience TinyFace Avg.
CASIA-WebFace⋆ [13] 0.595 0.257 0.360 0.383 0.669 0.428 0.314 0.635 0.455

DigiFace-1M‡ [4] 0.636 0.436 0.485 0.382 0.847 0.733 0.594 0.714 0.603
DCFace♭ [17] 0.533 0.756 0.443 0.452 0.808 0.621 0.552 0.463 0.578

SFace2 [8] 0.863 0.598 0.453 0.438 0.829 0.796 0.490 0.549 0.627
HSFace-10K [30] 0.755 0.499 0.513 0.795 0.825 0.735 0.483 0.892 0.687

IDiff-Face [7] 0.622 0.671 0.527 0.607 0.908 0.622 0.458 0.665 0.635
GANDiffFace [20] 0.810 0.646 0.477 0.563 0.967 0.725 0.526 0.766 0.685
SynFIQA (Ours) 0.666 0.355 0.295 0.418 0.898 0.604 0.429 0.684 0.544

SynFIQA++ (Ours) 0.606 0.375 0.327 0.406 0.767 0.719 0.401 0.548 0.519
⋆: Real data. ‡: Digital rendering. ♭: Sampling with real data.

petitor of the same fully synthetic type, we introduce its per-
formance results as a reference indicated by the red dashed
line in Fig. 10. From the experimental results in Fig. 10
(left), it is evident that the pAUC is lowest when M = 100,
and there is an increasing trend in pAUC for M greater than
100. This suggests that the combination of M = 100 and
N = 5K is optimal within our comparison group. More-
over, for our dataset at M = 50, although this data level is
slightly lower than GANDiffFace (M = 54), our synthetic
data still significantly outperforms GANDiffFace.

Number of Reference Samples. In Fig. 10 (right), we also
present the pAUC results of FIQA models under different
numbers of reference samples Z. In this study, our FIQA
models are trained under the SynFIQA++ setting. It can
be observed that as Z increases, there is a decreasing trend
in pAUC results, which tends to converge around Z = 10.
This not only underscores the importance of high-quality
reference samples in our synthetic dataset but also further
validates the effectiveness of leveraging integrated embed-
dings of reference samples as reference representations in
the recognition domain to compute fr.
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[2] Žiga Babnik, Peter Peer, and Vitomir Štruc. DifFIQA: Face
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[27] Sefik Serengil and Alper Özpınar. A benchmark of facial
recognition pipelines and co-usability performances of mod-
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