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Stage 1 Stage 2 Stage 3 Stage 4

Using Swin-B as Vision Backbone

Qi 2 2 6 2

visual output size H
4 × W

4
H
8 × W

8
H
16 × W

16
H
32 × W

32

channel 96 192 384 768

Using ViT-B as Vision Backbone

Qi 3 3 3 3

visual output size H
16 × W

16
H
16 × W

16
H
16 × W

16
H
16 × W

16

channel 768 768 768 768

Table 7. Detailed settings of different stages in our RaAM-RVG.

6. Additional Implementation Details
Tab. 7 presents the implementation details for using dif-
ferent vision backbones, including Swin Transformer-Base
(Swin-B) [27] and Vision Transformer-Base (ViT-B) [11].
Here, Qi denotes the number of vision model layers in
the i-th stage. When ViT-B is used as the vision back-
bone, the visual feature dimensions in Sec. 3 are represented
as RCvi

×(HiWi), with the corresponding Flatten(·) opera-
tion omitted. If Swin-B is used, the spatial dimensions of
[Fscale] from different stages in the Region-aware Predic-
tion operation of Sec. 3.5 need to be unified to H2 × W2.
Accordingly, the operation in Eq. (10) is modified as:

Rn = Concat[P 2
n ⊙X2

n, . . . , P
K
n ⊙XK

n ].

7. Hyperparameter Experiments
Number N of Region-aware Anchor Tokens. To evalu-
ate the impact of the number of tokens (N ) used in region-
aware anchors, we conducted experiments on the gRef-
COCO Val set with varying N values, as shown in Tab. 8(a).
The results indicate that increasing the number of anchor
tokens N improves GRES performance. However, the per-
formance gains diminish for N > 16, while the computa-
tional cost increases significantly. Consequently, we select
N = 16 as the optimal trade-off, ensuring robust perfor-
mance while maintaining computational efficiency.

Coefficient Selection for Loss Functions. The loss func-
tions incorporate multiple weighted components, each mod-
ulated by coefficients λ1 to λ5. Additionally, Lseg

p includes
a coefficient β to control the weight of object boundaries.
To identify the optimal settings for maximizing model ac-
curacy in object detection and segmentation while ensuring

(a) Number N of anchor tokens

N cIoU gIoU
9 65.24 67.97

16 67.35 70.02
25 67.51 70.36
36 67.82 70.94

(b) Hyperparameters for REC and RES

β λ1 λ2 λ3 P@0.5 oIoU
1.2 0.05 0.1 1 90.94 78.83
1.2 0.1 0.1 1 91.45 79.35
1.2 0.2 0.1 1 90.07 78.42
1.2 0.1 0.2 1 89.65 79.44
1.2 0.1 0.1 1.5 89.76 79.51

(c) Hyperparameters for GRES

λ4 λ5 cIoU gIoU
0.05 0.5 66.41 68.86
0.1 0.5 66.52 68.89
0.1 1.0 67.35 70.02
0.2 1.0 64.35 76.74
0.1 1.5 64.79 77.06

Table 8. Hyperparameter experiments conducted on the RefCOCO
validation set for REC and RES, and on the gRefCOCO validation
set for GRES.

Method LAVT [54] PolyFormer [25] RaAM (Ours)

Runtime (ms) ↓ 297.56 332.69 266.56
FPS ↑ 67.46 60.24 78.87

Table 9. Speed comparison results. “↓” means lower is better, “↑”
refers to upper is better, and “FPS” denotes frames per second.

stable convergence, we systematically varied these coeffi-
cients. The results for different tasks are shown in Tab. 8(b)
and Tab. 8(c). Following extensive tuning, we selected:
λ1 = 0.1, λ2 = 0.1, λ3 = 1, λ4 = 0.1, λ5 = 1, and
β = 1.2. This configuration achieves an optimal balance
between accuracy and model stability.

8. Complexity Comparison

8.1. Speed Comparison
We validate the efficiency of our proposed RaAM by con-
ducting a speed comparison with SOTA methods. For com-
parison, we selected advanced RES method LAVT [54] and



Figure 5. Visualizations of predicted results and ground truth on REC and RES. Green lines enclose successful cases, while red lines
enclose failed cases.

Method Param.(M) RefCOCO RefCOCO+ G-Ref

RaPM-RVG 211.69 79.35 69.54 71.30

LAVT [54] 217.19 72.73 62.14 61.24
w/ RaAM 217.45 74.32 64.87 65.73

PolyFormer [25] 336.26 75.96 69.33 69.20
w/ RaAM 322.53 78.35 71.87 70.45

P-RIS [39] 774.38 76.36 67.06 64.79
w/ RaAM 745.77 78.44 68.90 67.32

Table 10. Plug-and-play validation (w/ parameter comparisons).

Methods N-acc. T-acc.

MattNet[57] 41.15 96.13
RES VLT[10] 47.17 95.72

Methods LAVT[54] 49.32 96.18
CGFormer[34] 51.01 96.23

GRES ReLA[23] 57.51 96.97
Methods RaAM-RVG 65.76 97.85

Table 11. No-object results on the gRefCOCO Val set.

multi-task visual grounding method PolyFormer [25]. The
results are presented in Tab. 9. All models in the compar-
ison use the same setup, incorporating Swin Transformer-
base and BERT-base as the vision and language backbones,
respectively, with a language token length of 20. The batch

Methods cIoU gIoU

GRES ReLA[23] 56.08 57.67
Methods RaAM-RVG 61.48 62.88

Table 12. Multi-object results on the gRefCOCO Val set.

size is 16. To ensure a fair comparison, we exclude the
point generation time cost from PolyFormer [25]. Com-
pared to methods employing Direct Interaction strategies,
our method achieves reduced runtime and demonstrates
higher FPS. Parameter comparison is in the Appendix.

8.2. Parameter Comparison
To compare the space complexity of RaAM with exist-
ing methods, we conducted plug-and-play validation on ex-
pert models for RVG , including LAVT [54], PolyFormer
[25], and P-RIS [39], and compared their performance and
model parameter counts. The results on RES, as shown
in Tab. 10, demonstrate that RaAM-RVG achieves superior
performance with fewer parameters, highlighting its advan-
tage in terms of spatial complexity.

9. Additional Experimental Results for GRES
To further validate the effectiveness of RaAM-RVG on the
GRES task, we analyzed its performance on no-object and
multi-object samples, which are unique to GRES. The per-
formance evaluation on no-object samples is presented in



Figure 6. Visualization of GRES prediction results. The left side illustrates no-object cases, while the right side shows multi-object cases.
Gray boxes indicate correctly predicted “No Object” scenarios, green boxes represent successful multi-object segmentations, and red boxes
highlight failed cases.

Tab. 11. We report the No-object accuracy (N-acc.) and
Target accuracy (T-acc.) metrics, which assess the model’s
ability to correctly identify instances where no target object
is present. Our method demonstrates a significant advan-
tage over ReLA in no-object cases, particularly achieving
an 8.25% improvement in N-acc. Additionally, the results
in Tab. 12 indicate that RaAM-RVG significantly outper-
forms ReLA in multi-object scenarios. These results high-
light the overall effectiveness of RaAM in both no-object
and multi-object scenarios, underscoring its superior capa-
bility in complex localization.

10. Additional Qualitative Results

Successes and Failures in REC and RES. We present
the visualizations of REC and RES tasks using our RaAM-
RVG, including both successful and failed cases. In Fig. 5,
green lines enclose successful cases, while red lines enclose
failed cases. Examples Fig. 5(a), (b), and (c) show results
that match or even exceed the ground truth in accuracy. In
Fig. 5(d), failures are due to inaccurate object annotations
in the ground truth, while Fig. 5(e) fails due to ambiguity
in the provided expression. In Fig. 5(f), the boundaries of
the pizza slice in the image are challenging to distinguish,
indicating that further model optimization is needed for im-
proved recognition.

No-object and Multi-object Cases in GRES. We present
visualizations of GRES-specific scenarios using RaAM-
RVG, focusing on no-object and multi-object examples, as
shown in Fig. 6. Examples within the gray box demon-
strate RaAM-RVG’s capability to effectively identify no-
object cases, while examples within the green box illus-
trate the model’s ability to segment multiple targets simul-
taneously. In the failed no-object case, the model incor-
rectly segmented a “person in hat,” overlooking the con-
dition “young.” In the failed multi-object case, the model
mislocalized the second object, segmenting the goat that did
not meet the requirement of “sleeping.” These failures indi-
cate that the model lacks full discriminatory capability for
objects that partially satisfy the language conditions. En-
hancing the preservation of linguistic details during vision-
language interaction and reflecting them in object recogni-
tion results remains a critical direction for future research.


