A. Supplementary Experiments for Section 3.1

This section supplements Section 3.1 of the main paper by
providing additional experimental details and results. We
present the complete experimental setup described in Sec-
tion 3.1, results for perturbation size of 8/255 in Table 5, and
comprehensive results across five seeds for varying pertur-
bation sizes as illustrated in Figures 6 and 7.

To explore the phenomenon of the transferability of ad-
versarial perturbations following catastrophic overfitting,
we engaged in an experimental study based on the settings
established by He et al. [11]. We initiated our study by
training a ResNet18 [10] model on the CIFAR-10 dataset
using the Fast Gradient Sign Method Adversarial Training
(FGSM-AT) [7] for 100 epochs. The training was con-
ducted with perturbation sizes (€) set to 8/255 and 16/255,
employing a Stochastic Gradient Descent (SGD) optimizer
with an initial learning rate of 0.1. The learning rate was
programmed to diminish by a factor of 0.1 upon reaching
the 80th and 90th epochs. Additionally, the model train-
ing incorporated a batch size of 128, and the images un-
derwent preprocessing, which included padding of 4 pixels
on each side, followed by random cropping and horizon-
tal flipping. To precisely replicate the conditions leading to
CO, we adopted zero initialization for generating adversar-
ial samples and set the weight decay to zero. This setup
was chosen to maintain consistency with He et al. [11] and
to ensure the stable reproduction of CO, thereby facilitat-
ing a clear examination of the transferability of adversarial
perturbations under these conditions.

We delve into the specifics of the experimental outcomes
for each seed, as illustrated in Figures 6 and 7, to shed
light on the underlying dynamics of Ppnormae and PGD
accuracy in relation to catastrophic overfitting. For all five
seeds, we observed a gradual increase in Pypnormqr during
the initial stages of training. However, a striking observa-
tion was made at the point of CO, where PGD accuracy
plummeted to approximately 0, underscoring a sudden and
severe degradation in the model’s ability to counter adver-
sarial attacks. Correspondingly, Pypnormai €Xperienced a
sharp escalation, reinforcing the strong linkage between the
onset of CO and the dramatic increase in P,p,0rmai- This
pattern was consistent across different seeds. The detailed
analysis for each seed further corroborates the significant
impact of CO on the transferability of adversarial perturba-
tions.

B. Pseudocode of the LIET Algorithm for Sec-
tion 3.3

This section supplements Section 3.3 of the main paper by
presenting the pseudocode for the LIET algorithm (Algo-
rithm 1). To enhance clarity, the pseudocode simplifies cer-
tain operations. For instance, an implementation detail con-

Algorithm 1: LIET: Label Information Elimination
Training

Input: A classifier fy with loss function £; Dataset
D = {(x;,y;)}1_,; Perturbation magnitude
€; Gray image ®grqq; Hyperparameter \;
Number of epochs F.

Output: Robust model parameters 6

1 fore =1to E do

2 for each class c in dataset do
3 LI.=e-sign(Vg,,,, L(f(Tgray; 0),¢))
{Generate class-specific label information }
4 end
s | for each batch B = (z,y) C D do
6 if random() < 0.5 then
7 x’ = x + LI, {Randomly add label
information}
8 else
9 a’ = x — LI, {Randomly subtract
label information}
10 end
11 85 = c-sign(Va L(f(2';0),y)) {Generate
adversarial perturbation}
12 ZTadv = T + 0, {Create adversarial
example}
13 loss; = L(f(Tadv; 0),y) {Standard
adversarial training loss}
14 10882 =\ £JSD(f(w; 0), f(a:adv; 0)) {JS
divergence for smoother loss surface}
15 total_loss = loss; + lossy {Combined loss
function}
16 end
17 6 = 0 — 1 - Vgtotal loss {Update model
parameters }
18 end

cerns the clipping of adversarial perturbations. Specifically,
for a perturbation budget of e = 8/255, we clip the pertur-
bation to stay within this bound. For larger budgets, how-
ever, we adopt the strategy from [3] and omit the clipping
step to generate stronger adversaries. For a comprehensive
implementation, we refer the reader to the provided source
code.

C. Experiment Details for Section 4.1

This section provides supplementary information to Section
4.1 of the main paper. Here, we present detailed experimen-
tal configurations and parameters that were utilized in our
study but were omitted from the main paper for brevity.
Our research conducted experiments on three widely
recognized datasets to evaluate the robustness against ad-
versarial attacks, namely CIFAR-10, CIFAR-100, and
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Table 5. Transferability of label information for different inputs on the CIFAR-10 dataset with perturbation sizes of 16/255 and 8/255.
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Figure 6. Transferability of label information for uniform gray image (value 0.5) on the CIFARI10 dataset with a perturbation size of

16/255.

Tiny ImageNet. For CIFAR-10 and CIFAR-100 datasets,
we employed both the ResNet-18 architecture [10] and
WideResNet-28-10 [29] as the network architectures, while
for Tiny ImageNet, we opted for PreActResNet18 due to its
enhanced performance on more complex datasets.

For the CIFAR-10, CIFAR-100, and Tiny ImageNet
datasets, we carved out validation sets comprising 1000,
1000, and 2000 images, respectively, from the training data.
During the training phase, we evaluated the model’s perfor-
mance on these validation sets using the PGD-10 accuracy
metric. The model that achieved the highest accuracy on the
validation set was selected as the final model. This valida-
tion strategy was consistently applied across all compared
algorithms to maintain uniformity in model evaluation.

We set a batch size of 128 and applied a series of prepro-
cessing steps on the images. These steps included padding
the images with 4 pixels on each side, followed by random

cropping and horizontal flipping to augment the dataset and
improve model generalization.

We utilized the Stochastic Gradient Descent (SGD) as
our optimization algorithm, with an initial learning rate set
at 0.1, a weight decay parameter of 5e-4, and momentum of
0.9. The training process was conducted over 100 epochs,
incorporating a OneCycleLR scheduler to adjust the learn-
ing rate dynamically. To stabilize the training process, we
implemented a Weight Averaging (WA) [12] technique with
a 7 value of 0.9995. Each experiment was replicated three
times under different random seeds to ensure the reliability
of our results. For perturbation magnitude of 8/255, we set
A values at 100, 200, and 100, respectively. Furthermore,
we employed non-uniform label smoothing values of 0.6
for both CIFAR-10 and CIFAR-100, and 0.8 for Tiny Ima-
geNet, to fine-tune the model’s performance across diverse
datasets. For perturbation magnitude of 16/255, we set A to
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Figure 7. Transferability of label information for uniform gray image (value 0.5) on the CIFAR10 dataset with a perturbation size of 8/255.

20 and label smoothing value to 0.4.

As highlighted in our paper, initializing the training sam-
ples, x, by either adding or subtracting LI, proved effec-
tive in diminishing the label information, y, from the gen-
erated perturbation, d,. This initialization strategy was em-
ployed randomly to enhance the unpredictability of our de-
fense mechanism against adversarial inputs.

In line with our strategy to boost diversity within the
model, we randomly substituted 10% to 50% of the ele-
ments in LI, with values uniformly distributed between —e
and e when the perturbation size was 8/255. For a perturba-
tion size of 16/255, we randomly substituted 0% to 100% of
the elements in LI, with values uniformly distributed be-
tween —2¢ and 2e. This approach was aimed at enriching
the robustness of our model against adversarial attacks. To
ensure our model adapts to evolving adversarial tactics, we
updated LI at different intervals depending on the dataset:
every 10 batches for CIFAR10 and every 20 batches for CI-
FAR100 and Tiny-ImageNet, aligning with our strategy to
maintain model resilience over time.

To evaluate the robustness of our model, we subjected it
to several adversarial attack methods, including PGD [16]
and AutoAttack (AA) [2]. We varied the number of itera-
tions for PGD attacks to 10, 20, and 50, which are hence-
forth referred to as PGD-20, and PGD-50, respectively.

The maximum allowed perturbation was set to 8/255
and 16/255 for CIFAR-10 and CIFAR-100 datasets, respec-
tively. For Tiny-ImageNet, we used perturbation bounds of

8/255 and 12/255. These dataset-specific perturbation set-
tings reflect the different sensitivity levels of each dataset to
adversarial attacks and provide a more comprehensive eval-
uation of our defense mechanism.

D. Experiment Results for Section 4.2

This section supplements the results presented in Section
4.2 of the main paper by providing more detailed experi-
mental findings. Specifically, Tables 6, 7, and 8 display the
average results from three sets of experiments: CIFAR-10
and CIFAR-100 using ResNet-18, and Tiny ImageNet using
PreActResNet-18. These results include clean accuracy and
robust accuracy measured against PGD-10, PGD-20, PGD-
50, and AutoAttack. Additionally, Tables 9 and 10 present
experimental results for CIFAR-10 and CIFAR-100 using
the larger WideResNet-28-10 architecture. Due to the com-
putational demands of this larger model, these experiments
were conducted only once.

For the training costs reported in Tables 6, 7, and 8§,
we measured training time on an NVIDIA V100 GPU. To
calculate computational complexity (PFLOPs), we approx-
imated the backward propagation cost as equivalent to the
forward propagation cost. The total FLOPs for each method
were determined by calculating the number of forward and
backward passes required during training.

It is worth noting that while some methods have iden-
tical FLOPs calculations in our tables, their training times
differ significantly. This discrepancy arises because a sub-



stantial portion of training time is consumed by parameter
updates, and some methods require maintaining computa-
tional graphs in memory, which introduces additional over-
head not captured in FLOPs measurements alone.



Method | Clean (%) 1 | PGD-10 (%) T | PGD-20 (%) 1 | PGD-50 (%) | AA (%) | Training Cost
PGD-AT [16] | 8232%039 | 5376£0.18 | 52832011 | 5260£0.13 | 4868£0.12 | 35370 min
7091+ 137 | 37.102025 | 2841+0.09 | 2580+036 | 20.07+0.05 | 59.87 PFLOPs
82.00+038 | 5490+015 | 5421015 | 54.08+0.12 | 5026+0.14 | 35821 min
PGD-AT-WA [24] | 71710 £031 | 41.09+0.07 | 33224025 | 31.17+021 | 2509 +021 |59.87 PELOPs
NFGSM[3] | 7879£046 | 53782013 | 5328+0.07 | 53.17£009 | 47.97£0.12 | 74.15min
: 63.09+238 | 39.29+0.45 | 33.00+1.05 | 31.65+136 | 22.50+ 133 | 10.89 PFLOPs
FGSMRS 28] | 73062 10.15 | 48225764 | 47.77£746 | 47682746 | 4282%6.70 | 7436 min
- 6621+7.19 | 1511+515 | 933+620 | 542+512 | 0.00+0.00 | 10.89 PFLOPs
FGSM-PGI [13] | 8032% 109 | 5636£0.19 | 5581£0.13 | 5570£0.10 | 4973£0.17 | 99.71 min
311 8806+035 | 19.02+034 | 1296+038 | 878+028 | 0.11+0.00 | 10.89 PFLOPs
7917027 | 56.60+003 | 56.10+004 | 5589+002 | 4936+0.11 | 108.71 min
FGSM-UAP [20] | gg'072025 | 1556+135 | 972+ 1.11 6.03+091 | 0.03%000 |16.33 PFLOPs
NuAT 7] 80.78 055 | 5543+008 | 54.79+004 | 54.64+005 |50.04+0.13 | 127.81 min
91.82+0.12 | 1493+061 | 7294063 | 351+037 | 0.13+£002 |16.33 PELOPs
Grad-Align [1] | 7869113 | 53522016 | 5299£020 | 5293£020 | 47.99£0.5 | 22864 min
g 46.93 +26.13 | 27.72+12.53 | 23.09+928 | 21.82+842 | 1543 +3.94 | 16.33 PFLOPs
FGSM.AT [7] | 90-98+0.46 | 3866192 | 2891136 | 1947165 | 0.00£000 | 7428 min
- 7975+ 1.64 | 15.15+249 | 10.13+2.89 | 598+241 | 000+0.00 | 10.89 PFLOPs
FreeAT [25] | 81:99%095 | 52232015 | 51.60£009 | 51422008 | 47432014 | 70.53 min
: 80.15+0.54 | 3191217 | 21.66+198 | 1247+050 | 0.00=0.00 |10.89 PFLOPs
COAT [14] 83.93+034 | 53102022 | 5238=0.17 | 5233009 | 37.99+031 | 90.03 min
8458 +583 | 3627+644 | 2464+694 | 1817+152 | 458+324 |13.61 PFLOPs
GAT [26] 85.12+0.04 | 55.03+005 | 5423020 | 54.05+021 | 4939+022 | 126.75 min
6502+3891 | 948+079 | 598+288 | 444+394 | 3.14+441 |1633 PFLOPs
LIET Ours) | 80612044 | 56.70:£0.06 | 56.14£0.05 | 56.08£0.07 | 50.01£0.09 | 101.29 min
urs 52724351 | 37.17+2.11 | 33.55+1.59 | 33.10+1.44 | 25.22 + 0.41 | 10.93 PFLOPs

Table 6. Comparison of clean accuracy, robust accuracy and training cost (time in minutes and computation in PFLOPs) on CIFAR-10 using
ResNet-18. Each method is evaluated with perturbation sizes of 8/255 (first row) and 16/255 (second row). Best results are highlighted in
bold.



Method | Clean (%) 1 | PGD-10 (%) T | PGD-20 (%) 1 | PGD-50 (%) | AA (%) | Training Cost
PGD-AT[16] | 5752%095 | 2060£023 | 2899£021 | 2887£027 | 254820.01 | 353.65min
- 4838+2.04 | 17.03+0.18 | 12.66+0.09 | 11.56+0.16 | 9.17+0.12 | 59.88 PFLOPs
5648+ 134 | 3251031 | 3223+026 | 3222+025 | 2684+028 | 358.80 min
PGD-AT-WA [24] | 45644158 | 2244+0.10 | 18.09+0.16 | 17.45+027 | 12.66+0.15 | 59.88 PELOPs
NFGSM[3] | S477£168 | 30702027 | 30472026 | 3041029 | 25312028 | 74.62min
: 3939+2.11 | 19.90+030 | 1652+0.04 | 1595+0.18 | 11.18+0.21 | 10.89 PFLOPs
EGSMLRS (2] | 3759% 1543 | 2094%959 | 2086%9.54 | 2084955 | 1670%7.84 | 74.62min
RSB 173343058 | 1.73+035 1.62 +0.33 161+£032 | 1.05+021 |10.89 PFLOPs
FGSM-PGI [13] | 36022021 | 3270£0.14 | 3232£0.10 | 3231£0.11 | 2676£0.07 | 99.85min
311 57294961 | 385+187 | 208+123 150+133 | 057+0.70 | 10.89 PFLOPs
53544049 | 32.14+005 | 31.83+004 | 31.81£005 | 2629+003 | 114.03 min
FGSM-UAP [20] | 1439 +2833 | 3.18+0.66 1.89 +0.10 135+047 | 055+0.67 |16.33 PFELOPs
NuAT 7] 5772+201 | 2582+128 | 2299+094 | 21.62+058 | 13.77+058 | 131.49 min
u 6230+ 008 | 10722006 | 592+003 | 407+0.11 | 1.94+0.12 |16.33 PFLOPs
Grad-Align [1] | 5487 £L17 | 31862019 | 3L60£0.19 | 3154023 | 2618007 | 22934 min
-Alig 2297+ 1338 | 1136+663 | 9.63+558 | 950+547 | 643+3.93 |16.33 PFLOPs
FGSMAT 7] | 21362836 | 3042067 | 238044 188+032 | 0.19+003 | 74.17 min
- 1454045 | 096+004 | 085+015 | 082+017 | 051+049 |10.89 PELOPs
Free AT [25] | 3829%2.10 | 30472035 | 30014030 | 29.96£020 | 24343042 [ 7197 min
ree- - 20.93+4.08 | 11.10+2.49 9.87 +2.21 9.79 +2.21 5.84+1.56 | 10.89 PFLOPs
COAT (14 67.56 +1.13 | 2455+0.16 | 2323+034 | 22.70+033 | 1893 £007 | 88.85 min
[14] 6567+027 | 1085+101 | 605+073 | 445+061 | 2.75+038 |13.61 PFLOPs
GAT [26] 6524+026 | 27.61+0.14 | 2669+019 | 2654+016 | 21.97+0.15 | 126.85 min
72.42 +0.58 | 3.19 % 0.04 1424002 | 057006 | 006+0.03 |16.33 PFLOPs
LIET Oursy | 31522038 | 32.0240.12 | 32.75£0.15 | 32.7420.14 | 27.05+0.09 | 10374 min
(Ours 35.00+2.85 | 20.34+0.86 | 17.60+0.45 | 17.22+0.42 | 12.04 +0.30 | 11.11 PFLOPs

Table 7. Comparison of clean accuracy, robust accuracy and training cost (time in minutes and computation in PFLOPs) on CIFAR-
100 using ResNet-18. Each method is evaluated with perturbation sizes of 8/255 (first row) and 16/255 (second row). Best results are
highlighted in bold.



Method | Clean (%) 1 | PGD-10 (%) 1 | PGD-20 (%) t | PGD-50 (%) 1| AA (%)1 | Training Cost
PGD-AT [16] | 4300245 | 2020+ 182 | 1990141 | 1986+123 | 1600+1.02 | 243263 min
- 4127+245 | 14.85+027 | 13.44+0.04 | 13.15+0.00 | 9.54+0.19 |479.01 PFLOPs
46.23+0.85 | 2609+036 | 26.06+0.34 | 2606+0.34 | 19.62+0.24 | 2439.34 min
PGD-AT-WA 121 417894020 | 19.91+0.17 | 18.60+0.03 | 1843+014 | 12.31+0.02 | 479.01 PFLOPs
N-FGSM [3] 47.73+0.45 | 2530+026 | 25.18+0.24 | 25.10+023 | 18.76+0.24 | 498.95 min
- - 3798 +131 | 18.11+0.05 | 16.94+0.08 | 16.64+0.14 | 11.11+0.18 | 87.09 PFLOPs
EGSM.RS [28] | 4310409 | 22012135 | 2271£130 | 2270+127 | 1628+ 1.03 | 493.77 min
- 5.64 +0.03 2.33+0.01 2.26 +0.00 2.25+0.01 1.33+0.01 | 87.09 PFLOPs
FGSM.PGI [13] | 4839%0.19 | 26.68+0.25 | 264620.15 | 2639+0.17 | 1952007 | 65209 min
11 24814129 | 5244006 429 + 0.04 4.02 +0.14 1.33+0.27 | 87.09 PFLOPs
45.69+099 | 26.12+0.05 | 2591+0.02 | 2584+0.04 | 19.45+0.14 717.3 min
FGSM-UAP [20] | 16804900 | 255£0.10 | 2.05+027 189+040 | 0.71+059 | 130.64 PFLOPs
NUAT [27] 4555+0.99 | 2651+0.17 | 2638+0.17 | 2637+0.14 | 1955+0.12 | 865.64 min
u 4798 +495 | 13.83+2.69 | 11.25+4.00 | 1059+4.58 | 547+3.37 | 130.64 PFLOPs
Grad-Alien [1 46.16+2.03 | 24.61+051 | 2430+0.40 | 2421+041 | 17.65+0.28 | 1514.23 min
rad-Align [11 | 36835261 | 15574076 | 1443079 | 1422+0.72 | 8.71+0.59 | 130.64 PELOPs
FGSMLAT [7] | 34081585 17122869 | 16922860 | 1684%855 | 1660036 | 492.96 min
- 5.78 + 1.95 1.75 +0.08 1.62 +0.16 1.58 +0.21 0.84+0.29 | 87.09 PFLOPs
Free-AT [25] 48.19+1.78 | 23.85+024 | 23.63+025 | 23.58+026 | 1634+032 | 474.87 min
ree- - 3257+3.72 | 14.89+1.00 | 14.07+0.75 | 13.99+0.73 | 8.42+0.58 | 87.09 PFLOPs
COAT 14 59.30+0.38 | 18.45+0.08 | 17.57+0.16 | 17.25+0.22 | 11.56+0.02 | 578.07 min
[14] 58.52+1.41 | 10.65+0.96 8.15+0.84 7.38 +0.86 3.71+0.60 | 108.87 PFLOPs
GAT [26] 57.68+0.25 | 17.97+023 | 1726+024 | 17.01+0.28 | 11.53+0.15 851.30 min
33.84 +0.91 1.02 +0.07 0.69 + 0.04 0.60 + 0.02 0.20 +0.01 | 130.64 PFLOPs
LIET (Ours) 44.73+033 | 26.68+0.11 | 26.54+0.12 | 26.54+0.11 | 19.79+0.04 | 682.47 min
urs 35.18+0.76 | 18.43+0.13 | 17.47+0.10 | 17.31+0.19 | 11.29 + 0.15 | 90.56 PFLOPs

Table 8. Comparison of clean accuracy, robust accuracy and training cost (time in minutes and computation in PFLOPs) on Tiny-ImageNet
using PreResNet-18. Each method is evaluated with perturbation sizes of 8/255 (first row) and 12/255 (second row). Best results are

highlighted in bold.



Method | Clean (%) 1 | PGD-10 (%) T | PGD-20 (%) 1 | PGD-50 (%) T | AA (%)
NEGSMEL | gglo | 39007 3 28 | 2les
FGSM-RS [28] | %oo S 567 536 751
FGSMPGLIS | go75 | n 1808 1w | 0w
NaTRTL | g3y | 1061 | oir
Grad-Align [1] | 5255 07 573 s 055
FGSM-AT (7] | 95758 o o5t 034 720
FeeATS) | 3870 | 217 2012 o0 | 154
cotii | gt | 3l 2097 52 | ood
Gatpol | g3y | 1l W50 s | oo
UETOw | %5 | dare 35,96 5308 | 2384

Table 9. Comparison of clean accuracy and robust accuracy on CIFAR-10 using WideResNet-28-10. Each method is evaluated with

perturbation sizes of 8/255 (first row) and 16/255 (second row). Best results are highlighted in bold.

Method | Clean (%) 1 | PGD-10 (%) T | PGD-20 (%) T | PGD-30 (%) T | AA (%) 1
NFGSMET | 3330 | 20050 16.54 1576 | 1217
FOSM-RS 281 | 955 T 051 088 | 040
FGsM-pGI[13] | % 959 o31 530 350
TR | 8% o o7 | TS
Grad-Align [1] | ) e iy Tor 0ot
FGSM-AT[7] | %0 057 060 048 0.00
Free-AT 1251 | 5033 10:64 921 9% | S
COATI | 7249 | Tios o8 520 | w0
GAT61 | 7403 W30 Tsi 093 | oot
LIET Owrs) | 3535 2017 17,47 1719 | 1272

Table 10. Comparison of clean accuracy and robust accuracy on CIFAR-100 using WideResNet-28-10. Each method is evaluated with

perturbation sizes of 8/255 (first row) and 16/255 (second row). Best results are highlighted in bold.
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