
Liberated-GS: 3D Gaussian Splatting Independent from SfM Point Clouds

Supplementary Material

In this supplementary material, we will introduce more
implementation details (Sec. 6), algorithm derivation and
details (Sec. 7), experiment details (Sec. 8), additional
evaluation results (Sec. 9) and additional ablation studies
(Sec. 10).

6. Implementation Details
6.1. Details of Unbiased Depth Rendering
As described in Sec. 3.2 and illustrated in Figs. 4 and 5,
using alpha-blending to render depth in under-optimized
3DGS model results in significant noise in the depth map.
This occurs because the centers of 3D Gaussians deviate
far from the ray. Inspired by NeRF [28], we assume the
3D point contributing to the rendered depth should lie on
the current ray. To simplify computation, we approximate
this point as the location where the opacity contribution α
reaches its maximum as the ray passes through the Gaus-
sian G. Since α = σ · G, it follows that argmax(α) =
argmax(G).

Given a ray rw = ow + tdw in the world space and a
Gaussian ellipsoid G(x|u,S, q), where u denotes that cen-
ter, S the scaling, and q = (qr, qi, qj , qk) the quaternion
rotation with its corresponding rotation matrix R given by

R(q) = 2

 1
2
− (q2j + q2k) (qiqj − qrqk) (qiqk + qrqj)

(qiqj + qrqk)
1
2
− (q2i + q2k) (qjqk − qrqi)

(qiqk − qrqj) (qjqk + qrqi)
1
2
− (q2i + q2j)

 .

(10)

We first transform the ray rw into the Gaussian ellipsoid
coordinate system as:

rg = og + tdg (11)

og = S−1R(q)(ow − u) = (ox, oy, oz) (12)

dg = S−1R(q)dw = (dx, dy, dz), (13)

with Gaussian G′ is expressed as G′(x) = exp(− 1
2x

Tx),
therefore argmax(G′) = argmin(xTx). Substituting the
parametric representation of ray rg , we have:

t∗ =argmin
t

[(ox + tdx)
2 + (oy + tdy)

2 + (oz + tdz)
2]

= argmin
t

[(d2x + d2y + d2z)t
2+

2(oxdx + oydy + ozdz)t+ (o2x + o2y + o2z)]

=− oxdx + oydy + ozdz
d2x + d2y + d2z

= −
oT
g dg

dT
g dg

(14)

To indicates whether ray rg intersects with Gaussian G′, we
have the following function:

G′(rg(t)) = exp(−1

2
rg(t)

Trg(t)) = 1

⇒ rg(t)
Trg(t) = 0

⇒ (d2x + d2y + d2z)t
2+

2(oxdx + oydy + ozdz)t+ (o2x + o2y + o2z)− 1 = 0
(15)

with discriminant ∆ = B2 −AC >= 0, where

A = d2x + d2y + d2z = dT
g dg

B = oxdx + oydy + ozdz = oT
g dg

C = o2x + o2y + o2z − 1 = oT
g og − 1

(16)

We summarize the details in Algorithm 1.

Algorithm 1 Unbiased Gaussian Depth Algorithm
Input:
i: Gaussian sorted id
µ, S, q: Gaussian mean, scaling, and quaternion of rotation matrix
o,R,K: camera position, rotation matrix, and intrinsic matrix
x: pixel coordinate
Output: ti: Gaussian depth
d← GetRayDir(x,K,R, o) ▷ Ray direction in world space
Rg ← QuaternionToRotation(q) ▷ Gaussian rotation matrix
o← S−1Rg(o− µ), d← S−1Rgd

▷ Transform ray to Gaussian space
A← dT d, B ← oT d, C ← oT o− 1
∆← B2 −AC
if ∆ ≥ 0 then

ti ← −B/A ▷ Intersect
else

ti ← 0 ▷ Not Intersect
end

6.2. Details of Initialize 3D Gaussian from Depth
In our proposed initialization process, each newly added
pixel u generates a new 3D Gaussian in world space based
on its corresponding ensembled depth d(u). Similar to
how the original 3D Gaussian Splatting (3DGS) initializes
Gaussians from point clouds, we define these Gaussians as
spheres with a radius r and center o + d(u) · dir(d(u)).
The color of each Gaussian is set using which of the corre-
sponding pixels. However, unlike 3DGS, which determines
the radius r as the minimum distance between the current
point with its nearest neighbors, i.e.,

r = min(||pi − pj ||2), pj ∈ P and j ̸= i, (17)

this approach is incompatible with our progressive strategy.
Since our 3D Gaussians are derived by per-pixel projection,
we consider the most extreme case involves the distance to
the adjacent ray, given by

r(u) = d(u) · sin(θ), (18)

where θ represents the angle between rays emitted by two
neighboring pixels. Furthermore, as our goal is to refine
depth, all Gaussians are initialized as fully opaque, ensur-
ing that newly added Gaussians do not occlude those corre-
sponding to existing pixels after optimization.

As mentioned in Sec. 3.3, for local frames, we only back-
project the points from under-reconstruction areas. Given a
pixel u with its rendered depth drender(u), if drender(u) < τ ,
it indicates that the emitted ray does not hit any 3D Gaus-
sian. In this case, pixel u is marked as under-reconstructed
and included in the subsequent back-projection process.
The predefined threshold τ is set to 10−3 in our experi-
ments.

6.3. Details of Global Gaussian Adjustment in Pro-
gressive Initialization

As stated in Sec. 3.2, the scale-consistency assumption for
monocular depth estimation can easily fail in scenarios with
multiple objects, significant scale variations, or complex ge-
ometries. Therefore, we learn a separate scale and shift pa-
rameter for each detected object from [47].

During the initialization phase, we define the center u
of all Gaussians as a function of the ensembled depth d(u),
which is further refined through gradient backpropagation
to improve the depth prior. Meanwhile, the scale consis-
tency within each object is maintained to preserve the in-
tegrity of the aligned depth while adjusting the 3D Gaus-
sian’s position. Unlike the rendered depth which is opti-
mized directly, we retain the rescaling process of the aligned
depth. By optimizing the scale and offset parameters for
each detected object, the aligned depth is indirectly ad-
justed, effectively suppressing the occurrence of floaters.

7. Progressive Segmented Initialization Algo-
rithm

The algorithm constructing initial point clouds from esti-
mated monocular depths is summarized in Algorithm 2. We
omit the usage of camera poses, intrinsic matrices, and se-
mantic masks for simplification.

Algorithm 2 Initial Point Cloud Construction
Input:
I = {It|t = 1...N}: Image sequence
De = {Det |t = 1...N}: Estimated depths
Output: S: Initial point cloud
Gc ← CoarseGaussin(I) ▷ Coarse Gaussian model with random

initialization
Dr ← UnbiasedRendering(Gc, I) ▷ Rendered depth
D′

e ← AlignDepth(De,Dr) ▷ Aligned depth
D ← ErosionAndEnsemble(D′

e,Dr) ▷ Depth erosion and
ensemble
Ik = {Ikt |t = 1...K} ← GetKeyframe(I) ▷ KeyFrame
Gg ← InitGaussian(I1, D1) ▷ Init global Gaussian with all pixels
for i← 2 to K do
Gg ← BackProject(Iki , Dki) ▷ Update global Gaussian

with all pixels
I′ ← {I1, ..., Iki}, D

′ ← {D1, ..., Dki}
G′g,D′ ← RefineDepth(Gg, I′,D′) ▷ Update global

Gaussian
Il ← {Iki−1+1, ..., Iki−1} ▷ LocalFrame
Gl ← BackProject(Iki−1 , Iki , D

′
ki−1

, D′
ki
) ▷ Init local

Gaussian with two nearby keyframes
for Ij ∈ Il do

D′
rj ← UnbiasedRendering(Gl, Ij)

Mj ← D′
rj < τ ▷ Get unseen area

Gl ← BackProject(Ij , Dj ,Mj) ▷ Update local
Gaussian from unseen area

end
Gg ← Gl ▷ Update global Gaussian with local Gaussian

end
S ← ImportanceResampling(Gg)

8. Experiment Details
In the main paper experiments, we compare three methods
that do not rely on SfM point clouds for initialization. The
results of RAIN-GS [18] are directly adopted from the orig-
inal paper, while the other two are trained under the new
experimental setup.
3DGS [20] with random points. Instead of loading 3D
points and corresponding colors from the SfM point cloud,
we randomly sample N = 100 000 points. Such random
sampling is performed within the bounding box determined
by the training images. Random colors are then assigned
to these points. All other experiment settings remain un-
changed.
Colmap-Free 3DGS (CFGS) [14] with ground truth
poses. CFGS proposes a method for reconstructing 3DGS
from a sequence of images and corresponding monocular
depth maps, without requiring poses or initial point clouds.
To align with our experimental setup, we set the initial poses
of CFGS as ground truth poses derived from COLMAP re-
construction and disable all pose-related optimization terms
and gradient back-propagation. For scale ambiguity be-
tween estimated monocular depths and ground-truth poses,
we compare the depths with SfM points to solve it, simi-

Table 6. Per-scene quantitative results from the Mip-NeRF360 and Tanks&Temples dataset.

PSNR↑
Mip-NeRF360 Tanks&Temples

Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Train Truck
3DGS 27.410 26.550 22.490 25.246 21.520 28.700 30.317 31.980 30.632 21.097 25.187
3DGS (Random) 23.217 20.745 18.986 21.034 17.815 23.608 26.078 18.538 29.685 20.730 20.236
Colmap-Free 3DGS* 26.158 18.200 17.620 16.458 14.286 24.563 22.910 25.406 27.544 20.551 20.858
RAIN-GS 26.884 26.680 22.528 25.042 21.762 28.529 31.270 21.547 30.809 21.436 24.816
Ours 27.289 26.894 22.117 25.476 21.508 29.122 31.524 32.646 31.720 22.043 25.128

SSIM↑
Mip-NeRF360 Tanks&Temples

Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Train Truck
3DGS 0.868 0.775 0.638 0.771 0.605 0.905 0.922 0.938 0.914 0.802 0.879
3DGS (Random) 0.783 0.618 0.550 0.575 0.469 0.833 0.893 0.719 0.894 0.771 0.758
Colmap-Free 3DGS* 0.848 0.305 0.318 0.286 0.381 0.797 0.824 0.839 0.840 0.694 0.728
RAIN-GS 0.854 0.768 0.621 0.747 0.616 0.895 0.920 0.934 0.906 0.786 0.865
Ours 0.866 0.786 0.626 0.785 0.632 0.908 0.929 0.945 0.918 0.824 0.872

LPIPS↓
Mip-NeRF360 Tanks&Temples

Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Train Truck
3DGS 0.103 0.210 0.317 0.205 0.336 0.204 0.129 0.205 0.220 0.218 0.148
3DGS (Random) 0.175 0.345 0.413 0.378 0.403 0.276 0.161 0.401 0.265 0.256 0.249
Colmap-Free 3DGS* 0.106 0.498 0.518 0.534 0.429 0.288 0.195 0.257 0.279 0.339 0.321
RAIN-GS 0.114 0.215 0.342 0.238 0.324 0.223 0.137 0.218 0.247 0.244 0.169
Ours 0.100 0.186 0.273 0.174 0.254 0.183 0.118 0.184 0.210 0.162 0.118

Table 7. Per-scene quantitative results from the OMMO dataset.

PSNR↑
03 05 06 10 13 14 15

3DGS 25.81 26.19 26.29 28.35 28.27 30.18 29.42
3DGS (Random) 22.69 24.79 25.99 26.31 28.03 28.38 24.81
RAIN-GS 25.02 25.69 26.74 27.36 26.89 28.93 27.89
Ours 27.26 25.60 27.44 28.20 28.43 30.33 28.84

SSIM↑
03 05 06 10 13 14 15

3DGS 0.866 0.834 0.900 0.860 0.869 0.938 0.927
3DGS (Random) 0.804 0.805 0.891 0.794 0.852 0.909 0.834
RAIN-GS 0.839 0.821 0.914 0.825 0.825 0.918 0.903
Ours 0.894 0.823 0.921 0.860 0.881 0.940 0.921

LPIPS↓
03 05 06 10 13 14 15

3DGS 0.215 0.243 0.188 0.190 0.213 0.107 0.136
3DGS (Random) 0.273 0.267 0.200 0.272 0.247 0.143 0.200
RAIN-GS 0.247 0.262 0.187 0.249 0.283 0.145 0.153
Ours 0.162 0.211 0.150 0.182 0.182 0.102 0.107

lar to many previous works [9, 32]. For each image, we
project SfM points onto the camera view to obtain a set of
sparse depths. We solve for the scale and shift parameters
for each image using the closed-form linear regression solu-
tion Eq. (7) to align the monocular depth with sparse depth.
Then, we apply the per-image aligned monocular depths to
CFGS and keep all other settings unchanged.

9. Additional Evaluation Results
As described in the main paper, we conduct novel view syn-
thesis experiments on the Mip-NeRF360, Tanks&Temples,
and OMMO datasets, comparing our method with 3DGS,
random initialized 3DGS, RAIN-GS, and Colmap-Free
3DGS with ground-truth poses. In this section, we provide
more detailed quantitative and qualitative results. Tab. 6
and Tab. 7 expand on Tab. 1 by presenting detailed results
across individual scenes. As shown in Tab. 6 and Tab. 7, our
method demonstrates clear superiority over the other four
approaches, particularly in terms of LPIPS, a metric more
reflective of human visual perception than PSNR and SSIM.
This indicates that our approach effectively leverages the
monocular depth priors while mitigating the potential er-
rors they may introduce. Additionally, we observed that our
method yields greater improvements in indoor scenes com-
pared to outdoor scenes. Specifically, for indoor scenes, our
method surpasses the original 3DGS which relies on SfM
point cloud initialization across all metrics. This is because
the monocular depth priors are more accurate in indoor en-
vironments, providing a stronger foundation for reconstruc-
tion.

In Fig. 8 and Fig. 7, we showcase additional comparisons
with the original 3DGS and RAIN-GS, which are the sec-
ond and third best methods, respectively, as shown in Tab. 1.
The highlighted areas in the images further emphasize our
improvements. Please zoom in for more details.

GT Ours 3DGS RAIN-GS

Figure 7. Qualitative comparison for novel view synthesis on Mip-NeRF360 and Tanks&Temples dataset with RAIN-GS and 3DGS
initialized with SfM points (Part I). Each viewpoint contains a rendered RGB image and a depth image. For Ground Truth, we display the
monocular depth map estimated from the off-the-shelf network [19]. Our method shows better performance in both reconstruction details
and scene structures without relying on additional point clouds.

10. Additional Ablation Studies

Tab. 8 expands on Tab. 2 by presenting the performance
of different initialization methods on two other Gaussian
models across individual scenes. The results indicate that
the sensitivity of 3DGS to initialization is a common issue
and that our method is also applicable to more advanced
approaches.

In Fig. 9, we provide a more intuitive comparison cor-
responding to Tab. 3 conducted on the stump scene of
MipNeRF-360, illustrating the effectiveness of our progres-
sive method. The base model represents progressive ini-
tialization based solely on scale-consistent estimated depth
from keyframes. Subsequent components, including impor-
tance resampling, depth alignment, and local Gaussian, are
added step by step. The quality of the rendered images is
evaluated using the same three metrics as in the main paper,
i.e., PSNR, SSIM, and LPIPS, displayed in the top-left cor-
ner of each image. As each component is incorporated, the
rendering quality improves progressively, highlighting the
effectiveness of each component in our method.

In addition to the three ablation experiments presented
in the main paper, the following subsections further discuss
our proposed progressive method and unbiased depth ren-
dering. We also provide an experiment to explain why depth
loss is not utilized in our approach.

10.1. Ablation on Unbiased Depth Rendering
To validate the effectiveness of our proposed unbiased depth
rendering, we replace it with the original alpha-blending ap-
proach and compare the results, as shown in Tab. 10 and the
second column of Fig. 10. It can be observed that alpha-
blending consistently underperforms across all datasets on
the three evaluation metrics compared to our unbiased depth
rendering. As illustrated, the initial point cloud generated
with alpha-blending contains numerous points with incor-
rect scales (e.g., 3D points below the ground) and lacks ac-
curate geometric priors (e.g., distant tree trunks). These is-
sues result in the final rendered depth maps with significant
holes. In contrast, our method effectively addresses these
problems, producing more accurate and complete depth
maps.

10.2. Ablation on Progressive Initialization
One of our primary motivations for adopting the progressive
strategy is to reduce redundancy in 3D points. To validate
its effectiveness, we conduct comparative experiments on
Mip-NeRF360 with two other point cloud downsampling
approaches. (1) The first method is derived from the down-
sampling strategy mentioned in mini-splatting [11]. It se-
lects a fixed total number of points for each scene, empir-
ically set to around 3.5 million. Then, a random subset
of pixels from each image is chosen to generate the initial

Table 8. Per-scene results applying our initialization method to Mini-Splatting and 3DGS-MCMC on the OMMO dataset.

PSNR↑
03 05 06 10 13 14 15

Mini-Splatting (SfM) 25.18 25.66 25.62 27.87 26.51 29.02 28.20
Mini-Splatting (Random) 24.50 24.20 25.35 26.15 26.26 27.91 24.48
Mini-Splatting (Ours) 26.45 25.55 26.53 27.59 26.41 29.75 28.76
3DGS-MCMC (SfM) 27.55 26.65 27.17 29.70 27.83 30.30 29.15
3DGS-MCMC (Random) 27.37 26.55 27.28 29.23 25.18 29.90 28.73
3DGS-MCMC (Ours) 27.60 26.54 27.41 29.85 28.93 30.23 28.95

SSIM↑
03 05 06 10 13 14 15

Mini-Splatting (SfM) 0.844 0.823 0.887 0.834 0.813 0.924 0.912
Mini-Splatting (Random) 0.826 0.794 0.880 0.774 0.807 0.904 0.829
Mini-Splatting (Ours) 0.880 0.820 0.921 0.850 0.807 0.938 0.922
3DGS-MCMC (SfM) 0.897 0.843 0.936 0.878 0.864 0.942 0.929
3DGS-MCMC (Random) 0.894 0.841 0.936 0.864 0.818 0.938 0.916
3DGS-MCMC (Ours) 0.899 0.843 0.938 0.897 0.886 0.939 0.926

LPIPS↓
03 05 06 10 13 14 15

Mini-Splatting (SfM) 0.243 0.235 0.202 0.221 0.280 0.129 0.128
Mini-Splatting (Random) 0.260 0.273 0.214 0.302 0.290 0.148 0.211
Mini-Splatting (Ours) 0.192 0.190 0.147 0.196 0.290 0.101 0.105
3DGS-MCMC (SfM) 0.177 0.242 0.126 0.166 0.224 0.103 0.101
3DGS-MCMC (Random) 0.180 0.234 0.131 0.188 0.295 0.108 0.122
3DGS-MCMC (Ours) 0.161 0.224 0.122 0.164 0.185 0.105 0.108

points with corresponding depth. (2) The second method
is the commonly used voxel downsampling. With this ap-
proach, we initialize the voxel size to 0.05 and set the max-
imum number of points to 3.5 million, matching the con-
figuration of mini-splatting. If the number of downsampled
points exceeds this limit, the voxel size is doubled, and the
downsampling process is repeated.

The relevant results are presented in Tab. 9 and the third
and fourth columns of Fig. 10. It can be observed that sim-
ple random downsampling, whether image-wise or voxel-
wise, fails to eliminate the numerous misaligned 3D points
caused by depth errors. This results in the inability to pro-
duce photo-realistic rendered images. Across all test scenes,
the three evaluation metrics consistently demonstrate infe-
rior performance compared to our progressive strategy.

10.3. Ablation on Depth Loss

Depth-related loss has been widely used in previous works.
To evaluate its effectiveness, we incorporated it into the re-
finement stage. Based on our proposed ensembled depth D

and edge-aware valid mask M , the depth loss is defined as:

LD̂ =
1

|M |
∑

log(1 +M ⊙ ||D − D̂||1), (19)

where |M | indicates the total number of pixels with valid
depth, and D̂ denotes the unbiased rendered depth during
the refinement stage. Therefore, the overall objective func-
tion is then defined as:

L = Lc + λdLD̂, (20)

where Lc is the original photometric loss proposed in 3DGS
and λd is set to 0.2 in our experiments.

The experimental results, as presented in Tab. 11, indi-
cate that the depth loss does not play a significant role. In
fact, it even performs worse overall compared to using the
photometric loss alone.

GT Ours 3DGS RAIN-GS

Figure 8. Qualitative comparison for novel view synthesis on Mip-NeRF360 and Tanks&Temples dataset with RAIN-GS and 3DGS
initialized with SfM points (Part II). Each viewpoint contains a rendered RGB image and a depth image. For Ground Truth, we display the
monocular depth map estimated from the off-the-shelf network [19]. Our method shows better performance in both reconstruction details
and scene structures without relying on additional point clouds.

Table 9. Ablation study on Mip-NeRF360 comparing different point cloud downsample methods with the proposed progressive segmented
method to reduce point redundancy. The best score is highlighted in bold.

PSNR↑
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

Random Sample 26.953 24.194 21.629 24.990 20.961 28.937 31.254 30.602 30.832 26.706
Voxel Downsample 26.841 24.091 21.327 24.939 20.657 28.861 30.716 30.368 31.131 26.548
Ours 27.289 26.894 22.117 25.476 21.508 29.122 31.524 32.646 31.720 27.588

SSIM↑
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

Random Sample 0.857 0.698 0.612 0.769 0.610 0.907 0.926 0.922 0.916 0.802
Voxel Downsample 0.854 0.701 0.614 0.764 0.596 0.904 0.922 0.915 0.914 0.798
Ours 0.866 0.786 0.626 0.785 0.632 0.908 0.929 0.945 0.918 0.822

LPIPS↓
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

Random Sample 0.103 0.245 0.280 0.181 0.268 0.183 0.121 0.202 0.209 0.199
Voxel Downsample 0.109 0.245 0.284 0.200 0.278 0.198 0.128 0.212 0.220 0.208
Ours 0.100 0.186 0.273 0.174 0.254 0.183 0.118 0.184 0.210 0.187

Table 10. Ablation study on Mip-NeRF360 comparing alpha-blending with the proposed unbiased depth rendering method to align the
estimated depth. The best score is highlighted in bold.

PSNR↑
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

Alpha-Blending 27.149 26.392 22.110 25.211 21.375 28.987 31.286 32.461 31.482 27.384
Ours 27.289 26.894 22.117 25.476 21.508 29.122 31.524 32.646 31.720 27.588

SSIM↑
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

Alpha-Blending 0.863 0.772 0.619 0.768 0.627 0.905 0.925 0.943 0.914 0.815
Ours 0.866 0.786 0.626 0.785 0.632 0.908 0.929 0.945 0.918 0.822

LPIPS↓
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

Alpha-Blending 0.105 0.199 0.299 0.199 0.265 0.198 0.126 0.193 0.225 0.201
Ours 0.100 0.186 0.273 0.174 0.254 0.183 0.118 0.184 0.210 0.187

Table 11. Ablation study on Mip-NeRF360 for depth loss. The best score is highlighted in bold.

PSNR↑
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

w. depth loss 27.326 26.863 22.149 25.478 21.457 29.075 31.651 32.569 31.512 27.564
Ours 27.289 26.894 22.117 25.476 21.508 29.122 31.524 32.646 31.720 27.588

SSIM↑
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

w. depth loss 0.865 0.784 0.627 0.784 0.630 0.907 0.927 0.945 0.917 0.821
Ours 0.866 0.786 0.626 0.785 0.632 0.908 0.929 0.945 0.918 0.822

LPIPS↓
Garden Stump Treehill Bicycle Flowers Counter Kitchen Bonsai Room Avg

w. depth loss 0.100 0.188 0.275 0.175 0.257 0.185 0.120 0.185 0.212 0.188
Ours 0.100 0.186 0.273 0.174 0.254 0.183 0.118 0.184 0.210 0.187

PSNR: 21.16
SSIM: 0.551
LPIPS: 0.357

PSNR: 21.58
SSIM: 0.581
LPIPS: 0.329

PSNR: 22.24
SSIM: 0.623
LPIPS: 0.295

PSNR: 22.75
SSIM: 0.642
LPIPS: 0.283

PSNR: 22.95
SSIM: 0.649
LPIPS: 0.271

Base Model + Importance Resampling + Depth Alignment + Local Gaussian GT

Figure 9. Visual comparison with different components of the proposed progressive strategy. Zoom in for more details.

Ours Alpha-Blending Random Sampling Voxel Downsampling

Figure 10. Visual comparison with different point cloud downsample strategy and depth rendering method for the initialization process.
The 1st row shows the point cloud generated with different setups for refinement. The 2nd and 3rd rows are rendered RGB images and
rendered depths, respectively.

